
HANDBOOK OF
SIMULATION
Principles, Methodology, Advances,
Applications, and Practice

edited by

Jerry Banks
Georgia Institute of Technology
Atlanta, Georgia

-

E M P C o - p u b l i s h e d b y
E n g i n e e r i n g & M a n a g e m e n t P r e s s

yA divism of the Institute of
B O O K S Industrial Engmerz

A WILEY-INTERSCIENCE PUBLICATION

JOHN WILEY & SONS, INC.

New York . Chichester ?? Weinheim ?? Brisbane ?? Singapore ?? Toronto

This book is printed on acid-free paper. @

Copyright 0 1998 by John Wiley & Sons, Inc. All rights reserved.

Published simultaneously in Canada.

No part of this publication may be reproduced, stored in a retrieval system or transmitted
in any form or by any means, electronic, mechanical, photocopying, recording, scanning or
otherwise, except as permitted under section 107 or 108 of the 1976 United States Copyright
Act, without either the prior written permission of the Publisher, or authorization through
payment of the appropriate per-copy fee to the Copyright Clearance Center, 222 Rosewood
Drive, Danvers, MA 01923, (978) 750-8400, fax (978) 750-4744. Requests to the Publisher
for permission should be addressed to the Permissions Department, John Wiley & Sons, Inc.,
605 Third Avenue, New York, NY 10158-0012, (212) 850-6011, fax (212) 850-6008, E-Mail:
PERMREQ@WILEY.COM.

This publication is designed to provide accurate and authoritative information in regard to the
subject matter covered. It is sold with the understanding that the publisher is not engaged in
rendering professional services. If professional advice or other expert assistance is required, the
services of a competent professional person should be sought.

Library of Congress Cataloging-in-Publication Data:
Handbook of simulation/edited by Jerry Banks.

P. cm.
“A Wiley-Interscience publication.”
Includes index.
ISBN O-47 1 - 13403- 1 (cloth: alk. paper)

1. Simulation methods-Handbooks, manuals, etc. 2. Discrete-time
systems-Handbooks, manuals, etc. I. Banks, Jerry.
T57.62.H37 1998
003’.83+Jc21

Printed in the United States of America.

1 0 9 8 7 6 5 4 3 2

97-51533

To Nancy for all her patience, understanding, and love.

CONTENTS

PREFACE

CONTRIBUTORS

PART I PRINCIPLES

1. Principles of Simulation
by Jerry Banks

2. Principles of Simulation Modeling
by A. Alan B. Pritsker

PART I1 METHODOLOGY

3. Input Data Analysis
by Stephen Vincent

4. Random Number Generation
by Pierre L'Ecuyer

5. Random Variate Generation
by Russell C. H. Cheng

6. Experimental Design for Sensitivity Analysis, Optimization,
and Validation of Simulation Models
by Jack I? C. Kleijnen

7. Output Data Analysis
by Christos Alexopoulos and Andrew E Seila

8. Comparing Systems via Simulation
by David Goldsman and Burry L. Nelson

9. Simulation Optimization
by Sigrun Andradbttir

10. Verification, Validation, and Testing
by Osman Balci

vii

viii CONTENTS

PART 111 RECENT ADVANCES

11. Object-Oriented Simulation
by Jeffrey A. Joines and Stephen D. Roberts

12. Parallel and Distributed Simulation
by Richard M. Fujimoto

13. On-Line Simulation: Need and Evolving Research Requirements
by Wayne J. Davis

PART IV APPLICATION AREAS

14. Simulation of Manufacturing and Material Handling Systems
by Matthew W Rohrer

15. Simulation in the Automobile Industry
by Onur Ulgen and Ali Gunal

16. Simulation of Logistics and Transportation Systems
by Mani S. Manivannan

17. Simulation of Healthcare
by Frank McGuire

18. Simulation of Service Systems
by Ron Laughery, Beth Plott, and Shelly Scott-Nash

19. Military Simulation
by Keeborn Kang and Ronald J. Roland

20. Discrete-Event Simulation of Computer and Communication
Systems
by Alfred Hartmann and Herb Schwetman

21. Simulation and Scheduling
by Ali S. Kiran

PART V PRACTICE OF SIMULATION

22. Guidelines for Success
by Kenneth J. Musselman

23. Managing the Simulation Project
by Van Norman and Jerry Banks

24. How Discrete-Event Simulation Software Works
by Thomas J. Schriber and Daniel 7: Brunner

25. Software for Simulation
by Jerry Banks

INDEX

PREFACE

This Handbook is concerned with the simulation of discrete-event systems. Simulation
is consistently one of the top three methodologies used by industrial engineers, manage-
ment scientists, and operations researchers. It used to be called "the technique of last
resort," but it has become an indispensable problem-solving methodology. The premier
meeting of the simulation community, the Winter Simulation Conference, draws 600 to
700 paid attendees year after year.

The Handbook contains 25 contributions by 33 authors. The authors are leading aca-
demicians and practitioners in the field of discrete-event simulation. The contributions
span the entire spectrum of the field: from the principles, through the methodology,
some of the recent advances, then presentations on the major areas of application of
simulation, and finally, helpful contributions about the practice of simulation.

Many people are to be thanked in bringing the Hundbook to fruition. Bob Argentieri,
our editor at John Wiley & Sons, Inc., suggested the project to a simulation practitioner.
But due to the press of business, the project could not be undertaken at that time. How-
ever, Van Norman, AutoSimulations, Inc., knew about the idea and suggested it to me.
David Goldsman, my colleague at Georgia Tech, and W. David Kelton, on the faculty
at the University of Cincinnati, are to be thanked for their advice.

I would also like to thank John Carson, AutoSimulations, Inc., my coauthor on other
works and my former business partner. We have been associated in some fashion since
1979, and he has been very patient in teaching me about many simulation topics.

As editor, I would like to apologize to those contributors that I bugged so hard. It
seems that every person has a full plate, and it can be very difficult to meet a demanding
time schedule.

Atlanta, Georgia
June, 1998.

CONTRIBUTORS

Christos Alexopoulos, School of Industrial and Systems Engineering, Georgia Institute
of Technology, Atlanta, Georgia

Sigrtin Andradottir, School of Industrial and Systems Engineering, Georgia Institute
of Technology, Atlanta, Georgia

Osman Balci, Department of Computer Science, Virginia Polytechnic Institute and
State University, Blacksburg, Virginia

Jerry Banks, School of Industrial and Systems Engineering, Georgia Institute of Tech-
nology, Atlanta, Georgia

Daniel T. Brunner, Systemflow Simulations, Inc., Indianapolis, Indiana

Russell C. H. Cheng, Institute of Mathematics and Statistics, The University of Kent
at Canterbury, Canterbury, England

Wayne J. Davis, Department of General Engineering, University of Illinois, Urbana,
Illinois

Richard M. Fujimoto, College of Computing, Georgia Institute of Technology,
Atlanta, Georgia

David Goldsman, School of Industrial and Systems Engineering, Georgia Institute of
Technology, Atlanta, Georgia

Ali Gunal, Production Modeling Corporation, Dearborn, Michigan

Alfred Hartmann, Mesquite Software, Inc., Austin, Texas

Jeffrey A. Joines, Department of Industrial Engineering, North Carolina State Univer-
sity, Raleigh, North Carolina

Keebom Kang, Department of Systems Management, Naval Postgraduate School,
Monterey, California

Ali S. Kiran, Kiran and Associates, San Diego, California

Jack P. C. Kleijnen, Center for Economic Research, Tilburg University, Tilburg,
Netherlands

Ron Laughery, Micro Analysis and Design, Inc., Boulder, Colorado

Pierre L'Ecuyer, Department of Computer Science and Operations Research, Univer-
sity of Montreal, Montreal, Canada

Mani S. Manivannan, CNF Transportation, Inc., Portland, Oregon

xii CONTRIBUTORS

Frank McGuire, Premier, Inc., Charlotte, North Carolina

Ken Musselman, Pritsker Corporation, West Lafayette, Indiana

Barry Nelson, McCormick School of Engineering and Applied Science, Northwestern
University, Evanston, Illinois

Van Norman, AutoSimulations, Inc., Bountiful, Utah

Beth Plott, Micro Analysis and Design, Inc., Boulder, Colorado

A. Alan B. Pritsker, Pritsker Corporation, Indianapolis, Indiana

Stephen D. Roberts, Department of Industrial Engineering, North Carolina State Uni-
versity, Raleigh, North Carolina

Matthew W. Rohrer, AutoSimulations, Inc., Bountiful, Utah

Ronald J. Roland, Rolands and Associates Corporation, Monterey, California

Thomas J. Schriber, School of Business Administration, University of Michigan, Ann
Arbor, Michigan

Herb Schwetman, Mesquite Software, Inc., Austin, Texas

Shelly Scott-Nash, Micro Analysis and Design, Inc., Boulder, Colorado

Andrew F. Seila, Program in Management Science, University of Georgia, Athens,
Georgia

Onur Ulgen, Production Modeling Corporation, Dearborn, Michigan

Stephen Vincent, Compuware Corporation, Milwaukee, Wisconsin

HANDBOOK OF
SIMULATION

PART l

PRINCIPLES

CHAPTER 1

Principles of Simulation

JERRY BANKS
Georgia Institute of Technology

1.1 INTRODUCTION

The purpose of this handbook is to provide a reference to important topics that pertain
to discrete-event simulation. All the contributors to this volume, who are a mix from
academia, industry, and software developers, are highly qualified. The book is intended
for those who want to apply simulation to important problems. If you are new to sim-
ulation, reading this chapter will provide an overview to the remainder of the book.
If you studied simulation several years ago, reading this chapter will provide a useful
review and update. [Much of this introductory chapter is from Banks et al. (1995).]

Chapter I is essentially in three parts. The first part begins with a definition and
an example of simulation. Then modeling concepts introduced in the example are pre-
sented. Four modeling structures for simulation are then presented. The second part of
the chapter concerns subjective topics. First, the advantages and disadvantages of sim-
ulation are discussed. Then some of the areas of application are mentioned. Last, the
steps in the simulation process are described. The third part of the chapter has four sec-
tions. Each of these sections introduces operational aspects of discrete-event simulation.
The chapter concludes with a summary.

1.2 DEFINITION OF SIMULATION

Simulation is the imitation of the operation of a real-world process or system over time.
Simulation involves the generation of an artificial history of the system and the obser-
vation of that artificial history to draw inferences concerning the operating character-
istics of the real system that is represented. Simulation is an indispensable problem-
solving methodology for the solution of many real-world problems. Simulation is used
to describe and analyze the behavior of a system, ask what-if questions about the real

- -

Handbook of Simulation, Edited by Jeny Banks.
ISBN 0.471- 13403-1 O 1998 John Wiley & Sons, Inc

4 PRINCIPLES OF SIMULATION

system, and aid in the design of real systems. Both existing and conceptual systems can
be modeled with simulation.

Example 1 (Ad Hoc Simulation) Consider the operation of a one-teller bank where
customers arrive for service between 1 and 10 minutes apart in time, integer values only,
each value equally likely. The customers are served in between 1 and 6 minutes, also
integer valued, and equally likely. Restricting the times to integer values is an abstraction
of reality since time is continuous, but this aids in presenting the example. The objective
is to simulate the bank operation, by hand, until 20 customers are served, and to compute
measures of performance such as the percentage of idle time, the average waiting time
per customer, and so on. Admittedly, 20 customers are far too few to draw conclusions
about the operation of the system for the long run, but by following this example, the
stage is set for further discussion in this chapter and subsequent discussion about using
the computer for performing simulation.

To simulate the process, random interarrival and service times need to be generated.
Assume that the interarrival times are generated using a spinner that has possibilities
for the values 1 through 10. Further assume that the service times are generated using
a die that has possibilities for the values 1 through 6.

Table 1.1 is called an ad hoc simulation table. The setup of the simulation table is for

Table 1.1 Ad Hoc Simulation

Time Time Time Time
Between Anival Service Service Service in Idle in

Customer Amvals Time Time Begins Ends System Time Queue

1.2 DEFINITION OF SIMULATION 5

the purpose of this problem but does not pertain to all problems. Column (I) , Customer,
lists the 20 customers who arrive at the system. It is assumed that customer 1 arrives
at time zero; thus a dash is indicated in row 1 of column (2), Time Between Arrivals.
Rows 2 through 20 of column (2) were generated using the spinner. Column (3), Arrival
Time, shows the simulated arrival times. Since customer 1 is assumed to amve at time
0 and there is a 5-minute interarrival time, customer 2 arrives at time 5. There is a
I-minute interarrival time for customer 3; thus the arrival occurs at time 6. This process
of adding the interarrival time to the previous arrival time is called bootstrapping. By
continuing this process, the amval times of all 20 customers are determined. Column
(4), Service Time, contains the simulated service times for all 20 customers. These were
generated by rolling the die.

Now simulation of the service process begins. At time 0, customer 1 arrived and
immediately began service. The service time was 2 minutes, so the service period ended
at time 2. The total time in the system for customer 1 was 2 minutes. The bank teller
was not idle since simulation began with the arrival of a customer. The customer did
not have to wait for the teller.

At time 5, customer 2 arrived and began service immediately, as shown in column
(6). The service time was 2 minutes, so the service period ended at time 7, as shown
in column (6). The bank teller was idle from time 2 until time 5, so 3 minutes of idle
time occurred. Customer 2 spent no time in the queue.

Customer 3 arrived at time 6, but service could not begin until time 7, as customer 2
was being served until time 7. The service time was 6 minutes, so service was completed
at time 13. Customer 3 was in the system from time 6 until time 13, or for 7 minutes,
as indicated in column (7), Time in System. Although there was no idle time, customer
3 had to wait in the queue for 1 minute for service to begin.

This process continues for all 20 customers, and the totals shown in columns (7),
(8) (Idle Time), and (9) (Time in Queue) are entered. Some performance measures can
now be calculated as follows:

Average time in system = 79/20 = 3.95 minutes.

Percent idle time = (30/99)(100) = 30%.

Average waiting time per customer = 10/20 = 0.5 minute.

Fraction having to wait = 5/20 = 0.25.

Average waiting time of those who waited = 10/3 = 3.33 minutes.

This very limited simulation indicates that the system is functioning well. Only 25%
of the customers had to wait. About 30% of the time the teller is idle. Whether a slower
teller should replace the current teller depends on the cost of having to wait versus any
savings from having a slower server.

This small simulation can be accomplished by hand, but there is a limit to the com-
plexity of problems that can be solved in this manner. Also, the number of customers
that must be simulated could be much larger than 20 and the number of times that the
simulation must be run for statistical purposes could be large. Hence, using the computer
to solve real simulation problems is almost always appropriate.

Example 1 raises some issues that are addressed in this chapter and explored more
fully in the balance of the book. The issues include the following:

6 PRINCIPLES OF SIMULATION

1. How is the form of the input data determined?

2. How are random variates generated if they follow statistical distributions other
than the discrete uniform?

3. How does the user know that the simulation imitates reality?

4. What other kinds of problems can be solved by simulation?

5. How long does the simulation need to run?

6. How many different simulation runs should be conducted?

7. What statistical techniques should be used to analyze the output?

Each of these questions raises a host of issues about which many textbooks and thou-
sands of technical papers have been written. Although an introductory chapter cannot treat
all of these questions in the greatest detail, enough can be said to give the reader some
insight that will be useful in understanding the framework of the remainder of the book.

1.3 MODELING CONCEPTS

There are several concepts underlying simulation. These include system and model, sys-
tem state variables, entities and attributes, list processing, activities and delays, and the
definition of discrete-event simulation. Additional information on these topics is available
from Banks et al. (1 996) and Law and Kelton (1991). The discussion in this section follows
that of Carson (1993). Chapter 2 provides an extensive discussion of the topic.

1.3.1 System, Model, and Events

A model is a representation of an actual system. Immediately, there is a concern about
the limits or boundaries of the model that supposedly represent the system. The model
should be complex enough to answer the questions raised, but not too complex. Con-
sider an event as an occurrence that changes the state of the system. In Example 1 ,
events include the arrival of a customer for service at a bank and the completion of a
service. There are both internal and external events, also called endogenous events and
exogenous events, respectively. For example, an endogenous event in Example 1 is the
beginning of service of the customer since that is within the system being simulated.
An exogenous event is the arrival of a customer for service since that occurrence is
outside the simulation. However, the arrival of a customer for service impinges on the
system and must be taken into consideration.

In this book we consider discrete-event simulation models. (Chapter 2 describes con-
tinuous and combined discrete-continuous models.) These are contrasted with other
types of models, such as mathematical models, descriptive models, statistical models,
and input-output models. A discrete-event model attempts to represent the components
of a system and their interactions to such an extent that the objectives of the study
are met. Most mathematical, statistical, and input-output models represent a system's
inputs and outputs explicitly but represent the internals of the model with mathematical
or statistical relationships. An example is the mathematical model from physics,

force = mass x acceleration

1.3 MODELING CONCEPTS 7

based on theory. Discrete-event simulation models include a detailed representation of
the actual internals.

Discrete-event models are dynamic; that is, the passage of time plays a crucial role.
Most mathematical and statistical models are static., in that they represent a system
at a fixed point in time. Consider the annual budget of a firm. The budget resides in a
spreadsheet. Changes can be made in the budget and the spreadsheet can be recalculated,
but the passage of time is usually not a critical issue. Further comments will be made
about discrete-event models after several additional concepts are presented.

1.3.2 System State Variables

The system state variables are the collection of all information needed to define what
is happening within a system to a sufficient level (i.e., to attain the desired output) at
a given point in time. The determination of system state variables is a function of the
purposes of the investigation, so what may be the system state variables in one case
may not be the same in another case, even though the physical system is the same.
Determining the system state variables is as much an art as a science. However, during
the modeling process, any omissions will readily come to light. (On the other hand,
unnecessary state variables may be eliminated.)

Having defined system state variables, a contrast can be made between discrete-event
models and continuous models based on the variables needed to track the system state.
The system state variables in a discrete-event model remain constant over intervals of
time and change value only at certain well-defined points called event times. Continuous
models have system state variables defined by differential or difference equations, giving
rise to variables that may change continuously over time.

Some models are mixed discrete-event and continuous. There are also continuous
models that are treated as discrete-event models after some reinterpretation of system
state variables, and vice versa. The modeling of continuous systems is not treated in
this book.

1.3.3 Entities and Attributes

An entity represents an object that requires explicit definition. An entity can be dynamic
in that it "moves" through the system, or it can be static in that it serves other entities.
In Example 1 the customer is a dynamic entity, whereas the bank teller is a static entity.

An entity may have attributes that pertain to that entity alone. Thus attributes should
be considered as local values. In Example 1 , an attribute of the entity could be the time
of arrival. Attributes of interest in one investigation may not be of interest in another
investigation. Thus, if red parts and blue parts are being manufactured, the color could
be an attribute. However, if the time in the system for all parts is of concern, the attribute
of color may not be of importance. From this example it can be seen that many entities
can have the same attribute or attributes (i.e., more than one part may have the attribute
"red").

1.3.4 Resources

A resource is an entity that provides service to dynamic entities. The resource can serve
one or more than one dynamic entity at the same time (i.e., operate as a parallel server).
A dynamic entity can request one or more units of a resource. If denied, the requesting

8 PRINCIPLES OF SIMULATION

entity joins a queue or takes some other action (i.e., is diverted to another resource, is
ejected from the system). (Other terms for queues are$les, chains, buffers, and waiting
lines.) If permitted to capture the resource, the entity remains for a time, then releases
the resource. There are many possible states of a resource. Minimally, these states are
idle and busy. But other possibilities exist, including failed, blocked, or starved.

1.3.5 List Processing

Entities are managed by allocating them to resources that provide service; by attaching
them to event notices, thereby suspending their activity into the future; or by placing
them into an ordered list. Lists are used to represent queues.

Lists are often processed according to FIFO (first in, first out), but there are many
other possibilities. For example, the list could be processed by LIFO (last in, first out),
according to the value of an attribute, or randomly, to mention a few. An example where
the value of an attribute may be important is in SPT (shortest process time) scheduling.
In this case the processing time may be stored as an attribute of each entity. The entities
are ordered according to the value of that attribute, with the lowest value at the head
or front of the queue.

1.3.6 Activities and Delays

An activity is a period of time whose duration is known prior to commencement of the
activity. Thus, when the duration begins, its end can be scheduled. The duration can be
a constant, a random value from a statistical distribution, the result of an equation, input
from a file, or computed based on the event state. For example, a service time may be
a constant 10 minutes for each entity; it may be a random value from an exponential
distribution with a mean of 10 minutes; it could be 0.9 times a constant value from
clock time 0 to clock time 4 hours, and 1.1 times the standard value after clock time 4
hours; or it could be 10 minutes when the preceding queue contains at most four entities
and 8 minutes when there are five or more in the preceding queue.

A delay is an indefinite duration that is caused by some combination of system con-
ditions. When an entity joins a queue for a resource, the time that it will remain in the
queue may be unknown initially since that time may depend on other events that may
occur. An example of another event would be the arrival of a rush order that preempts the
resource. When the preempt occurs, the entity using the resource relinquishes its control
instantaneously. Another example is a failure necessitating repair of the resource.

Discrete-event simulations contain activities that cause time to advance. Most
discrete-event simulations also contain delays as entities wait. The beginning and ending
of an activity or delay are events.

1.3.7 Discrete-Event Simulation Model

Sufficient modeling concepts have been defined so that a discrete-event simulation
model can be defined as one in which the state variables change only at those dis-
crete points in time at which events occur. Events occur as a consequence of activity
times and delays. Entities may compete for system resources, possibly joining queues
while waiting for an available resource. Activity and delay times may "hold" entities
for durations of time.

A discrete-event simulation model is conducted over time ("run") by a mechanism

1.4 MODELING STRUCTURES 9

that moves simulated time forward. The system state is updated at each event, along
with capturing and freeing of resources that may occur at that time.

1.4 MODELING STRUCTURES

There are four modeling structures taken by the simulation community. They are known
as the process-interaction method, event-scheduling method, activity scanning, and the
three-phase method. The descriptions are rather concise; readers requiring greater expla-
nation are referred to Balci (1988) or Pidd (1992). The first two of these modeling
structure topics are discussed in Chapter 2. We describe all four of them briefly here.

1.4.1 Process-Interaction Method

The simulation structure that has the greatest intuitive appeal is the process-interaction
method. The notion is that the computer program should emulate the flow of an object
through the system. The entity moves as far as possible in the system until it is delayed,
enters an activity, or exits from the system. When the entity's movement is halted, the
clock advances to the time of the next movement of any entity.

This flow, or movement, describes in sequence all the states that the object can attain
in the system. For example, in a model of a self-service laundry a customer may enter the
system, wait for a washing machine to become available, wash his or her clothes in the
washing machine, wait for a basket to become available to unload the washing machine,
transport the clothes in the basket to a drier, wait for a drier to become available, unload
the clothes into a drier, dry the clothes, and leave the laundry.

1.4.2 Event-Scheduling Method

The basic concept of the event-scheduling method is to advance time to when something
next happens. This usually releases a resource (i.e., a scarce entity such as a machine
or transporter). The event then reallocates available objects or entities by scheduling
activities where they can now participate. For example, in the self-service laundry, if
a customer's washing is finished and there is a basket available, the basket could be
allocated immediately to the customer and unloading of the washing machine could
begin. Time is advanced to the next scheduled event (usually the end of an activity)
and activities are examined to see if any can now start as a consequence.

1.4.3 Activity Scanning

The third simulation modeling structure is activity scanning. It is also known as the two-
phase approach. Activity scanning is similar to rule-based programming. (If a specified
condition is met, a rule is$red, meaning that an action is taken.) Activity scanning pro-
duces a simulation program composed of independent modules waiting to be executed.
Scanning takes place at fixed time increments at which a determination is made con-
cerning whether or not an event occurs at that time. If an event occurs, the system state
is updated.

10 PRINCIPLES OF SIMULATION

1.4.4 Three-Phase Method

The fourth simulation modeling structure is known as the three-phase method. Time is
advanced until there is a state change in the system or until something next happens. The
system is examined to determine all of the events that take place at this time (i.e., all the
activity completions that occur). Only when all resources that are due to be released at
this time have been released is reallocation of these resources into new activities started in
the third phase of the simulation. In summary, the first phase is time advance. The second
phase is the release of those resources scheduled to end their activities at this time. The
third phase is to start activities given the global picture about resource availability.

Possible modeling inaccuracies may occur with the last two methods, as discrete time
slices must be specified. With computing power growing so rapidly, high-precision simu-
lation will be utilized increasingly, and the error due to discretizing time may become an
important consideration.

1.5 ADVANTAGES AND DISADVANTAGES OF SIMULATION*

Competition in the computer industry has led to technological breakthroughs that are
allowing hardware companies to produce better products continually. It seems that every
week another company announces its latest release, each with more options, memory,
graphics capability, and power.

What is unique about new developments in the computer industry is that they often
act as a springboard for related industries to follow. One industry in particular is the
simulation-software industry. As computer hardware becomes more powerful, more
accurate, faster, and easier to use, simulation software does, too.

The number of businesses using simulation is increasing rapidly. Many managers are
realizing the benefits of utilizing simulation for more than just the one-time remodeling
of a facility. Rather, due to advances in software, managers are incorporating simulation
in their daily operations on an increasingly regular basis.

For most companies, the benefits of using simulation go beyond simply providing a
look into the future. These benefits are mentioned by many authors (Banks et al., 1996;
Law and Kelton, 1991; Pegden et al., 1995; Schriber, 1991) and are included in the
following.

1.5.1 Advantages

1. Choose correctly. Simulation lets you test every aspect of a proposed change or
addition without committing resources to their acquisition. This is critical, because once
the hard decisions have been made, the bricks have been laid, or the material handling
systems have been installed, changes and corrections can be extremely expensive. Sim-
ulation allows you to test your designs without committing resources to acquisition.

2. Compress and expand time. By compressing or expanding time, simulation
allows you to speed up or slow down phenomena so that you can investigate them
thoroughly. You can examine an entire shift in a matter of minutes if you desire, or you
can spend 2 hours examining all the events that occurred during 1 minute of simulated
activity.

*Reprinted with the permission of the Institute of Industrial Engineers, 25 Technology Park, Norcross, GA
30092, 770-449-0161. Copyright 01998.

1.5 ADVANTAGES AND DISADVANTAGES OF SIMULATION 11

3. Understand why. Managers often want to know why certain phenomena occur
in a real system. With simulation, you determine the answer to the "why" questions
by reconstructing the scene and taking a microscopic examination of the system to
determine why the phenomenon occurs. You cannot accomplish this with a real sys-
tem because you cannot see or control it in its entirety.

4. Explore possibilities. One of the greatest advantages of using simulation software
is that once you have developed a valid simulation model, you can explore new policies,
operating procedures, or methods without the expense and disruption of experimenting
with the real system. Modifications are incorporated in the model, and you observe the
effects of those changes on the computer rather than on the real system.

5. Diagnose problems. The modern factory floor or service organization is very
complex, so complex that it is impossible to consider all the interactions taking place in
a given moment. Simulation allows you to better understand the interactions among the
variables that make up such complex systems. Diagnosing problems and gaining insight
into the importance of these variables increases your understanding of their important
effects on the performance of the overall system.

The last three claims can be made for virtually all modeling activities, queueing,
linear programming, and so on. However, with simulation the models can become very
complex and thus have a higher fidelity [i.e., they are valid representations of reality
(as discussed in Chapter lo)].

6. Identljy constraints. Production bottlenecks give manufacturers headaches. It is
easy to forget that bottlenecks are an effect rather than a cause. However, by using
simulation to perform bottleneck analysis, you can discover the cause of the delays in
work in process, information, materials, or other processes.

7 . Develop understanding. Many people operate with the philosophy that talking
loudly, using computerized layouts, and writing complex reports convinces others that
a manufacturing or service system design is valid. In many cases these designs are
based on someone's thoughts about the way the system operates rather than on analysis.
Simulation studies aid in providing understanding about how a system really operates
rather than indicating someone's predictions about how a system will operate.

8. Visualize the plan. Taking your designs beyond CAD drwings by using the ani-
mation features offered by many simulation packages allows you to see your facility
or organization actually running. Depending on the software used, you may be able to
view your operations from various angles and levels of magnification, even in three
dimensions. This allows you to detect design flaws that appear credible when seen just
on paper on in a two-dimensional CAD drawing.

9. Build consensus. Using simulation to present design changes creates an objective
opinion. You avoid having inferences made when you approve or disapprove of designs
because you simply select the designs and modifications that provided the most desirable
results, whether it be increased production or reducing the waiting time for service.
In addition, it is much easier to accept reliable simulation results, which have been
modeled, tested, validated, and visually represented, instead of one person's opinion of
the results that will occur from a proposed design.

10. Prepare jbr change. We all know that the future will bring change. Answering
all of the what-if questions is useful for both designing new systems and redesigning

12 PRINCIPLES OF SIMULATION

existing systems. Interacting with all those involved in a project during the problem-for-
mulation stage gives you an idea of the scenarios that are of interest. Then you construct
the model so that it answers questions pertaining to those scenarios. What if an AGV
is removed from service for an extended period of time? What if demand for service
increases by lo%? What if . . . ? The options are unlimited.

11. Invest wisely. The typical cost of a simulation study is substantially less than
1% of the total amount being expended for the implementation of a design or redesign.
Since the cost of a change or modification to a system after installation is so great,
simulation is a wise investment.

12. Train the team. Simulation models can provide excellent training when designed
for that purpose. Used in this manner, the team provides decision inputs to the simulation
model as it progresses. The team, and individual members of the team, can learn by their
mistakes and learn to operate better. This is much less expensive and less disruptive than
on-the-job learning.

13. Specih requirements. Simulation can be used to specify requirements for a sys-
tem design. For example, the specifications for a particular type of machine in a complex
system to achieve a desired goal may be unknown. By simulating different capabilities
for the machine, the requirements can be established.

1.5.2 Disadvantages

The disadvantages of simulation include the following:

1 . Model building requires special training. It is an art that is learned over time and
through experience. Furthermore, if two models of the same system are constructed by
two competent individuals, they may have similarities, but it is highly unlikely that they
will be the same.

2. Simulation results may be difJicult to interpret. Since most simulation outputs are
essentially random variables (they are usually based on random inputs), it may be hard to
determine whether an observation is a result of system interrelationships or randomness.

3. Simulation modeling and analysis can be time consuming and expensive. Skimp-
ing on resources for modeling and analysis may result in a simulation model and/or
analysis that is not sufficient to the task.

4. Simulation may be used inappropriately. Simulation is used in some cases when
an analytical solution is possible, or even preferable. This is particularly true in the
simulation of some waiting lines where closed-form queueing models are available, at
least for long-run evaluation.

In defense of simulation, these four disadvantages, respectively, can be offset as fol-
lows:

1 . Simulators. Vendors of simulation software have been actively developing pack-
ages that contain models that only need input data for their operation. Such models have
the generic tag "simulators" or templates.

2. Output analysis. Most simulation-software vendors have developed output-
analysis capabilities within their packages or, as add on features for performing very
extensive analysis. This reduces the computational requirements on the part of the user,
although they still must understand the analysis procedure.

1.6 AREAS OF APPLICATION 13

3. Faster and faster: Simulation can be performed faster today than yesterday, and
even faster tomorrow. This is attributable to the advances in hardware that permit rapid
running of scenarios. It is also attributable to the advances in many simulation pack-
ages. For example, many simulation software products contain constructs for modeling
material handling using transporters such as conveyors and automated guided vehicles.

4. Limitations of c1osed:form models. Closed-form models are not able to analyze
most of the complex systems that are encountered in practice. In nearly 8 years of
consulting practice, not one problem has been encountered that could have been solved
by a closed-form solution.

1.6 AREAS OF APPLICATION

The applications of simulation are vast. Recent presentations at the Winter Simulation
Conference (WSC) can be divided into manufacturing, public systems, and service sys-
tems. WSC is an excellent way to learn more about the latest in simulation applications
and theory. There are also numerous tutorials at both the beginning and advanced levels.
WSC is sponsored by eight technical societies and the National Institute of Standards
and Technology (NIST). The technical societies are the American Statistical Association
(ASA), Association for Computing Machinery/Special Interest Group on Simulation
(ACM/SIGSIM), Institute of Electrical and Electronics Engineers: Computer Society
(IEEE/CS), Institute of Electrical and Electronics Engineers: Systems, Man and Cyber-
netics Society (IEEE/SMCS), Institute of Industrial Engineers (IIE), Institute for Opera-
tions Research and the Management Sciences, College on Simulation (INFORMS/CS),
and Society for Computer Simulation (SCS). The societies can provide information
about upcoming WSCs, usually held Monday through Wednesday in early December.
Applications in the remainder of this section were presented at recent WSCs. (Chapter
25, in particular, contains references to recent Winter Simulation Conference Proceed-
ings.) The major application areas of discrete-event simulation are discussed in Chapters
14 through 2 1.

1.6.1 Manufacturing and Material Handling Applications

Presentations included the following, among many others:

Minimizing synchronization delays of prefabricated parts before assembly

Evaluation of AGV routing strategies

Flexible modeling and analysis of large-scale AS/RS-AGV systems

Design and analysis of large-scale material handling systems

Material flow analysis of automotive assembly plants

Analysis of the effects of work-in-process levels on customer satisfaction

Assessing the cost of quality

1.6.2 Public Systems Applications

Presentations included the following, among many others:

14 PRINCIPLES OF SIMULATION

Health Systems

Screening for abdominal aortic aneurysms
Lymphocite development in immune-compromized patients
Asthma dynamics and medical amelioration
Timing of liver transplants

Diabetic retinopathy
Evaluation of nurse-staffing and patient-population scenarios
Evaluation of automated equipment for a clinical processing laboratory
Evaluation of hospital surgical suite and critical care area

Military Systems

Air Force support equipment use
Analysis of material handling equipment for prepositioning ships
Development and implementation of measures of effectiveness

Reengineering traditional stovepiped Army staffs for information operations
Evaluation of theater airlift system productivity
Evaluation of C-141 depot maintenance

Evaluation of air mobility command channel cargo system

Natural Resources

Nonpoint-source pollution analysis
Weed scouting and weed control decision making
Evaluation of surface water quality data

Public Services

Emergency ambulance system analysis
Evaluation of flow of civil lawsuits

Evaluation of field offices within a government agency

1.6.3 Service System Applications

Presentations included the following, among many others:

Transportation

Analysis of intelligent vehicle highway systems
Evaluation of traffic control procedures at highway work zones
Evaluation of taxi management and route control
Animation of a toll plaza
Port traffic planning model analysis

Evaluation of rapid transit modeling with automatic and manual controls

1.7 STEPS IN A SIMULATION STUDY 15

Computer Systems Performance

User transaction processing behavior analysis . Evaluation of database transaction management protocols
Evaluation of analytic models of memory queueing

Air Transportation

Evaluation of human behavior in aircraft evacuations
Analysis of airport/airline operations

Evaluation of combination carrier air cargo hub

Communications Systems

Trunked radio network analysis
Evaluation of telephone service provisioning process

Picture archiving and communications system analysis

Evaluation of modeling of broadband telecommunication networks
Analysis of virtual reality for telecommunication networks

1.7 STEPS IN A SIMULATION STUDY

Figure 1.1 shows a set of steps to guide a model builder in a thorough and sound simu-
lation study. Similar figures and their interpretation can be found in other sources, such
as Pegden et al. (1995) and Law and Kelton (1991). This presentation is built on that
of Banks et al. (1996).

1. Problem formulation. Every simulation study begins with a statement of the prob-
lem. If the statement is provided by those that have the problem (client), the simulation
analyst m t t s a k e extreme t a r e to ensure that the probkmixde&vnderstood. If a
problem statement is prepared by the simulation analyst, it is important that the client
understand and agree with the formulation. It is suggested that a set of assumptions be
prepared by the simulation analyst and agreed to by the client. Even with all of these
precautions, it is possible that the problem will need to be reformulated as the simulation
study progresses. This step is discussed further in Chapters 22 and 23.

2. Setting of objectives and overall project plan. Another way to state this step is
"prepare a proposal." This step should be accomplished regardless of location of the
analyst and client (i.e., as an external or internal consultant). The objectives indicate
the questions that are to be answered by the simulation study. The project plan should
include a statement of the various scenarios that will be investigated. The plans for the
study should be indicated in terms of time that will be required, personnel that will
be used, hardware and software requirements if the client wants to run the model and
conduct the analysis, stages in the investigation, output at each stage, cost of the study
and billing procedures, if any. This step is discussed further in Chapters 22 and 23.

3. Model conceptualization. The real-world system under investigation is abstracted
by a conceptual model, a series of mathematical and logical relationships concerning

16 PRINCIPLES OF SIMULATION

formulation

objectives
and overall
project plan

translation

design

Production runs
and analysis

Documentation
and reporting

Implementation

l 2 0

Figure 1.1 Steps in a simulation study. (From Discrete-Event System Simulation, And ed., by
Banks/Carson/Nelson, @ 1996. Reprinted by permission of Prentice Hall, Upper Saddle River,
N.J.

1.7 STEPS IN A SIMULATION STUDY 17

the components and the structure of the system. It is recommended that modeling begin
simply and that the model grow until a model of appropriate complexity has been devel-
oped. For example, consider the model of a manufacturing and material handling sys-
tem. The basic model with the arrivals, queues, and servers is constructed. Then add
the failures and shift schedules. Next, add the material-handling capabilities. Finally,
add the special features. It is not necessary to construct an unduly complex model. This
will add to the cost of the study and the time for its completion without increasing the
quality of the output. The client should be involved throughout the model construction
process. This will enhance the quality of the resulting model and increase the client's
confidence in its use. This step is discussed further discussed in Chapters 2, 22, and 23.

4 . Data collection. Shortly after the proposal is "accepted," a schedule of data
requirements should be submitted to the client. In the best of circumstances, the client
has been collecting the kind of data needed in the format required and can submit
these data to the simulation analyst in electronic format. Often, the client indicates that
the required data are indeed available. However, when the data are delivered they are
found to be quite different than anticipated. For example, in the simulation of an airline-
reservation system, the simulation analyst was told "we have every bit of data that you
want over the last five years." When the study began the data delivered were the average
"talk time" of the reservationist for each of the years. Individual values were needed,
not summary measures. Model building and data collection are shown as contempora-
neous in Figure I . 1 . This is to indicate that the simulation analyst can readily construct
the model while the data collection is progressing. This step is discussed further in
Chapter 3.

5. Model translation. The conceptual model constructed in step 3 is coded into a
computer-recognizable form, an operational model. This step is discussed further in
Chapters 11, 12, 13, and 24.

6. VeriJied? Verification concerns the operational model. Is it performing properly?
Even with small textbook-sized models, it is quite possible that they have verification
difficulties. These models are orders of magnitude smaller than real models (say, 50
lines of computer code versus 2000 lines of computer code). It is highly advisable that
verification take place as a continuing process. It is ill advised for the simulation ana-
lyst to wait until the entire model is complete to begin the verification process. Also,
use of an interactive run controller, or debugger, is highly encouraged as an aid to the
verification process. Verification is extremely important and is discussed further in this
chapter. Additionally, this step is discussed extensively in Chapter 10.

7. Validated? Validation is the determination that the conceptual model is an accu-
rate representation of the real system. Can the model be substituted for the real system
for the purposes of experimentation? If there is an existing system, call it the base sys-
tem, an ideal way to validate the model is to compare its output to that of the base
system. Unfortunately, there is not always a base system (such as in the design of a
new system). There are many methods for performing validation, and some of these
are discussed further in this chapter. Additionally, this step is discussed extensively in
Chapter 10.

8. Experimental design. For each scenario that is to be simulated, decisions need to
be made concerning the length of the simulation run, the number of runs (also called
replications), and the manner of initialization, as required. This step is discussed further
in Chapter 6.

18 PRINCIPLES OF SIMULATION

9. Production runs and analysis. Production runs, and their subsequent analysis, are
used to estimate measures of performance for the scenarios that are being simulated.
This step is discussed extensively in Chapters 7 to 9.

10. More runs? Based on the analysis of runs that have been completed, the simu-
lation analyst determines if additional runs are needed and if any additional scenarios
need to be simulated. This step is discussed extensively in Chapters 7 to 9.

1 1 . Documentation and reporting. Documentation is necessary for numerous rea-
sons. If the simulation model is going to be used again by the same or different analysts,
it may be necessary to understand how the simulation model operates. This will stim-
ulate confidence in the simulation model so that the client can make decisions based
on the analysis. Also, if the model is to be modified, this can be greatly facilitated by
adequate documentation. One experience with an inadequately documented model is
usually enough to convince a simulation analyst of the necessity of this important step.
The result of all the analysis should be reported clearly and concisely. This will enable
the client to review the final formulation, the alternatives that were addressed, the cri-
terion by which the alternative systems were compared, the results of the experiments,
and analyst recommendations, if any. This step is discussed further in Chapters 22 and
23.

12. Implementation. The simulation analyst acts as a reporter rather than an advo-
cate. The report prepared in step 11 stands on its merits and is just additional information
that the client uses to make a decision. If the client has been involved throughout the
study period, and the simulation analyst has followed all the steps rigorously, the like-
lihood of a successful implementation is increased. See Chapters 22 and 23 for more
about implementation.

1.8 RANDOM NUMBER AND RANDOM VARIATE GENERATION

Example 1 used input values that were generated by a spinner and a die. Almost all sim-
ulation models are constructed within a computer, so spinners and dice are not devices
that will be used. Instead, the computer will generate independent random numbers that
are distributed continuously and uniformly between 0 and 1 [i.e., U(0, I)]. These ran-
dom numbers can then be converted to the desired statistical distribution, or random
variate, using one of several methods. Random variates are used to represent interar-
rival times, batch sizes, processing times, repair times, and time until failure, among
others. Many researchers have written on the two topics in this section. These topics
are discussed further in Chapters 4 and 5.

Simulation software products have a built-in random number generator (RNG) that
produces a sequence of random numbers. Most of these generators are based on the
linear congruential method (LCM), documented by Knuth (1969). A RNG is defined
by its parameters, and some of them have been tested extensively. Chapter 4 introduces
the topic of RNG.

The numbers generated by a RNG are actually pseudorandom. They are deterministic
since they can be reproduced. Knowing the starting value, the values that follow it can
be predicted, totally determining the sequence. ~ h & e is no reason for concern since the
length of the sequence prior to repeating itself is very, very long. On a 32-bit computer,
this sequence can be longer than 2 billion. As reported in Chapter 4, even-longer-period
RNGs are available.

1.9 INPUT DATA 19

The importance of a good source of random numbers is that all procedures for gener-
ating nonuniformly distributed random variates involve a mathematical transformation
of uniform random numbers. For example, suppose that R, is the ith random number
generated from U(0, 1). Suppose further that the desired random variate is exponentially
distributed with rate A. These values can be generated from

where X I is the ith random variate generated [e.g., the time between the arrival of the
ith and the (i+ 1)st entities]. Suppose that A = & arrival per minute. Using equation (1)
[called the random variate generator (RVG)], if RI = 0.3067, then XI = 3.66 minutes.
The RVG was developed using what is called the inverse-transform technique. Other
techniques include convolution, acceptance-rejection, and composition. Techniques for
RVG are discussed in Chapter 5.

Most simulation software products have built-in RVGs for the most widely used dis-
tributions and several that are not so widely utilized. The simulation software usually
provides a facility for generating a sample from an empirical distribution (a distribution
of the raw input data) that is either discrete or continuous. It is important that the sim-
ulation analyst know how to use RVGs, but it is not usually important to be concerned
with their generation.

1.9 INPUT DATA

For each element in a system being modeled, the simulation analyst must decide on a
way to represent the associated random variables. The presentation of the subject that
follows is based on Banks et al. (1998). This topic is discussed in much more detail in
Chapter 3.

The techniques used may vary depending on:

1. The amount of available data

2. Whether the data are "hard" or someone's best guess

3. Whether each variable is independent of other input random variables, or related
in some way to other outputs

In the case of a variable that is independent of other variables, the choices are as
follows:

1. Assume that the variable is deterministic.

2. Fit a probability distribution to the data.

3. Use the empirical distribution of the data.

These three choices are discussed in the next three subsections.

20 PRINCIPLES OF SIMULATION

1 .9.l Assuming Randomness Away

Some simulation analysts may be tempted to assume that a variable is deterministic, or
constant. This value could have been obtained by averaging historic information. The
value may even be a guess. If there is randomness in the model, this technique can
surely invalidate the results.

Suppose that a machine manufactures parts in exactly 1.5 minutes. The machine
requires a tool change according to an exponential distribution with a mean of 12 min-
utes between occurrences. The tool change time is also exponentially distributed with a
mean of 3 minutes. An inappropriate simplification would be to assume that the machine
operates in a constant time of 1.875 minutes, and ignore the randomness. The conse-
quences of these two interpretations are very great on such measures as the average
number in the system or time waiting before the machine.

1.9.2 Fitting a Distribution to Data

If there are sufficient data points, say 50 or more, it may be appropriate to fit a proba-
bility distribution to the data using conventional methods. [Advanced methods for dis-
tribution fitting, such as that described by Wagner and Wilson (1993), are available to
the interested reader.] When there are few data, the tests for goodness of fit offer little
guidance in selecting one distribution form over another.

There are also underlying processes that give rise to distributions in a rather pre-
dictable manner. For example, if arrivals (1) occur one at a time, (2) are completely
at random without rush or slack periods, and (3) are completely independent of one
another, a Poisson process occurs. In such a case it can be shown that the number of
arrivals in a given time period follows a Poisson distribution and the time between
arrivals follows an exponential distribution.

Several vendors provide software to accomplish input data analysis. However, if a
goodness-of-fit test is being conducted without the aid of input data analysis software,
the following three-step procedure is recommended:

1. Hypothesize a candidate distribution. First, ascertain whether the underlying pro-
cess is discrete or continuous. Discrete data arise from counting processes. Examples
include the number of customers that arrive at a bank each hour, the number of tool
changes in an 8-hour day, and so on. Continuous data arise from measurement (time,
distance, weight, etc.). Examples include the time to produce each part and the time
to failure of a machine. Discrete distributions frequently used in simulation include
the Poisson, binomial, and geometric. Continuous distributions frequently used in sim-
ulation include the uniform, exponential, normal, triangular, lognormal, gamma, and
Weibull. These distributions are described in virtually every engineering statistics text.

2. Estimate the parameters of the hypothesized distribution. For example, if the
hypothesis is that the underlying data are normal, the parameters to be estimated from
the data are the mean and the variance.

3. Perform a goodness-ofjt test such as the chi-squared test. If the test rejects the
hypothesis, that is a strong indication that the hypothesis is not true. In that case, return
to step 1, or use the empirical distribution of the data following the process described
below.

The three-step procedure is described in engineering statistics texts and in many sim-

1.9 INPUT DATA 21

ulation texts, such as Banks et al. (1996) and Law and Kelton (1991). Even if software
is being used to aid in the development of an underlying distribution, understanding the
three-step procedure is recommended.

1.9.3 Empirical Distribution of the Data

When all possibilities have been exhausted for fitting a distribution using conventional
techniques, the empirical distribution can be used. The empirical distribution uses the
data as generated.

An example will help to clarify the discussion. The times to repair a conveyor system
after a failure, denoted by x, for the previous 100 occurrences are given as follows:

Interval (hours) Frequency of Occurrence

No distribution could be fit acceptably to the data using conventional techniques. It was
decided to use the data as generated for the simulation. That is, samples were drawn, at
random, from the continuous distribution shown above. This required linear interpolation
so that simulated values might be in the form 2.89 hours, 1.63 hours, and so on.

1.9.4 When No Data Are Available

There are many cases where no data are available. This is particularly true in the early
stages of a study, when the data are missing, when the data are too expensive to gather,
or when the system being modeled is not in existence. One possibility in such a case
is to obtain a subjective estimate, some call it a guesstimate, concerning the system.
Thus if the estimate that the time to repair a machine is between 3 and 8 minutes, a
crude assumption is that the data follow a uniform distribution with a minimum value
of 3 minutes and a maximum value of 8 minutes. The uniform distribution is referred to
as the distribution of maximum ignorance since it assumes that every value is equally
likely. A better "guess" occurs if the "most likely" value can also be estimated. This
would take the form "the time to repair the machine is between 3 and 8 minutes with
a most likely time of 5 minutes." Now, a triangular distribution can be used with a
minimum of 3 minutes, a maximum of 8 minutes, and a most likely value (mode) of 5
minutes.

As indicated previously, there are naturally occurring processes that give rise to dis-
tributions. For example, if the time to failure follows the (reasonable) assumptions of the
Poisson process indicated previously, and the machine operator says that the machine
fails about once every 2 hours of operation, an exponential distribution for time to fail-
ure could be assumed initially with a mean of 2 hours.

Estimates made on the basis of guesses and assumptions are strictly tentative. If, and
when, data, or more data, become available, both the parameters and the distributional
forms should be updated.

22 PRINCIPLES OF SIMULATION

1.1 0 VERIFICATION AND VALIDATION

In the application of simulation, the real-world system under investigation is abstracted
by a conceptual model. The conceptual model is then coded into the operational model.
Hopefully, the operational model is an accurate representation of the real-world system.
However, more than hope is required to ensure that the representation is accurate. There
is a checking process that consists of two components:

1 . VeriJication: a determination of whether the computer implementation of the con-
ceptual model is correct. Does the operational model represent the conceptual
model?

2. Validation: a determination of whether the conceptual model can be substituted
for the real system for the purposes of experimentation.

The checking process is iterative. If there are discrepancies among the operational
and conceptual models and the real-world system, the relevant operational model must
be examined for errors, or the conceptual model must be modified to represent the real-
world system better (with subsequent changes in the operational model). The verification
and validation process should then be repeated. These two important topics are discussed
extensively in Chapter 10.

1.10.1 Verification

The verification process involves examination of the simulation program to ensure that
the operational model accurately reflects the conceptual model. There are many com-
monsense ways to perform verification.

I. Follow the principles of structured programming. The first principle is top-down
design (i.e., construct a detailed plan of the simulation model before coding). The second
principle is program modularity (i.e., break the simulation model into submodels). Write
the simulation model in a logical, well-ordered manner. It is highly advisable (we would
say mandatory if we could mandate such) to prepare a detailed flowchart indicating the
macro activities that are to be accomplished. This is particularly true for real-world-sized
problems. It is quite possible to think through all the computer code needed to solve
problems at chapter ends of an academic text on discrete-event simulation. However,
that computer code is minuscule compared to that of real-world problems.

2. Make the operational model as self-documenting as possible. This requires com-
ments on virtually every line and sometimes between lines of code for those software
products that allow programming. Imagine that one of your colleagues is trying to under-
stand the computer code that you have written, but that you are not available to offer
any explanation. For graphical software, on-screen documentation is suggested. In some
cases, the text associated with documentation can be hidden from view when it is inap-
propriate to show it.

3. Have the computer code checked by more than one person. Several techniques
have been used for this purpose. One of these can be called code inspection. There are
four parties as follows: the moderator or leader of the inspection team, the designer
or person who prepared the conceptual model, the coder or person who prepared the
operational model, and the tester or the person given the verification responsibility. An

inspection meeting is held where a narration of the design is provided and the opera-
tional model is discussed, line by line, along with the documentation. Errors detected are
documented and classified. There is then a rework phase, followed by another inspec-
tion. Alternatives to code inspection include the review, except that the interest is not
line by line but in design deficiencies. Another alternative is the audit that verifies that
the development of the computer code is proceeding logically. It verifies that the stated
requirements are being met.

4. Check to see that the values of the input data are being used appropriately. For
example, if the time unit is minutes, all of the data should be in terms of minutes, not
hours or seconds.

5. For a variety of input-data values, ensure that the outputs are reasonable. Many
simulation analysts are satisfied when they receive output. But that is far from enough. If
there are 100 entities in a waiting line when 10 would be rather high, there is probably
something wrong. For example, the resource actually has a capacity of two, but was
modeled with a capacity of one.

6 . Use an interactive run controller (IRC) or debugger to check that the program
operates as intended. The IRC is a very important verification tool that should be used
for all real-system models. An example of one of the capabilities of the IRC is the trace
that permits following the execution of the model step by step.

7 . Animation is a very useful verification tool. Using animation, the simulation ana-
lyst can detect actions that are illogical. For example, it may be observed that a resource
is supposed to fail as indicated by turning red on the screen. While watching the ani-
mation, the resource never turned red. This could signal a logical error.

1.10.2 Validation

A variety of subjective and objective techniques can be used to validate the conceptual
model. Sargent (1992) offers many suggestions for validation. Subjective techniques
include the following:

1. Face Validation. A conceptual model of a real-world system must appear reason-
able "on its face" to those who are knowledgeable (the "experts") about the real-world
system. For example, the experts can validate that the model assumptions are correct.
Such a critique by experts would aid in identifying deficiencies or errors in the con-
ceptual model. The credibility of the conceptual model would be enhanced as these
deficiencies or errors are eliminated.

2. Sensitivitjl Analysis. As model input is changed, the output should change in a
predictable direction. For example, if the arrival rate increases, the time in queues should
increase, subject to some exceptions. (An example of an exception is as follows: If a
queue increases, it may be the case that resources are added within the model, negating
the prediction.)

3. Extreme-Condition Tests. Does the model behave properly when input data are
at the extremes? If the arrival rate is set extremely high, does the output reflect this
change with increased numbers in the queues, increased time in the system, and so on'?

4. Validation of Conceptual Model Assumptions. There are two types of conceptual
model assumptions. They are structural assumptions (concerning the operation of the
real-world system) and data assumptions. Structural assumptions can be validated by

24 PRINCIPLES OF SIMULATION

observing the real-world system and by discussing the system with the appropriate per-
sonnel. No one person knows everything about the entire system. Many people need to
be consulted to validate conceptual model assumptions.

Information from intermediaries should be questioned. A simulation consulting firm
often works through other consulting firms. An extremely large model of a distant port
operation was constructed. It was only after a visit by the simulation consulting firm
to the port that it was discovered that one of the major model assumptions concerning
how piles of iron ore are formed was in error.

Assumptions about data should also be validated. Suppose it is assumed that times
between arrivals of customers to a bank during peak periods are independent and in
accordance with an exponential distribution. To validate conceptual model assumptions,
the following would be in order:

(a) Consult with appropriate personnel to determine when peak periods occur.

(b) Collect interarrival data from these periods.

(c) Conduct statistical tests to ensure that the assumption of independence is reason-
able.

(d) Estimate the parameter of the assumed exponential distribution.

(e) Conduct a goodness-of-fit test to ensure that the exponential distribution is rea-
sonable.

5. Consistency Checks. Continue to examine the operational model over time. An
example explains this validation procedure. A simulation model is used annually. Before
using this model, make sure that there are no changes in the real system that must be
reflected in the structural model. Similarly, the data should be validated. For example,
a faster machine may have been installed in the interim period, but it was not included
in the information provided.

6. Turing Tests. Persons knowledgeable about system behavior can be used to com-
pare model output to system output. For example, suppose that five reports of actual
system performance over five different days are prepared and five simulated outputs are
generated. These 10 reports should be in the same format. The 10 reports are randomly
shuffled and given to a person, say an engineer, who has seen this type of information.
The engineer is asked to distinguish between the two kinds of reports, actual and sim-
ulated. If the engineer identifies a substantial number of simulated reports, the model
is inadequate. If the engineer cannot distinguish between the two, there is less reason
to doubt the adequacy of the model.

Objective techniques include the following:

7. Validating Input-Output Transformations. The basic principle of this technique
is the comparison of output from the operational model to data from the real system.
Input-output validation requires that the real system currently exist. One method of
comparison uses the familiar t-test, discussed in most statistics texts.

8. Validation Using Historical Input Data. Instead of running the operational model
with artificial input data, we could drive the operational model with the actual historical
record. It is reasonable to expect the simulation to yield output results within accept-
able statistical error of those observed from the real-world system. The paired t-test,

1 . I1 EXPERIMENTATION AND OUTPUT ANALYSIS 25

discussed in most statistics texts, is one method for conducting this type of valida-
tion.

1 .ll EXPERIMENTATION AND OUTPUT ANALYSIS

The analysis of simulation output begins with the selection of performance measures.
Performance measures can be time weighted, based on counting of occurrences, or arise
from the tabulation of expressions including means, variances, and so on.

An example of a time-weighted statistic is the average number in system over a time
period of length T. Figure 1.2 shows the number in system, L(t) , at time t , from t = 0
to t = 60. The time-weighted average number in the system, z, at T = 60 is given by
the sum of the areas of the rectangles divided by T. Thus

An example of a statistic based on counting of occurrences is the number of accept-
able units completed in 24 hours of simulated time. A statistic based on the tabulation of
expressions is the patent royalties from three different part types, each with a different
contribution per unit, for a 24-hour period.

The simulation of a stochastic system results in performance measures that contain
random variation. Proper analysis of the output is required to obtain sound statistical
results from these replications. Specific questions that must be addressed when conduct-
ing output analysis are:

1. What is the appropriate run length of the simulation (unless the system dictates
a value)?

2. How do we interpret the simulated results?

3. How do we analyze the differences between different model configurations?

50 60 t

Figure 1.2 Number in system, L(r), at time t .

26 PRINCIPLES OF SIMULATION

These topics are introduced in the next section. They are discussed extensively in
Chapters 6 to 8.

1 .11.1 Statistical Confidence and Run Length

A confidence interval for the performance measure being estimated by the simulation
model is a basic component of output analysis. A confidence interval is a numerical
range that has a probability of 1 -a! of including the true value of the performance mea-
sure, where l -a! is the confidence level for the interval. For example, let us say that the
performance measure of interest is the mean time in the queue, p , and a 100(1 - a)%
confidence interval for p is desired. If many replications are performed and indepen-
dent confidence intervals on p are constructed from those replications, approximately
100(1 - a!)% of those intervals will contain p . Consider the following example.

Example 2 (Conj?dence Intervals) Given the data in Table 1.2, both a 95% (a! =
0.05) and a 99% (a! = 0.01) two-sided confidence interval are desired. Assuming that
the values for X are normally distributed, a 1 - a! confidence interval for the mean, p ,
is given by (X - h, X + h), where 51 is the sample mean and h is the half-width.
The equation for 57 is given by

The half-width h of the confidence interval is computed as follows:

where t , - , , I -ap is the upper 1 - 4 2 critical value of the t-distribution with n - 1
degrees of freedom, and S is the sample standard deviation. To compute S, first use
equation (4) to compute s2 as follows:

Table 1.2 Data for Example 2

Replication Number, i Average Time in Queue, X i

1 . I1 EXPERIMENTATION AND OUTPUT ANALYSIS 27

Taking the square root of s2 yields S.
Since a two-sided confidence interval is desired, we use a / 2 to compute the half-

width. Using equations (2) and (4), we obtain 57 = 67.4 and S = 3.57. In addition,

t4, ,975 = 2.78 (95% confidence)

t4, .995 = 4.60 (99% confidence)

resulting in

4.44 (95% confidence)
7.34 (99% confidence)

The confidence interval is given by (y-h, X+h). Therefore, the 95% confidence interval
is (62.96, 71.84). and the 99% confidence interval is (60.06, 74.74).

As demonstrated in Example 2, the size of the interval depends on the confidence
level desired, the sample size, and the inherent variation (measured by S) . The higher
level of confidence (99%) requires a larger interval than the lower confidence level
(95%). In addition, the number of replications, n, and their standard deviation, S, are
used in calculating the confidence interval. In simulation, each replication is considered
one data point. Therefore, the three factors that influence the width of the confidence
interval are:

1. Number of replications (n)

2. Level of confidence (1 - a)

3. Variation of performance measure (S)

The relationship between these factors and the confidence interval is:

1. As the number of replications increases, the width of the confidence interval
decreases.

2. As the level of confidence increases, the width of the interval increases. In other
words, a 99% confidence interval is larger than the corresponding 95% confidence
interval.

3. As the variation increases, the width of the interval increases.

1 .11.2 Terminating Versus Nonterminating Systems

The procedure for output analysis differs based on whether the system is terminating
or nonterminating. In a terminating system, the duration of the simulation is fixed as
a natural consequence of the model and its assumptions. The duration can be fixed
by specifying a finite length of time to simulate or by limiting the number of entities
created or disposed. An example of a terminating system is a bank that opens at 9: 00
A.M. and closes at 4 : 00 P.M. Some other examples of terminating systems include a
check-processing facility that operates from 8 : 00 P.M. until all checks are processed,

28 PRINCIPLES OF SIMULATION

a ticket booth that remains open until all the tickets are sold or the event begins, and
a manufacturing facility that processes a fixed number of jobs each day and then shuts
down.

By definition, a terminating system is one that has a fixed starting condition and an
event definition that marks the end of the simulation. The system returns to the fixed
initial condition, usually "empty and idle," before the system begins operation again.
The objective of the simulation of terminating systems is to understand system behavior
for a "typical" fixed duration. Since the initial starting conditions and the length of the
simulation are fixed, the only controllable factor is the number of replications.

One analysis procedure for terminating systems is to simulate a number of replica-
tions, compute the sample variance of the selected estimator measure, and determine if
the width of the resulting confidence interval is within acceptable limits. For example,
if the average number of parts in the queue is of interest, the first step is to conduct a
pilot run of n replications. Next, compute the confidence interval for the expected aver-
age number of parts in the queue using the observations recorded from each replication.
Then if the confidence interval is too large, determine the number of additional repli-
cations required to bring it within limits. Finally, conduct the approximate additional
replications and recompute the new confidence interval using all the data. Iterate the
last two steps until the confidence interval is of satisfactory size.

In a nonterminating system, the duration is not finite; the system is in perpetual
operation. An example of a nonterminating system is an assembly line that operates 24
hours a day, 7 days a week. Another example of this type of system is the manufacture
of glass fiber insulation for attics. If operation of the system is stopped, the molten glass
will solidify in the furnace, requiring that it be chipped away tediously before restarting
the system. The objective in simulating a nonterminating system is to understand the
long-run, or steadystate, behavior. To study steady-state behavior accurately, the effects
of the initial conditions, or transient phase, must be removed from the simulation results.
This can be accomplished by swamping, preloading, or deletion.

The first method, swamping, suppresses the initial-condition effects by conducting
a very long simulation run, so long that any initial conditions have only a minuscule
effect on the long-run value of the performance measure. For example, if the initial
conditions last for 100 hours, simulate for 10,000 hours. A problem with the swamping
technique is that the bias from starting empty and idle will always exist, even if it is
small.

The second method, preloading, primes the system before simulation starts by plac-
ing entities in delay blocks and queues. In other words, an attempt is made to have the
initial conditions match the steady-state conditions. This requires some rough knowl-
edge of how the system looks in steady state. Thus, if we are simulating a bank that has
one line forming before three tellers, we need to observe the bank in operation to obtain
information about the usual situation. For example, we may find that the three tellers
are usually busy and that there are about four people in line. This is how the simulation
would begin when using the preloading technique. The bank is a very simple system
to observe. However, for more complex systems, this initialization procedure becomes
somewhat difficult, especially if the system is still in the design phase.

The third method, deletion, excludes the initial transient phase that is influenced
by the initial conditions. Data are collected from the simulation only after the transient
(warm-up) phase has ended. This idea is demonstrated in Figure 1.3. The difficulty with
the deletion method is the determination of the length of the transient phase. Although
elegant statistical techniques have been developed, a satisfactory method is to plot the

REFERENCES 29

Transient phase (warm-up) Steady-state phase

Performance
Measure

Time -
Fig. 1.3 Deletion of initial observations for a nonterminating system.

output of interest over time and visually observe when steady state is reached. Welch
(1983) provides a formal description of this method.

1.12 SUMMARY

The chapter began with a definition of simulation, including an example. Underlying
concepts were presented, including the system and model, system state variables, entities
and attributes, list processing, activities and delays, and the definition of discrete-event
simulation. Next, four modeling structures were discussed, including process interac-
tion, event scheduling, activity scanning, and the three-phase method. The advantages
and disadvantages of simulation were presented, with amelioration of the disadvantages.
Next, areas of application from presentations at the Winter Simulation Conference were
shown. The steps in a simulation study were given with a brief discussion of each. The
manner in which random numbers and random variates are generated was presented
next. Three ways that might be used for generating input data were described. However,
the first method, assuming randomness away, is discouraged. The extremely important
concepts of verification and validation were then discussed. The all-important topic of
experimentation and output analysis was introduced. The topics introduced in this chap-
ter are discussed much more extensively in the remaining chapters.

REFERENCES

Balci, 0. (1988). The implementation of four conceptual frameworks for simulation modeling in
high-level languages, in Proceedings of the 1988 Winter Simuhtion Conference, M . Abrams,
P. Haigh, and J. Comfort, eds., IEEE, Piscataway, N.J.

Banks, J., and V. Norman (1995). Justifying simulation in today's manufacturing environment,
IIE Solutions, November.

Banks, J., B. Burnette, H. Kozloski, and J. D. Rose (1995). Introduction to SIMAN Vand CINEMA
V, Wiley, New York.

30 PRINCIPLES OF SIMULATION

Banks, J., J. S. Carson 11, and B. L. Nelson (1996). Discrete-Event System Simulation, 2nd ed.,
Prentice Hall, Upper Saddle River, N.J.

Banks, J., J. S. Carson 11, and D. Goldsman (1998). Discrete-event computer simulation, in Hand-
book of Statistical Methods for Engineers and Scientists, 2nd ed., H. M. Wadsworth, ed.,
McGraw-Hill, New York.

Carson, J. S. (1993). Modeling and simulation world views, in Proceedings of the 1993 Winter
Simulation Conference, G. W. Evans, M. Mollaghasemi, E. C. Russell, and W. E. Biles, eds.,
IEEE, Piscataway, N.J., pp. 18-23.

Knuth, D. W. (1969). The Art of Computer Programming, Vol. 2: Semi-numerical Algorithms,
Addison-Wesley, Reading, Mass.

Law, A. M., and W. D. Kelton (1991). Simulation Modeling and Analysis, 2nd ed., McGraw-Hill,
New York.

Pegden, C. D., R. E. Shannon, and R. P. Sadowski (1995). Introduction to Simulation Using
SIMAN, 2nd ed., McGraw-Hill, New York.

Pidd, M. (1992). Computer Modelling for Discrete Simulation, Wiley, Chichester, West Sussex,
England.

Sargent, R. G. (1992). Validation and verification of simulation models, in Proceedings of the
1992 Winter Simulation Conference, J . J. Swain, D. Goldsman, R. C. Crain, and J. R. Wilson,
eds., IEEE, Piscataway, N.J., pp. 104-114.

Schriber, T. J. (1991). An Introduction to Simulation Using GPSS/H, Wiley, New York.
Wagner, M. A. F., and J. R. Wilson (1993). Using univariate BCzier distributions to model simula-

tion input processes, in Proceedings ofthe 1993 Winter Simulation Conference, G. W. Evans,
M. Mollaghasemi, E. C. Russell, and W. E. Biles, eds., IEEE, Piscataway, N.J., pp. 365-373.

Welch, P. D. (1983). The statistical analysis of simulation results, in The Computer Peformance
Modeling Handbook, S. Lavenberg, ed., Academic Press, San Diego, Calif.

CHAPTER 2

Principles of Simulation Modeling

A. ALAN B. PRITSKER
Pritsker Corporation and Purdue University

2.1 INTRODUCTION

Simon [I] captures the essence of modeling in the following quote: "Modeling is
a principal-perhaps the primary-tool for studying the behavior of large complex
systems.. . . When we model systems, we are usually (not always) interested in their
dynamic behavior. Typically, we place our model at some initial point in phase space
and watch it mark out a path through the future." Simulation embodies this concept
because it involves playing out a model of a system by starting with the system status
at an initial point in time and evaluating the variables in a model over time to ascer-
tain the dynamic performance of the model of the system. When the model is a valid
representation of'the system, meaningful information is obtained about the dynamic per-
formance of the system. In this chapter, principles for building and using models that
are analyzed using simulation, referred to as simulution models, are presented.

Models are descriptions of systems. In the physical sciences, models are usually
developed based on theoretical laws and principles. The models may be scaled physi-
cal objects (iconic models), mathematical equations and relations (abstract models), or
graphical representations (visual models). The usefulness of models has been demon-
strated in describing, designing, and analyzing systems. Model building is a complex
process and in most fields involves both inductive and deductive reasoning. The mod-
eling of a system is made easier if (1) physical laws are available that pertain to the
system, (2) a pictorial or graphical representation can be made of the system, and (3)
the uncertainty in system inputs, components, and outputs is quantifiable.

Modeling a complex, large-scale system is usually more difficult than modeling a
strictly physical system, for one or more of the following reasons: (I) few fundamen-
tal laws are available, (2) many procedural elements are involved which are difficult
to describe and represent, (3) policy inputs are required which are hard to quantify,
(4) random components are significant elements, and (5) human decision making is an
integral part of such systems.

Handbook of' Simulation, Edited by Jerry Banks.
ISBN 0-47 1 - 13403- 1 O 1998 John Wiley & Sons, Inc.

32 PRINCIPLES OF SIMULATION MODELING

Since a model is a description of a system, it is also an abstraction of a system. To
develop an abstraction, a model builder must decide on the elements of the system to
include in the model. To make such decisions, a purpose for the model building must
be established. Thus the first step in model building is the development of a purpose for
modeling that is based on a stated problem or project goal. Based on this purpose, system
boundaries and modeling details are established. This abstraction results in a model
that does not include all the rough, ill-defined edges of the actual system. Typically,
the assessment process requires redefinitions and redesigns that cause the entire model
building process to be performed iteratively.

Simulation models are ideally suited for carrying out the problem-solving approach
described above. Simulation provides the flexibility to build either aggregate or detailed
models. It directly supports iterative model building by allowing models to be embel-
lished through simple and direct additions. Surveys indicate that simulation is one of
the most widely used tools of industrial engineers and management scientists. In 1989,
the US. Departments of Defense and Energy specified that simulation and modeling
technology is one of the top 22 critical technologies in the United States [2].

2.2 BASIC PRINCIPLES

There are no established, published principles for simulation modeling. Modeling is
considered an art [3] and a creative activity [4]. In this chapter an attempt is made
to provide modeling principles, based on the author's experience and interaction with
colleagues.

Modeling Principle 1 Conceptualizing a model requires system knowledge, engineer-
ing judgment, and model-building tools.

A modeler must understand the structure and operating rules of a system and be able
to extract the essence of the system without including unnecessary detail. Usable models
tend to be easily understood, yet have sufficient detail to reflect realistically the impor-
tant characteristics of the system. The crucial questions in model building focus on what
simplifying assumptions are reasonable to make, what components should be included
in the model, and what interactions occur among the components. The amount of detail
included in the model should be based on the modeling objectives established. Only
those components that could cause significant differences in decision making, includ-
ing confidence building, need to be considered.

A modeling project is normally an interdisciplinary activity and should include the
decision maker as part of the team. Close interaction among project personnel is required
when formulating a problem and building a model. This interaction causes inaccuracies
to be discovered quickly and corrected efficiently. Most important is the fact that interac-
tions induce confidence in both the modeler and the decision maker and help to achieve
a successful implementation of results.

By conceptualizing the model in terms of the structural components of the system
and product flows through the system, a good understanding of the detailed data require-
ments can be projected. From the structural components, the schedules, algorithms, and
controls required for the model can be determined. These decision components are typi-
cally the most difficult aspect of a modeling effort.

2.3 MODEL-BASED PROBLEM SOLVING 33

Modeling Principle 2 The secret to being a good modeler is the ability to remodel.

Model building should be interactive and graphical because a model is not only
defined and developed but is continually refined, updated, modified, and extended. An
up-to-date model provides the basis for future models. The following five model-build-
ing themes support this approach and should be used where feasible:

Develop tailorable model input procedures and interfaces.

Divide the model into relatively small logical elements.

Separate physical and logical elements of the model.

Develop and maintain clear documentation directly in the model.

Leave hooks in the model to insert extensions or more detail; that is, build an
open-ended model.

Models developed for analysis by simulation are easily changed, which facilitates
iterations between model specification and model building. This is not usually the case
for other widely used model analysis techniques. Examples of the types of changes that
are easily made in simulation models are:

1. Setting arrival patterns and activity times to be constant, as samples from a the-
oretical distribution, or derived from a file of historical values

2. Setting due dates based on historical records, manufacturing resource planning
(MRPII) procedures, or sales information

3. Setting decision variables based on a heuristic procedure or calling a decision-
making subprogram that uses an optimization technique

4. Including fixed rules or expert-system-based rules directly in the model

Modeling Principle 3 The modeling process is evolutionary because the act of mod-
eling reveals important information piecemeal.

Information obtained during the modeling process supports actions that make the
model and its output measures more relevant and accurate. The modeling process con-
tinues until additional detail or information is no longer necessary for problem resolution
or a deadline is encountered. During this evolutionary process, relationships between the
system under study and the model are continually defined and redefined. Simulations
of the model provide insights into the behavior of the model, and hence the system,
and lead to a further evolution of the model. The resulting correspondence between the
model and the system not only establishes the model as a tool for problem solving but
provides system familiarity for the modelers and a training vehicle for future users.

2.3 MODEL-BASED PROBLEM SOLVING

Figure 2.1 presents the components in the problem-solving environment when models
are used to support the making of decisions or the setting of policies.

34 PRINCIPLES OF SIMULATION MODELING

Problem Model versions

System
data

~ o d e l e r
Figure 2.1 Model-based problem-solving process.

Modeling Principle 4 The problem or problem statement is the primary controlling
element in model-based problem solving.

A problem or objective drives the development of the model. Problem statements are
defined from system needs and requirements. Data from the system provide the input to
the model. The availability and form of the data help to specify the model boundaries
and details. The modeler is the resource used to build the model in accordance with the
problem statement and the available system data. The outputs from the model support
decisions to be made to solve the problem or the setting of policies that allow decisions
to be made in accordance with established rules and procedures. These components are
described in the following paragraphs with the aid of Figures 2.2 to 2.5.

The first step in model-based problem solving is to formulate the problem by under-
standing its context, identifying project goals, specifying system performance measures,

Problem

Establish
modeling

-
Figure 2.2 Model and its control.

2.3 MODEL-BASED PROBLEM SOLVING 35

System
data

I I I

Figure 2.3 Model and its control.

setting specific modeling objectives, and in general, defining the system to be modeled.
Figure 2.2 shows that from the problem, a purpose for modeling is developed that guides
the modeling effort toward solving the problem formulated. The double arrow between
model and modeling purpose indicates that during the modeling effort, the purpose for
modeling can change. Great care is needed here to ensure that the modeling effort does
not stray from its goal of solving the original problem.

Figure 2.3 shows that there is a process between obtaining system data and using
those data in the model. This process is called input modeling. Input modeling involves
the determination of whether the system data should be used directly to drive the model,
whether the system data should be summarized in the form of a histogram or distribu-
tion function, or whether a cause-and-effect model (e.g., a regression model) should be
developed to characterize the system data. The input modeling activity can involve a
large effort. It is very useful in gaining an understanding of a system as well as refining
and for generalizing the system data for input to a model.

The types of data that need to be collected to support model-based problem solving
include data that describe the elements and logic of the system, data that measure the
actual performance of the system, and data that describe the alternatives to be evaluated.
Data that describe the logic of the system is concerned with system structure, individual
components of the system, component interactions, and system operations. The possible
states of the system are established from this information. Performance measures are
functions of these states and relate to profitability, costs, productivity, and quality.

Data collection may involve performing detailed time studies, getting information
from equipment vendors, and talking to system operators. Actual system performance
histories are collected whenever possible to support the validation of model outputs.
Data describing proposed solutions are used to modify the basic model for each alter-
native to be evaluated. Each alternative is typically evaluated individually, but perfor-
mance data across alternatives are displayed together.

Figure 2.4 shows that a modeler may use a simulation system in developing the
model. A simulation system provides an environment to build, debug, test, verify, run,
and analyze simulation models. They provide capabilities for graphical input and output,
interactive execution of the simulation, data and distribution fitting, statistical analysis,
storing and maintaining data in databases, reporting outputs using application programs,
and most important, a simulation language. A simulation language contains modeling
concepts and procedures that facilitate the development of a model. Languages are com-
posed of symbols. Defining a modeling language means defining the semantics and syn-
tax of the symbols. Semantics specify the meaning of each symbol and the relationships
among symbols and take into account the human comprehensibility of the symbols;
syntax defines the formal expression of symbols and their relationships in human- and
computer-readable form.

For many years, models have been built using the language of mathematics and

36 PRINCIPLES OF SIMULATION MODELING

~Usc
simulation

I system

Figure 2.4 Role of a simulation system.

general-purpose computer languages. General-purpose computer languages provide a
great deal of flexibility in modeling but do not contain a structure or set of concepts that
facilitate the modeling task. Specializing such languages for use has simplified modeling
tasks. In Chapter 24 we discuss how simulation software works and in Chapter 25,
provide a survey of the software.

The final stage in the problem-solving process is to support decision making and
policy setting as shown in Figure 2.5. For a simulation analyst, no project should be
considered complete until its results are used. The use of the model involves both an
interpretation of outputs and a presentation of results. Planning for the use of model out-
puts entails both strategic and tactical considerations. These considerations must include
continual interaction between the model builder and the decision maker to ensure that
the decision maker understands the model, its outputs, and its uses. If this is done, it
is more likely that the results of the project will be implemented with vigor. The feed-
back from output analysis to the model provides information as to how the model can
be adapted to satisfy better the problem statement. It is not uncommon that such feed-
back also influences the problem statement. When this occurs, communications to the
decision maker are even more important.

Model

u
Figure 2.5 Model and its outputs.

Decisions

Policies

2.4 SIMULATION MODELING WORLD VIEWS 37

2.4 SIMULATION MODELING WORLD VIEWS [5]

Simulation models of systems can be classified as discrete-change, continuous-change,
or combined models. In most simulations, time is the major independent variable. Other
variables included in the simulation, such as machine status and number of parts in
inventory, are functions of time and are the dependent variables. The values of the
dependent variables are used to calculate operational performance measures. In a man-
ufacturing system, typical performance measures are throughput, probability of meeting
deadlines, resource utilization, and in-process inventory. Profits and return on invest-
ments, when possible, are estimated from these operational performance measures.

A discrete model has dependent variables that change only at distinct points in sim-
ulated time, referred to as event times. For example, event times in a manufacturing
system correspond to the times at which orders are placed in the system; material han-
dling equipment arrives and departs from machines; and machines change status (e.g.,
from busy to either idle, broken, or blocked).

A continuous model has dependent variables that are continuous functions of time.
For example, the time required to unload an oil tanker or the position of a crane. In
some cases it is useful to model a discrete variable with a continuous representation
by considering the entities in the system in the aggregate rather than individually. For
example, the number of bottles on a conveyor may be modeled more efficiently using
a continuous representation, even though the bottles are washed and filled individually.

In a combined model, the dependent variables of a model may change discretely,
continuously, or continuously with discrete jumps superimposed. The most important
aspect of combined simulation arises from the interaction between discretely and con-
tinuously changing variables. For example, when a crane reaches a prescribed location,
unloading is initiated.

In the following sections, the terminology of simulation modeling is presented and
examples of the use of modeling world views are given.

2.4.1 Discrete Simulation Modeling

The components that flow in a discrete system, such as people, equipment, orders, and
raw materials, are called entities. There are many types of entities, and each has a set
of characteristics or attributes. In simulation modeling, groupings of entities are called
files, sets, lists, or chains. The goal of a discrete simulation model is to portray the
activities in which the entities engage and thereby learn something about the system's
dynamic behavior. Simulation accomplishes this by defining the states of the system
and constructing activities that move it from state to state. The beginning and ending of
each activity are events. The state of the model remains constant between consecutive
event times, and a complete dynamic portrayal of the state of the model is obtained by
advancing simulated time from one event to the next. This timing mechanism, referred
to as the next-event upprouch, is used in many discrete simulation languages.

There are many ways to formulate a discrete simulation model. Four formulation
possibilities are:

1. Defining the changes in state that occur at each event time

2. Describing the process (network) through which the entities in the model flow

3. Describing the activities in which the entities engage

38 PRINCIPLES OF SIMULATION MODELING

4. Describing the objects (entities) and the conditions that change the state of the
objccts

In this chapter the first two of the formulations above are presented. In Chapter 11,
object-oriented modeling and its implementation are discussed.

2.4.2 Example of Discrete Simulation Modeling

An example of the concept of simulation was presented in Chapter 1, where service is
given to customers by a bank teller. The purpose for this model was to estimate the
percent of time the teller is idle and the average time a customer spends in the system.
Table 1 . I assumes that the time of arrival of each customer and the processing time by
the teller for each customer are known. An ad hoc simulation was used to analyze the
model.

To understand the model, we first define the state of the system, which for this exam-
ple is the status of the teller (busy or idle) and the number of customers in the system.
The state of the system is changed by (1) a customer arriving at the system, and (2)
the completion of service by the teller and the subsequent departure of the customer.
Note that for these two events, the status of the teller can be determined from the num-
ber of customers in the system (i.e., idle if number of customers in the system is zero,
and busy otherwise). The art of modeling and the evolutionary nature of modeling lead
to the definition of state above to accommodate any future need to model customer
departures or teller breaks. A possible status variable not included in the definitions
of the state of the system is the remaining processing time for a teller on a customer.
This variable was omitted because a discrete-event model involving only two events
was perceived. If a continuous model or a more elaborate discrete model is required
to satisfy the purpose for modeling, the model might require this embellishment to the
state of the system description. To illustrate a simulation, the state of the system over
time is obtained by processing the events corresponding to the arrival and departure of
customers in a time-ordered sequence, as shown in Table 1.1.

In Table 2.1, columns (1) to (4) are system data. It is assumed that initially there
are no customers in the system, the teller is idle, and the first customer is to arrive at
time 0.0. The start of service time given in column (5) depends on whether service on
the preceding customer has been completed. It is taken as the larger value of the arrival
time of the customer and the departure time of the preceding customer. Column (6), the
time when service ends, is the sum of the column (5) value and the service time for the
customer, column (4). Values for time-in-queue and time-in-system for each customer
are computed in columns (7) and (8) as shown in Table 2.1. Average values per customer
for these variables are 7/20 or 0.35 minute and 72/20 or 3.6 minutes, respectively. Table
2.1 presents a summary of information concerning each customer but does not provide
information about the teller and the queue size of customers. To obtain such information,
it is convenient to examine the events associated with the situation.

The logic associated with processing the arrival and departure events depends on
the state of the system at the time of the event. In the case of the arrival event, the
disposition of the arriving customer is based on the status of the teller. If the teller is
idle, the status of the teller is changed to busy and the departure event is scheduled
for the customer by adding a service time to the current time. However, if the teller is
busy at the time of an arrival, the customer cannot begin service at the current time and
therefore enters the queue (the queue length is increased by 1). At a departure event, the

2.4 SIMULATION MODELING WORLD VIEWS 39

Table 2.1 Ad Hoc Simulation of Customer-Teller Banking System

Time Time Time Time
Customer Between Anival Service Service Service in in
Number Arrivals Time Time Begins Ends Queue System

status of the teller depends on whether a customer is waiting. If a customer is waiting
in the queue, the teller's status remains busy, the queue length is reduced by 1 , and a
departure event for the customer removed from the queue is scheduled. If, however, the
queue is empty, the status of the teller is set to idle. In this description, the initiation
of service can occur at an arrival event or a departure event. If the initiation of service
could occur at some other time, it would be necessary to define initiation of service
as a separate event. This is also the case for completion of service, which, for this
illustration, only happens when a departure event occurs.

An event-oriented description of customer status and number of customers in the
system is given in Table 2.2. In the table the events are listed in chronological order.
The average number of customers in the system is computed as a time-weighted average,
that is, the sum of the product of the number in the system and the fraction of time that
the number in the system existed. For this example there were 0 customers in the system
for 30 minutes, 1 customer in the system for 59 minutes, and 2 customers in the system
for 10 minutes. The weighted-average number of customers in the systems is 0(30/99)
+ 1(59/99) + 2(10/99), or 0.798. The fraction of time the teller is idle is the total idle
time divided by the total simulation time, which for this example is 30/99, or 0.303.

To place the arrival and departure events in their proper chronological order, it is
necessary to maintain a record or calendar of future events to be processed. This is done
by maintaining the times of the next arrival event and next departure event. The next
event to be processed is then selected by comparing these event times. For situations

40 PRINCIPLES OF SIMULATION MODELING

Table 2.2 Event-Oriented Description of Customer-Teller Simulation.

Event Customer Event Number in Number in Teller Teller Idle
Time Number TY ~e Queue System Status Time

Start
Arrival
Departure
Amval
Amval
Departure
Departure
Arrival
Departure
Amval
Arrival
Departure
Departure
Amval
Amval
Departure
Depature
Amval
Departure
Amval
Departure
Amval
Departure
Arrival
Departure
Arrival
Departure
Arrival
Arrival
Departure
Amval
Departure
Departure
Amval
Departure
Arrival
Departure
Arrival
Departure
Arrival
Departure

Idle
Busy
Idle
Busy
Busy
Busy
Idle
Busy
Idle
Busy
Busy
Busy
Idle
Busy
Busy
Busy
Idle
Busy
Idle
Busy
Idle
Busy
Idle
Busy
Idle
Busy
Idle
Busy
Busy
Busy
Busy
Busy
Idle
Busy
Idle
Busy
Idle
Busy
Idle
Busy
Idle

with many events, an ordered list of events is maintained, which is referred to as an
event calendar.

Several important concepts are illustrated by this example. We observe that at any
instant in simulated time, the model is in a particular state. As events occur, the state
of the model may change as prescribed by the logical-mathematical relationships asso-

2.4 SIMULATION MODELING WORLD VIEWS 41

ciated with the events. Thus events define potential changes. Given the starting state,
the logic for processing each event, and a method for specifying the sample values, the
problem is largely one of bookkeeping. An essential element in the bookkeeping scheme
is the event calendar, which provides a mechanism for recording and sequencing future
events. Another point to observe is that state changes can be viewed from two perspec-
tives: (I) the process that the entity (customer) encounters as it seeks service, or (2) the
events that cause the state to change. These views are illustrated in a network model
and in an event-based flowchart model in the next two sections.

2.4.3 Network Model of the Banking System

A network is a form of process model that depicts the flow of entities through nodes
and branches. This view of dynamic systems modeling using activity networks was
developed by Pritsker in the early 1960s [6]. Many variants of network models for
analysis by simulation have been built on this theme.

A network model for the customer-teller bank system will now be developed. On a
network, the passage of time is represented by a branch. A branch is a graphical rep-
resentation of an activity. Clearly, teller processing is an activity and hence is modeled
by a branch. If the teller activity is ongoing, arriving entities (customers) must wait.
Waiting occurs in a QUEUE node. Thus a one-server, single-queue operation could be
depicted as QUEUE node, Q, followed by an activity, Processing activity , that is,

QUEUE Node

r'l Processing activity

In this example, customers wait for service at the QUEUE node. When the teller is
free, a customer is removed from the queue and a service activity is initiated. Many
procedures exist for specifying the time to perform the activities.

A complete network model is shown in Figure 2.6. Customer entities are inserted
into the network at the CREATE node. There is a zero time for the customer entity to
travel to the QUEUE node, so that the customers arrive at the same time as they are

Customer Arrival

hstomers
Teller service

IMIFORMI6.,12.1 m. A

Figure 2.6 Network model of banking system.

42 PRINCIPLES OF SIMULATION MODELING

Arriving Customer Sewed
Customer Queue of Customers Being Sewed Teller Customer

Figure 2.7 Diagram of a banking system.

created. The customers either wait or are processed. The time spent in the bank system
by a customer is then collected at the COLLECT node. As can be seen, the network
model of Figure 2.6 resembles the diagram of operations presented in Figure 2.7. The
symbol is used to indicate the start or end of the path for an entity and provides
a means to see easily an entity's starting and ending locations in the network.

2.4.4 Discrete-Event Model of the Banking System

The states of the bank system are measured by the number of customers in the system and
the status of the teller. With the following two events, the changes in model state can be
made: (I) at a customer-arrival event, and (2) at an end-of-service event. A modeler must
determine the significant events to include in the model. Here all changes in status are
assumed to occur at either the arrival time of a customer or at the time that service by the
teller ends. Thus the state of the model will not change except at these event times.

The initialization logic for this example is depicted in Figure 2.8. The teller is initially
set to idle. The arrival event corresponding to the first customer arrival is scheduled to
occur. By schedule is meant the placing of an event on the event calendar to occur at a
future time. This initialization establishes the initial state of the model as empty and idle.

The logic for the customer-arrival event is depicted in Figure 2.9. The first action that
is performed is the scheduling of the next arrival. Thus each arrival causes another arrival
to occur at a later time. In this way, only one arrival event is scheduled to occur at any one
time, but a complete sequence of arrivals is generated. The arrival time of the customer is
recorded. A test is then made on the status of the teller. If processing can begin, the teller is
made busy and an end-of-processing event for the arriving customer is scheduled. Other-
wise, the customer is placed in the queue representing waiting customers.

At each end-of-processing event, a value is collected on the time the customer spent
in the queue and in processing. Next, the first waiting customer, if any, is removed from
the queue and its processing is initiated. The logic for the end-of-processing event is
depicted in Figure 2.10.

This simple example illustrates the basic concepts of discrete-event simulation mod-
eling. Variables, entities, and file memberships make up the static structure of a simu-
lation model. They describe the state of the model but not how it operates. The events
specify the logic that controls the changes that occur at specific instants of time. The
dynamic behavior is then obtained by sequentially processing events and recording sta-
tus values at event times.

2.4 SIMULATION MODELING WORLD VIEWS 43

Initialization '7
Set teller idle

Set number in
system to zero

Schedule first
customer arrival

event

(Y]
Figure 2.8 Initialization for banking system problem

2.4.5 Continuous Simulation Modeling

In a continuous simulation model, the state of the system is represented by dependent
variables that change continuously over time. To distinguish continuous-change vari-
ables from discrete-change variables, the former are, for communication convenience,
referred to as state variables. A continuous simulation model is constructed by defining
equations for a set of state variables.

State variables in a continuous model can be represented by one or more of the
following forms:

A system of explicit functional forms [e.g., y = f (x , t)] . A system of difference equations (e.g., y,+ 1 = ay, + bun) . A system of differential equations [e.g., dy ld t = f (x, t)]

Typically, the independent variable is time which, in the examples above, is represented
by t and n. Simulation solutions are obtained by specifying values of the variables in the
equations at an initial (or specific) point in time and using these values as inputs to obtain
solutions at a next point in time. The new values then become the starting values for the
next evaluation. This evaluation-step-evaluation procedure for obtaining values for the
state variables is referred to as continuous simulation analysis. It is used directly when
variables are described by explicit functional forms or by a set of difference equations.
When simultaneous equations are involved, numerical analysis procedures for obtaining
variable values to satisfy the set of equations are required at each step.

Models of continuous systems are frequently written in terms of the derivatives of

44 PRINCIPLES OF SIMULATION MODELING

(Customer-arrival event 1

customer-arrival event
Save arrival time

A
No Fie customer No Fie customer

b in queue - inqueue I

1 Yes

Set teller busy *
end-of-processing

event

(Y)
Figure 2.9 Customer-amval event logic.

the state variables, that is, differential equations. The reason for this is that it is often
easier to construct a relationship for the rate of change of a state variable than to devise
a relationship for the state variable directly. If there is a differential equation in the
model, dy(t) /d t , the values of y(t) are obtained using numerical integration as follows:

Many methods exist for performing the integration indicated in the equation above.

2.4 SIMULATION MODELING WORLD VIEWS 45

End of service event

for customer

waiting customer

No
b

Schedule
end-of-service event

Set idle

(Y?)
Figure 2.10 End-of-service event logic.

2.4.6 Building a Continuous Model

The tasks of a modeler when developing a continuous model are:

Identify the state variables whose behavior is to be portrayed. A typical purpose
for building continuous models is to describe behavior or to evaluate or optimize
proposed designs for controlling behavior.

Develop the equations describing the behavior of the state variables.

Identify threshold conditions where status changes may occur. These are referred
to as state events to distinguish them from scheduled or time events.

Determine the value of the state variables in accordance with the defining equations
subject to the changes possible when state events occur.

46 PRINCIPLES OF SIMULATION MODELING

Complexity in continuous models occurs for the following reasons:

Changes occur in the defining equations. These changes can be to the coefficients
or in the form of the equations and may occur at a time event or a state event.

Discrete (discontinuous) changes in the state variables can occur.

Simultaneous sets of equations may exist because there are interactions among state
variables.

Random variables are included in the defining equations.

Because some or all of these complexities usually occur in problem-solving situa-
tions, a simulation approach is common when analyzing continuous models.

2.4.7 Combined Discrete-Continuous Models

The world view of a combined model specifies that the system can be described in terms
of entities, global or model variables, and state variables. The behavior of the model
is simulated by computing the values of the state variables at small time steps and by
computing the values of attributes of entities and global variables at event times. The
breakthrough in modeling combined systems occurred when the definition of an event
was challenged [7].

Three fundamental interactions can occur between discretely and continuously
changing variables. First, a discrete change in value may be made to a continuous vari-
able. Examples of this type of interaction are the completion of a maintenance operation
that instantaneously increases the rate of processing by machines within a system, and
the investment of capital that instantaneously increases the dollars available for raw
material purchase. Second, a continuous state variable achieving a threshold value may
cause an event to occur or to be scheduled (e.g., the arrival of a material handler to a
prescribed position initiates an unloading process). In general, events could be based
on the relative value of two or more state variables. Third, the functional description
of continuous variables may be changed at discrete time instants. An example of this
is the change in the equations governing acceleration of a crane when a human being
is in the vicinity of the crane.

The following principle describes a convenient initial approach to the combined mod-
eling of a system. The evolutionary modeling principle stated previously applies to com-
bined modeling so that any initial order to the modeling sequence will be superseded.

Modeling Principle 5 In modeling combined systems, the continuous aspects of the
problem should be considered first. The discrete aspects of the model-including events,
networks, algorithms, control procedures, and advanced logic capabilities-should then
be developed. The interfaces between discrete and continuous variable should then be
approached.

Combined discrete-event and continuous modeling constitutes a significant advance
in the field of simulation. There are distinct groups within the simulation field for
discrete-event simulation and continuous simulation. The disciplines associated with
discrete-event simulation are industrial engineering, computer science, management sci-
ence, operations research, and business administration. People who use continuous sim-
ulation are more typically electrical engineers, mechanical engineers, chemical engi-

2.5 SIMULATION MODEL PURPOSE 47

neers, agricultural engineers, and physicists. The overlap between the two groups has
not been large. For years, the Summer Computer Simulation Conference was for contin-
uous modelers and the Winter Simulation Conference was for discrete-event modelers.
Only recently have the two groups started to mix. A large number of problems are in
reality a combination of discrete and continuous phenomena and should be modeled
using a combined discrete-event/continuous approach. However, due to group division,
either a continuous or a discrete modeling approach is normally employed.

2.4.8 Combined Modeling Descriptions

An area where combined discrete continuous modeling has proven to be very powerful is
in the development of procedures for analyzing the use of material handling equipment.
The modeling of conveyors, cranes, and automated guided vehicles involve the contin-
uous concepts of acceleration and velocity changes and also the discrete requirements
associated with loading, unloading, picking up material, moving over network segments,
and control strategies associated with movements. For packaging-line models, it is often
advantageous to model the items on the conveyor using continuous concepts to maintain
state variables of the number of items on the conveyor, the number of items in staging
areas, and the number of items being processed at a machine. Advanced packaging lines
employ variable-speed machines and variable-speed conveyors so that any linearization
of the continuous variables to allow discrete-event scheduling is not practical.

For large crane systems, the acceleration and deceleration characteristics of the crane
can make a large difference in its ability to process loads efficiently. Assumptions of
instantaneous startups and stops are not appropriate. In addition, multiple cranes are
typically on a single runway that requires modeling the interference among the cranes.
This involves monitoring multiple state variables and the detection of state events when
two variables are within a prescribed distance.

For automated guided vehicles (AGVs), a two-dimensional grid is typically required
with the intersections being potential control points for directing the AGVs. Continuous
variables are used to represent the position of the vehicle and also the amount of energy
available to power the vehicle. Discrete events relate to the requests for the AGV, the
loading and unloading of material from the AGV, and the decision logic associated with
the disposition of an available AGV. Movement of the AGV, either loaded or unloaded,
through the grid network is then described by the equations of motion governing the
AGV system.

2.5 SIMULATION MODEL PURPOSE

Throughout this chapter, emphasis has been placed on the use of modeling and simu-
lation to solve problems. The model-based problem solving process was presented as
being driven by a system-specific purpose. Table 2.3 provides illustrations of systems
and areas and the types of design, planning, and operational issues that can be addressed
using modeling and simulation. The purpose for modeling can also have a functional
level. The following list illustrates functional levels to which simulation modeling has
been applied:

As explanatory devices to understand a system or problem

As a communicution vehicle to describe system operation

48 PRINCIPLES OF SIMULATION MODELING

Transportation systems

Computer and communication
systems

Project planning and control

Table 2.3 Modeling and Simulation Application Areas

Design, Planning, and
Type of System Operational Issues

Manufacturing systems Plant design and layout
Continuous improvement
Capacity management
Agile manufacturing evaluation
Scheduling and control
Materials handling

Railroad system performance
Truck scheduling and routing
Air traffic control
Terminal and depot operations

Performance evaluation
Work-flow generation and analysis
Reliability assessment

Product planning
Marketing analysis
Research and development

performance
Construction activity planning
Scheduling project activities

Financial planning

Environmental and
ecological studies

Capital investment decision making
Cash flow analysis
Risk assessment
Balance sheet projections

Flood control
Pollution control
Energy flows and utilization
Farm management
Pest control
Reactor maintainability

Health care systems Supply management
Operating room scheduling
Manpower planning
Organ transplantation policy evaluation

A s an analysis tool to determine critical elements, components, and issues and to
estimate performance measures

As a design assessor to evaluate proposed solutions and to synthesize new alter-
native solutions

A s a scheduler to develop on-line operational schedules for jobs, tasks, and
resources

As a control mechanism for the distribution and routing of materials and resources

A s a training tool to assist operators in understanding system operations

As a part of the system to provide on-line information, status projections, and deci-
sion support

2.6 RELATED MODELING RESEARCH 49

Table 2.4 Primary Outputs for Use in Applications by Functional Level

Functional Level Primary Outputs

Explanatory devices
Communication vehicle
Analysis tool

Design assessor

Scheduler

Control mechanism

Animations
Animations, plots, pie charts
Tabulations, statistical estimators,

statistical graphs
Statistical estimators, summary

statistics, ranking and selection
procedures

Tabular schedules, Gantt charts,
resource plots

Tabular outputs, animations,
resource plots

Training tool Animations, event traces,
statistical estimators,
summary statistics

Embedded system element Status information, projections

Since simulation modeling can be used at each of these levels and across a wide
spectrum of systems, many types of outputs and analysis capabilities are associated
with simulation models. For any given level, any output capability could be used. In an
attempt to bring focus to this issue, the high-level primary outputs associated with each
of the levels are listed in Table 2.4. With regard to the different purposes for which
models are used, the following principle is presented:

Modeling Principle 6 A model should be evaluated according to its usefulness. From
an absolute perspective, a model is neither good or bad, nor is it neutral.

As a summary to this section, modeling principle 7 is offered.

Modeling Principle 7 The purpose of simulation modeling is knowledge and under-
standing, not models.

Simulation modeling is performed to induce change. To achieve change, the results
of the modeling and simulation effort require implementation. For the simulationist,
implementation based on results is a rewarding experience.

2.6 RELATED MODELING RESEARCH

Research on modeling is extremely difficult. Basic research on understanding models
and the modeling process are reported by Fishwick [8], Little [9], Polya [lo], Wymore
[I 11, and Zeigler [12-141. Henriksen [15-181 has produced excellent papers that high-
light the significant questions on specialized simulation modeling efforts. Geoffrion [19,
201 has written several basic papers on the fundamentals of structured modeling. The
impact of these efforts on modeling practice remains to be seen.

50 PRINCIPLES OF SIMULATION MODELING

ACKNOWLEDGMENTS

This material is based on work supported by the National Science Foundation under
Grant DMS-8717799. The government has certain rights in this material. The author
thanks the following persons for helping to improve this chapter by providing review
comments: Barry Nelson of Northwestern University, Bob Schwab of Caterpillar Cor-
poration, Bruce Schmeiser of Purdue University, and Steve Duket, Mary Grant, and Ken
Musselman of Pritsker Corporation.

REFERENCES

1. Simon, H. A. (1990). Prediction and prescription in systems modeling, operations Research,
Vol. 38, No. I , pp. 7-14.

2. Council on Competitiveness (1989). Challenges, Vol. 1, No. 6.
3. Morris, W. T. (1967). On the art of modeling, Management Science, Vol. 13, No. 12, pp.

707-717.

4. Evans, J. R. (1991). Creative Thinking in the Decision and Management Sciences, South-
Western Publishing, Cincinnati, Ohio.

5. Pritsker, A. A. B. (1995). Introduction to Simulation and SLAM II, 4th ed., Systems Publishing
Corporation, West Lafayette, Ind., and Wiley, New York, pp. 51-66.

6. Pritsker, A. A. B. (1990). Papers . Experiences . Perspectives, Wadsworth/ITP, Belmont,
Calif., pp. 240-245.

7. Pritsker, A. A. B. (1990). Papers . Experiences . Perspectives, Wadsworth/ITP, Belmont,
Calif., p. 253.

8. Fishwick, P. A. (1994). Simulation Model Design and Execution: Building Digital Worlds,
Prentice Hall, Upper Saddle River, N.J.

9. Little, J. D. C. (1992). Tautologies, models and theories: can we find laws of manufacturing?
IIE Transactions, July, pp. 7-1 3.

10. Polya, G. (1973). How to Solve It, 2nd ed., Princeton University Press, Princeton, N.J.
11. Wymore, A. W. (1976). A Mathematical Theory of Modelling and Simulation, Wiley, New

York.

12. Ziegler, B. P. (1976). Theory of Modelling and Simulation, Wiley, New York.
13. Ziegler, B. P. (1984). Multi-facetted Modelling and Discrete Event Simulation, Academic

Press, San Diego, Calif.

14. Ziegler, B. P. (1990). Object-Oriented Simulation with Hierarchical, Modular Models, Aca-
demic Press, San Diego, Calif.

15. Henriksen, J. 0 . (1986). You can't beat the clock: studies in problem solving, in Proceedings
of the 1986 Winter Simulation Conference, Washington, D.C., December, J. R. Wilson, J. 0 .
Henriksen, and S. D. Roberts, eds., IEEE, Piscataway, N.J., pp. 713-726.

16. Henriksen, J. 0. (1987). Alternatives for modeling of preemptive scheduling, in Proceedings
of the 1987 Winter Simulation Conference, A. Thesen, H. Grant, and W. D. Kelton, eds.,
Atlanta, Ga., December, IEEE, Piscataway, N.J., pp. 575-581.

17. Henriksen, J. 0. (1988). One system, several perspectives, many models, in Proceedings of
the 1988 Winter Sirnulation Conference, M. A. Abrams, P. L. Haigh, and J. C. Comfort, eds.,
San Diego, Calif., December, IEEE, Piscataway, N.J., pp. 352-356.

18. Henriksen, J. 0. (1989). Alternative modeling perspectives: finding the creative spark,
in Proceedings of the 1989 Winter Simulation Conference, Washington D.C., December,

REFERENCES 51

E. A. MacNair, K. J . Musselman, and P. Heidelberger, eds., IEEE, Piscataway, N.J., pp.
648-652.

Geoffrion, A. M. (1987). An introduction to structured modeling, Munugenzenr Scienw, Vol.
33, pp. 547-588.

Geoffrion, A. M. (1986). Integrated modeling systems, in Proceedings of'tlw Conference on

Inregrareti Modeling Systems, University of Texas, Austin, Texas, October.

PART II
--

METHODOLOGY

CHAPTER 3

Input Data Analysis

STEPHEN VINCENT
Compuware Corporation

3.1 NATURE OF SIMULATION INPUT

Developing a validated simulation model (Figure 3.1) involves three basic entities:
the real-world system under consideration, a theoretical model qf the system, and a
computer-based representation of the model, the simulation program. The activity of
deriving the theoretical model from the real-world system can be referred to as simu-
lation modeling, and the activity whereby the computer-based representation is derived
from the model can be referred to as simulation programming. Figure 3.1 also shows
the basic checks of verification and validation that are applied in the development of a
simulation model; these concepts are discussed in Chapter 10.

One of the primary reasons for using simulation is that the model of the real-world
system is too complicated to study using the stochastic processes models described in
Section 3.2. Major sources of complexity are the components of the model that "drive,"
or are inputs to, the logic of the model. Examples of such random inputs include arrivals
of orders to a job shop, times between arrivals to a service facility, times between
machine breakdowns, and so on. Each simulation model input has a correspondent both
in the real-world system and in the simulation program, as shown in Figure 3.2. The
activity of representing a random input model as a random variate generator is discussed
in Chapter 5. The focus of this chapter is simulation input modeling, wherein proba-
bilistic models of real-world processes or phenomena are derived. Often, the goal of
simulation input modeling is to provide a model that is reasonable, given the goals of
the simulation; in contrast to standard statistical applications. often we are not really
interested in determining whether the model is peqect, as discussed in Section 3.5.3.

The impact of the choice of a random input model on the overall simulation validity
may range from crucial to virtual irrelevance (depending on the system under consid-
eration). There is no definitive manner to ascertain what the impact will be, without
applying formal validation methods. On occasion it has been suggested that a rough
sensitivity rinalysis can be used to judge the severity of the impact. The logic of this

Hmtibook of Sirnulution, Edited by Jerry Banks.
ISBN 0-471-13403-1 O 1998 John Wiley & Sons, Inc.

56 INPUT DATA ANALYSIS

Real-World System
I I
I Simulation Modeling I Validation
+

I Simulation Model

I Simlation Progmmming (Verification

Figure 3.1 Overview of simulation model development.

analysis can be paraphrased as "try a number of representations; if the simulation results
do not vary significantly, then the choice is not important." The fatal flaw in this logic
is that the lack of variation does not establish the validity or even the reasonableness of
any of the alternatives. Because, in general, the magnitude of the impact of the choice
of the simulation input model on the overall simulation validity is not known a priori,
we recommend the conservative approach of assuming that the impact is large. This
implies that we should never ignore or short-change the input modeling process, which
can be summarized by Figure 3.3: combine prior experience, relevant applicable the-
ory (e.g., from stochastic processes or related to the system under consideration), and
data (when available). Part of the input modeling process itself is an assessment of the

I Red-World I
Process or Phenomenon

Simulation Input Modeling

Simulation Model $1
Random Input Model 1 11

Simulation Program

Figure 3.2 Role of input distributions

3.2 ROOTS OF SIMULATION INPUT MODELING 57

Validity Assessment
(~eal-world Process r-

: Available Resources

Assessment

Figure 3.3 Modeling simulation inputs.

reasonableness of the resulting model, which concerns just the process under consid-
eration. At a higher level is the validity check for the input model, which is possible
only when considering the broader context in which the process occurs.

An effective job of simulation input modeling requires the use of a reasonable input
modeling software package. It is not possible to perform most of the calculations "by
hand," and spreadsheets and general-purpose statistical packages lack the capabilities to
do even a limited analysis. In this chapter we provide an overview of simulation input
modeling that will help to assess the qualities of alternative simulation input processors
and to make effective use of the one selected. This chapter does not contain a rigorous
development of all the statistical methodologies underlying simulation input modeling
(we defer this task to texts intended for graduate-level study of simulation issues). For
additional information and extensive references on the broad statistical issues related to
simulation input modeling, we refer to the latest editions of the classic series on distri-
butions by Johnson and Kotz [I-31 and the thorough collection of articles concerning
goodness-of-fit techniques by D'Agostino and Stephens [4].

3.2 ROOTS OF SIMULATION INPUT MODELING

A random input variable to a simulation model can be viewed as a stochastic process.
(Nelson [5] is a good introductory text with a simulation perspective.) A stochastic
process is often defined as a collection of random variables (X(t), t in T), where T is
called the index set of the process and t usually represents time. In the discrete-event
simulation context the index set is typically taken to be the nonnegative integers, so
the stochastic process itself is referred to as being discrete-time. For such a process let
us use the simpler notation (Xk, k = 1 , 2, . . .]. Notice that the subscript k dictates the
order of the variables but not the specific time of occurrence (i.e., X2 occurs some time
after X I and some time before X3, not necessarily at time equal to 2). Here each Xk
is a distinct occurrence of the same general random phenomenon X with probability
distribution function Fk(x) = Pr(Xk I x). But what exactly is an X, how is Xk related
to another member of the set X j , and what do the Fk(.) functions "look" like'? In the
academic discipline of stochastic processes, various sets of answers are assumed and the

58 INPUT DATA ANALYSIS

characteristics of the resulting processes are studied, typically using analytic methods.
Our current interest in stochastic processes is threefold:

1. It introduces terminology that will be of interest in later chapters.

2. There is one specific stochastic process, the IID (independent and identically dis-
tributed) process introduced below, that we would like to apply to the analysis of
random simulation input.

3. We must be aware of the assumptions of the preferred IID process so that we can
assess their reasonableness in a particular context, and if appropriate, consider
alternative assumptions.

A good background in stochastic processes is always useful to a simulationist, but not
essential for the remaining discussion.

Perhaps the most fundamental assumption to be made about a process is the dimen-
sionality of X: univariate versus multivariate. If each random variable X represents a
single quantity such as the service time of a customer, the process is called univariate;
Xk would be the service time of the kth customer to arrive to the system. If, instead, X
represents a number of quantities such as the amounts for different items within a sin-
gle order, the process is called multivariate; here Xk = {Ak, Bk, . . .) could represent the
amounts of items A, B, and so on, on the kth order submitted to an inventory system. In
general, whenever a multivariate process is considered, the assumptions concerning the
interrelationships of random variables become more complicated due to the increased
dimensionality (e.g., we must consider how Ak is related to B,, etc.). Due to these com-
plexities, multivariate modeling is beyond the scope of this introductory chapter; we
refer the interested reader to, for example, Johnson [6].

The strongest interrelationship assumptions that we can make are:

1. All of the Xk random variables are probabilistically independent of one another.

2. All of the Xk random variables follow the same probability distribution and thus
are said to be identically distributed; that is, Fk(.) has a common form F (.) for
all k.

This IID process is frequently encountered in classical statistics, in both its univari-
ate and multivariate forms. The alternatives to these assumptions are endless, but we
mention two general alternatives that are particularly germane to simulation:

1. In nonstutionary processes the probability distribution of Xk varies as a function of
k (time) in such a way that the basic mathematical form of the probability distributions
Fk(.) is stable, but it has a parameterization that depends on time-Fk(x) = F(x; g(k)).
[In practice, g(.) is typically parameterized directly in terms of t , time, rather than in
terms of occurrence k.] Two examples are: (a) service systems, such as restaurants and
airports, may have time-varying arrival rates of customers, and (b) physical devices
that are subject to failure may have time-varying failure rates. In a particular simulation
context, depending on the purposes of the study, the nonstationary nature of the process
might be ignored intentionally, particularly if the variations in the process are small
during the period to be simulated or if a worst-case scenario is being simulated with
the most demanding rate for a process being used over the entire simulation.

2. In correlated processes the subsequent values in the process are not independent

3.3 DATA COLLECTION 59

of each other. It should be noted that in statistics the term corrrlution is solely a mea-
sure of linear dependence between two variables. (Consider the variable Y = sin X,
where X is uniformly distributed over the range 0 to 27r. Here Y is determined com-
pletely by X, yet the statistical correlation between X and Y is zero.) We therefore use
the term "correlated" loosely in our present context. As shown in Chapter 7, output
processes exhibiting positive correlations are common in simulations. In some systems
order quantities from a single source, arriving sequentially over time, can be positively
or negatively correlated; that is, some sources may produce similar values over time,
whereas other sources may alternate between high and low amounts.

We defer discussion of particular forms of the distribution F k (.) or F(.) until Sec-
tion 3.5, but note now that in Poisson processes, F(.) is the exponential distribution,
and much is known about different types of Poisson processes because their study is
mathematically tractable. The use of this important process can often be justitied as a
model of arrivals to a system on the basis of three realistic assumptions:

1. Arrivals occur one at a time (if multiple arrivals occur simultaneously, we can
still account for this phenomenon/complication when the number arriving can be
justified as independent of the time of arrival).

2. The number arriving within a time interval starting at a point in time r is inde-
pendent of the number that arrived by any point in time before t .

3. The distribution of the number arriving within a time interval starting at a point
in time t is independent of the time t .

We refer the reader to an advanced text on simulation or stochastic processes for
additional discussion of these points.

3.3 DATA COLLECTION

Arguably, the most difficult aspect of simulation input modeling is gathering data of suf-
ficient quality, quantity, and variety to perform a reasonable analysis. In some contexts
it may be impossible or infeasible to collect data; such is clearly the case when model-
ing proposed systems (e.g., existing systems with significant proposed modifications or
nonexistent systems), but this can also be the case when labor agreements preclude ad
hoc collection of performance data. For other studies there may be insufficient time or
personnel to carry out extensive data collection. Existing data sets offer their own set
of challenges. In contrast to classical statistics, wherein data are collected in a planned
and systematic manner after the analysis method has been chosen, it is quite common
to "mine" available sources of data that were collected for purposes other than the
specification of a simulation model. Figure 3.4 presents a model of how observed data
result from a real-world process. With precollected data a number of annoyances can
occur:

Data can be recorded in an order other than that in which it was observed, which
precludes the checking of important assumptions (e.g., on autocorrelation).
Data can be grouped into intervals (e.g., reported as histogram frequencies).

60 INPUT DATA ANALYSIS

I Real-World Process 1

----+---
Annoyances +,

Figure 3.4 Reality of sampling.

Data can be recorded with insufficient precision, perhaps even rounded to the clos-
est integer, even though the observations were real-valued.
Samples can hold obviously erroneous values, simply because the recorder did not
anticipate the need for highly accurate data.

Tables can hold values from more than one process, without documentation that
would allow discrimination (e.g., repair times for a machine may vary with type
of repair).

Data values might be representative of a different real-world process (e.g., the his-
torical data reflect operating conditions that are unlike those under consideration
in the simulation study).

Although not all of these annoyances will occur with each data set in a simulation
study, they occur so often that we are suspicious of the validity of any data set that is
derived from historical records. Our skepticism concerning the accuracy and represen-
tativeness of data leads us to a paradoxical position: although a data sample is the best
evidence available for use in specifying and evaluating a proposed model, it should
not be taken too seriously. The impact of this conclusion is to mistrust model-selec-
tion strategies that are overly reliant on extremely "clean" samples: We want robust
strategies.

When data will be collected specifically for a simulation study, we make the follow-
ing practical suggestions:

Whenever possible, collect between 100 and 200 observations. The decrease in
quality of analyses performed with smaller samples is noticeable, whereas not much
is gained by increasing the sample size.
For real-valued observations, attempt to record them using at least two to three
accurate significant digits for a nominal value such as the mean or median (50th
percentile). For example, when collecting values that range between 0 and 100
with an anticipated mean of about 10, attempt to record values with at least one-
decimal-place accuracy (e.g., 10.2). Standard mechanisms for assessing quality of
fit react badly to the "value clumping" that occurs with limited recording accuracy,
which can mislead an analyst about the quality of fit afforded by a model.

When interested in interevent times, record event times and later calculate the
interevent times manually or with the assistance of data analysis software.

3.4 PRACTICAL METHODS FOR TESTING ASSUMPTIONS 61

If there is any suspicion that real-world behavior depends on time of day or day of
week, collect a number of samples from different time periods (this is discussed
further in the next section).

3.4 PRACTICAL METHODS FOR TESTING ASSUMPTIONS

As indicated in Section 3.2, the easiest processes to deal with are IID. Therefore, we
consider practical methods to detect gross deviations from these assumptions in our
data. It should be noted that a deviation from a preferred assumption can manifest itself
in more than one way, as will be seen below. I f a data set is available only in an order
other than the values were ohsewed (e.g., sorted), the inzportunt assumptions of IID
cannot he tested, nor can IID alternatives be considered.

To demonstrate the methods described in this section, we use six artificial sample data
sets that can be thought of as observations over 200 time units of arrival processes with
an (average) rate of arrival equal to 5. The sets differ in the way they were generated:

Set 1 : generated as an IID process with exponential interarrival times with a mean
of 0.2 time unit (i.e., a rate of 110.2 = 5).
Set 2: generated as an IID process with gamma interarrival times, where the shape
parameter of the gamma was 5.

Set 3: generated as an IID process with lognormal interarrival times, where the
shape parameter was 1.0.

Set 4: generated as a nonstationary Poisson process (i.e., exponential interarrival
times where the rate of arrival varies with time), where the rate function rises
linearly from 1 at time 0 to 9 at time 200 (so an average of 5).
Set 5: generated as a nonstationary Poisson process, where the rate of arrival for
the first 100 time units is 1 and thereafter is 9.
Set 6: generated as a correlated process, where an interarrival time is the weighted
sum of the previous interarrival time and a random (uniformly distributed) value.

3.4.1 Methods for Assessing Independence

Two simple yet effective heuristic procedures that are readily available in almost all
statistical software packages (intended for simulation input modeling or not) are (I)
tables and/or plots of estimated lag (linear) correlations, and (2) scatter diagrams. Our
general approach is to apply these heuristic procedures to a sample and to react only
to the most disconfirming evidence. We do not recommend the application of formal
tests to answer the question of whether sample values are independent of each other.
Because we cannot make any assumptions concerning the distribution of the values, we
can apply only nonparametric tests, which in our experience are of limited value.

First consider a lug k correlation, which is the correlation between observations k val-
ues apart. For example, a lag 2 correlation applies to the observation pairs with indexes
(1,3), (2,4), (3 3 , and so on. Formulas for estimated correlations appear in Chapter 7.
For a sample of size n, the estimated lag k correlation is calculated using n - k sam-
ple pairs, where clearly we need n larger than k . Lag correlations calculated from a very
small number of pairs cannot be taken too seriously, due to the inherent variability of
the estimate itself. In general, we do not recommend using a correlation estimate based

62 INPUT DATA ANALYSIS

Figure 3.5 Estimated lag correlations for set 1 (IID exponential data).

on fewer than four pairs of observations. Further, we find that lags of size 1 through 10
are the most informative about a sample, whereas lags over 20 are noninformational. For
independent samples, we expect the estimated lag correlations to be small in magnitude
and clustered about zero, with both negative and positive estimated values. In Figures 3.5
to 3.7 we see examples of lag-correlation plots for sets 1,5, and 6, where our concern over
the validity of the independence assumption should be least for the IID sample and most
for the correlated sample. (The example statistical analyses presented in this chapter were
produced by the software described in Vincent and Law [7] .) A rationale for the low-level
positive correlations in the nonstationary plot is that small and large interarrival times tend
to occur in the same time periods, due to the shift in arrival rate at time 100; despite the
differences in assumptions, the plot for set 4 is very similar.

Figure 3.6 Estimated lag correlations plot for set 5 (dual-value nonstationary Poisson process
sample).

3.4 PRACTICAL METHODS FOR TESTING ASSUMPTIONS 63

Figure 3.7 Estimated lag correlations plot for set 6 (correlated data).

Next we construct a scatter diagrum by plotting the sequential pairs of observations
with indexes (1,2), (2,3), (3,4), . . . , (n - 1,n). The x- and y-axes typically have the
same endpoints, corresponding to the minimum and maximum observation. Correlated
samples tend to produce plots in which values cluster tightly about one of the diagonals
(for positive correlations the lower-left to upper-right diagonal). Independent samples
tend to produce plots with points distributed over portions of the plot in accordance
with the underlying distribution. In Figures 3.8 to 3.10 we compare scatter diagrams
from sets 1 to 3, which show that IID samples from different distributions can produce
different distributions of points in the plot region. In Figure 3.1 1 we show a scatter
diagram for the data from set 6, which highlights the positive correlations between the
values.

0.00037 0.25037 0.50037 0.75037 1.00037 1.25037 1 .SO037

Observation [k]

Figure 3.8 Scatter diagram for set 1 (exponential data).

64 INPUT DATA ANALYSIS

0.0195 0.1 195 0.2195 0.3195 0.4195 0.5195 0.6195

Observation [k]

Figure 3.9 Scatter diagram for set 2 (gamma data).

3.4.2 Methods for Assessing Stability of Distribution

Stability of distribution is perhaps best discussed in terms of a real-valued timeline
rather than an integer-valued order of occurrence. The essential question is whether or
not, for any relevant pair of points in time, the probability distribution of the process
under consideration is essentially the same. Many processes related to human activity
are not stable for all points in time, even within relatively small time horizons. For
example, arrival rates at airports and restaurants vary considerably during the day and
from day to day. However, this lack of stability may not be relevant to a simulation
study:

0.0046 0.5046 1.0046 1.5046 2.0046 2.5046

Observation [k]

Figure 3.10 Scatter diagram for set 3 (lognormal data).

3.4 PRACTICAL METHODS FOR TESTING ASSUMPTIONS 65

0.075 1 A I
0.075 0.125 0.175 0.225 0.275 0.325

Observation [k]

Figure 3.11 Scatter diagram for set 6 (correlated data).

We may wish to simulate only a portion of the time period, in which the real-world
phenomenon is relatively stable.

We may wish to simulate a worst-case scenario in which peak demands on a system
are sustained for long periods of time. In such a simulation study we use input
models representative of specific intervals of time for all time intervals in order to
place the most "stress" on the system.

Detecting even gross deviations from stability of distribution can sometimes be dif-
ticult. For arrival processes that will be modeled in terms of the interarrival times, we
recommend plotting the proportion of arrivals up until a time T as a function of T. If
the rate of arrival is relatively constant over the time period under consideration, the
plot will be fairly linear, with few drastic deviations. In Figures 3.12 to 3.14 we show

0.183 25.183 50.183 75.183 100.183 125.183 150.183 175.183
Time T

Figure 3.12 Arrival time pattern for set 1 (exponential data)

66 INPUT DATA ANALYSIS

1.12 26.12 51.12 76.12 101.12 126.12 151.12 176.12

Time T

Figure 3.13 Arrival time pattern for set 4 (increasing nonstationary Poisson process sample).

the arrival patterns for sets 1, 4, and 5. The nonstationary aspects of sets 4 and 5 are
very clear from these pictures. As an alternative or companion, the time period can be
divided into intervals, and the number of arrivals that occur in each interval can be
plotted, effectively estimating the arrival rate as a function of time. The resulting plot
is dependent on the chosen interval width (this deficiency is closely related to the stan-
dard problems with histograms discussed later in the chapter). For this reason it may
be difficult to assess whether variations from interval to interval are due to randomness
possibly compounded by the interval-width decision, or whether there is a true differ-
ence in the rate across time. In Figures 3.15 to 3.17 we show the histogramlike plots of
number of arrivals in 5-minute intervals for sets 1 , 4, and 5 . The nonstationary aspects
of sets 4 and 5 are again very clear from these pictures.

1.12 26.12 51.12 76.12 101.12 126.12 151.12 176.12

Time T

Figure 3.14 Arrival time pattern for set 5 (dual-value nonstationary Poisson process sample).

3.4 PRACTICAL METHODS FOR TESTING ASSUMPTIONS 67

Interval

40 intervals of width 5 between 0 and 200

Figure 3.15 Arrival counts for set 1 (exponential data).

Other aspects of stability can be evaluated by considering a simple plot of the
observed values against their integer order of occurrence. We expect the values to vary
as we scan the plot, with no discernible overall patterns. In particular, we would expect
the range of plotted points to be roughly the same across the plot. A deviation of this
characteristic might occur, for example, in repair times for a system that is wearing
out-as the state of the system deteriorates, it takes longer to complete a repair. A
"typical" value should not change dramatically across the plot. If a process features
stability of distribution, the mean of the distribution appropriate to time T will not
vary with T; stability of distribution implies stability of mean value (as well as all
other distribution moments). We can use this simple observation to provide a crude, yet
effective detector of instability of distribution. If we aggregate values in the form of a
moving average, a plot of the moving average should be roughly constant. Care must

Interval

Figure 3.16 Arrival counts for set 4 (increasing nonstationary Poisson process sample)

68 INPUT DATA ANALYSIS

Interval

Figure 3.17 Amval counts for set 5 (dual-value nonstationary Poisson process sample)

be taken when constructing and interpreting such plots, because the character of the
plots can vary substantially with the choice of the moving-average "window" W . For
most of the points in the plot the moving average is calculated using 2W + 1 observa-
tions: if xk is an observation and yk is a calculated moving average, then generally yk
= (X ~ - ~ + . . . + X ~ I + x k + x k + ~ +...+ ~ k + ~) / (2 W + l) . For the first and last W moving
averages, fewer points are available for the moving average, and thus these estimates
should be given less credence. In Figures 3.18 to 3.20, we show W = 100 moving-
average plots for sets 1, 4, and 5. (In these figures, the sample average is shown as a
solid horizontal line and the horizontal bound lines located 3 "standardized distances"
from the sample average define a range in which we would expect the moving-average
plot to lie if it were indeed stable.) The nonstationary aspects of sets 4 and 5 are very
clear from these pictures.

0.066
0 100 200 300 400 500 600 700 800 900 1,000

Position

Figure 3.18 W = 100 moving-average plot for set 1 (HD exponential data).

3.5 UNiVARlATE IID CASE WlTH DATA 69

t

-0.055 1 i:::
0 100 200 300 400 500 600 700 800 900 1,000

Position

Figure 3.19 W = 100 moving-average plot for set 4 (increasing nonstationary Poisson process
sample).

3.5 UNlVARlATE IID CASE WlTH DATA

3.5.1 Alternative Distribution Forms

The following forms of probability distributions are commonly used in simulation input
modeling:

Standard distributions (e.g., normal or exponential)

Flexible families (e.g., Johnson or Pearson)

Empirical distributions

0 100 200 300 400 500 600 700 800 900 1,000
Position

Figure 3.20 W = 100 moving-average plot for set 5 (dual-value nonstationary Poisson process
sample).

70 INPUT DATA ANALYSIS

Distributions are classified as being discrete when they can produce only a finite
or countable number of different values (e.g., 0, 1 , 2, . . .), and as being continuous
when they can produce an uncountable number of different values (e.g., all real numbers
between 0 and 1) . Due to the special attention paid to continuous distributions, they are
further classified according to the range of values that they can produce:

Nonnegative continuous distributions take on values in the range (y, m), where y
is typically 0 or some positive value.

Bounded continuous distributions take on values in the range (a, b), where a < b
are typically positive values.

Unbounded continuous distributions take on values in the range (-M, M) (i.e., they
are not restricted).

Note that in some references finite endpoints are made inclusive (e.g., "[a, b]" for a
bounded continuous distribution), which is unimportant since the theoretical probability
of obtaining such an endpoint is zero. Table 3.1 lists distributions of each of the types
mentioned.

For our purposes, we assume that distributions are defined by their distribution func-
tions, or equivalently, by their related density (continuous) or mass (discrete) functions.
All but the most trivial distribution functions are parameterized so that they are more
flexible. For example, the normal distribution features two parameters corresponding
to the distribution's mean (expected value) and standard deviation (or equivalently, the
variance). Such parameters fulfill different roles. Location and scale parameters allow
for any desired units of measurement. For example, if X is a random variable, then the
location and scale transformation Y = y + /3X introduces a location parameter y and
a scale parameter 0. Such a transformation is useful for translating between different
measurement systems, such as metric and English. The aforementioned normal distribu-
tion's mean parameter is a location parameter, and its standard deviation parameter is a

Table 3.1 Common Standard Simulation Input Probability Distributions

Nonnegative continuous
chi-square
Erlang
exponential
F
gamma
inverse Gaussian
inverted Weibull
log-Laplace
log-logistic
lognormal
Pearson type 5
Pearson type 6
random walk
Rayleigh
Wald
Weibull

Unbounded continuous
Cauchy
error
exponential power
extreme value-maximum
extreme value-minimum
Johnson Su
Laplace
logistic
normal
Pareto
Student's t

Bounded continuous
beta
Johnson SB
power function
triangular
uniform

Nonnegative discrete
geometric
logarithmic series
negative binomial
Poisson

Bounded discrete
Bernoulli
binomial
uniform

3.5 UNIVARIATE IID CASE WITH DATA 71

Figure 3.21 Three normal densities.

scale parameter. In Figure 3.2 1 we display three normal distributions that demonstrate
the effects o f location and scale parameters. Locution purumeters typically represent
the center point (e.g., mean or median) o f unbounded distributions and the lower end-
point or threshold of bounded and nonnegative distributions. Scale purumeters serve
the scaling role in the location and scale transformation, except in the case o f bounded
distributions, where they typically serve as upper endpoint parameters. Notice that in
Figure 3.21, regardless o f the parameter values chosen, the density always has a bell
shape. Shape parameters permit distributions to take on different shapes (i.e., beyond
simple changes in location and scale). The most frequently mentioned shape parameter
in introductory statistics is the degrees o f freedom parameter for a Student t-distribu-
tion, which unlike most shape parameters is typically assumed to be a positive integer.
Figure 3.22 gives density plots for the Student t-distribution with four different values
for the degrees-of-freedom parameter. It should be noted that as the degrees-of-freedom
parameter approaches infinity, the density converges to that o f a so-called standard nor-
mu1 distribution, which has a mean o f zero and a standard deviation of 1 . In Figure 3.23
we show density functions for four gamma distributions, all with the same mean value,
yet with dramatically different shapes.

Standard distributions typically have location and scale parameters, and zero, one, or
two shape parameters. "Flexible families" can be viewed as bounded, nonnegative, and
unbounded continuous distribution forms that are mathematically related (i.e., one distri-
bution can be derived from another through application of mathematical transformations
and/or taking o f limits). For example, the Johnson family is based on transformations
of the normal distribution (unbounded) to both bounded and nonnegative ranges (see
ref. 2) . The typical method for applying Johnson distributions is to calculate the value
of a special function, which based on its value indicates the "most appropriate" family
member; notice that the application-dependent reasonableness o f the family member's
range (e.g., bounded) is not considered. Although a specific flexible family will work
well in certain circumstances, it is not universally optimal. This i s clear from the work
o f Johnson and others, who considered alternatives such as the logistic and Laplace dis-
tributions as substitutes for the normal when deriving bounded and nonnegative family

72 INPUT DATA ANALYSIS

Figure 3.22 Four student's t densities.

members. Rather than limiting oneself to a specific flexible family, we recommend con-
sidering each family member to be another standard distribution.

Standard distributions have a number of intuitive positive characteristics. For many
of the distributions, their mathematical form can be shown to be the direct consequence
of a natural physical phenomenon. For example, in Section 3.2 it was stated that based
on minimal assumptions, it can be shown that times between two successive arrivals
for many systems is exponentially distributed. In some industries it is common practice
to assume specific distributional forms for industry-specific probabilistic analyses.

A standard alternative to fitted parametric models are empirical distributions, for
which there are a number of alternative forms. The general form for empirical distri-
bution functions used in standard statistics is

/(shape = 2, scale = 112 1

0.01 0.51 1.01 1.51 2.01 2.51 3.01 3.51
X-Value

Figure 3.23 Four gamma densities.

3.5 UNlVARlATE IID CASE WITH DATA 73

N(x) - u
probability of a value less than or equal to x = FE(x;a,b) =

n + b
(1

where N(x) is the number of observations no lager than x and n is the number of
observations; there may be an additional special case for x smaller than the smallest
observation [e.g., FE(x;a,b) = 01. An intuitive choice for the constants a and b is a =
b = 0, so that the empirical probability of getting a value less than or equal to the kth
largest of n is kln:

Fs(.) is the basis for empirical distributions used to directly represent a data set in a
simulation, as described in Section 3.5.4. However, because the empirical probability is
1 for the largest observation, Fs(.) is undesirable in some contexts, such as the heuristic
plots described later. Common alternatives involve having one of the constants being
nonzero, such as setting a = 4 or b = 4 (see ref. 8). For purposes of explication, we
employ the former alternative as our standard empirical distribution function:

for x at least as large as the smallest observation and F,(x) = 0 otherwise. Note that
empirical distribution functions are step functions that rise at each unique observed
value proportionally to the number of such values. As a practical note, despite the fact
that the theoretical probability of ties is zero, ties occur very frequently in real samples
due to the limits of recording accuracy; thus the step size can be larger than I/(n + b).
As we shall see in Section 3.5.4, an alternative formalization of the empirical distribu-
tion function for continuous distributions replaces the step with a linear interpolation
between subsequent points.

Empirical distributions have a number of obvious drawbacks:

In their standard form, empirical distribution functions can represent only bounded
distributions. Further, unless we adjust them (as discussed in Section 3.5.4), they
represent only the observed sample range. [Note that although it is possible to add
an infinite upper tail to an empirical distribution function, making it a nonnegative
distribution, this procedure works well only when we know the general form for the
addition (e.g., adding an exponential distribution upper tail to an empirical works
well only when the upper tail actually follows an exponential distribution, which
we typically do not know).]

The quality of representation afforded by an empirical distribution is completely
dependent on the quality of the sample available. Although empirical distributions
are classified as nonparametric models, each unique sample value does serve as a
defining parameter of the empirical distribution function; thus the quality of the
estimated distribution function relies on the quality of the available sample.

For small to moderate sample sizes, the upper tail defined by the empirical distri-
bution function can be unreliable due to the small number of values used to define

74 INPUT DATA ANALYSIS

it; this is particularly true for distributions with long upper tails, which are common
in simulation contexts.

The probability that history repeats itself "exactly" is zero.

For these reasons we prefer standard distributions (or those from flexible families)
over empirical distributions in a simulation context when they provide comparable or
better representations.

3.5.2 Recommended Strategy for Selecting the Distribution Form

The following discussion draws heavily on the conclusion from Section 3.3 that although
collected data provide our best evidence concerning a source of randomness, it may not
be a reliable set of evidence. Our first step in any data analysis is thus to examine
the available data in detail. We should be concerned with detecting the problems dis-
cussed in Section 3.3 and with detecting any inconsistencies with an IID assumption as
discussed in Section 3.4. It is always a good idea to take time to create a good histo-
gram of the data in order to familiarize ourselves with the "shape" of the data, as well
as to establish a reference for any histogram-based comparisons that might be used to
evaluate the quality of fit provided by a fitted distribution (as discussed below).

In the remainder of this section we will be using as the basis of our examples a set
of 100 repair times recorded as decimal minutes. The repair times range from 3.79 to
125.75 minutes, with a sample average of 31.506 minutes. Examination of the plots
similar to those found in Section 3.4 (not shown here) revealed nothing to question the
assumptions of an IID sample.

Making histograms is an art and not a science. Although various rules or heuristics
have been suggested for determining one or more of the histogram parameters (e.g.,
starting point, interval width, number of intervals), none will produce an "optimal" (or
even a good) histogram in all cases. (In fact, researchers have to limit carefully the range
of applicability before suggesting in print that any rule can be considered optimal in
some sense.) Most, if not all statistical packages used for analyzing input data provide
a default histogram configuration for a set of data. Use this as a first approximation
to a good histogram, not the final choice. We suggest iterating through adjusting the
starting point, adjusting the interval width, and then setting the number of intervals to
cover all the data. (Some data may be well away from the rest, on either end; then they
might be ignored during histogram construction.) The most difficult step is choosing an
appropriate interval width. Too small a width will produce a ragged histogram, whereas
too large a width will produce an overaggregated blocklike histogram, as shown in
Figures 3.24 to 3.26. A "good" histogram is a relative concept but generally indicates
that the histogram suggests a smooth underlying density shape, such as one of a common
density function. However, there is no guarantee that a reasonable histogram can be
constructed for any particular data set. If it is difficult to produce a reasonable histogram
when there are at least 50 points, it is likely that no standard distribution will provide
an outstanding fit to the data.

Once you have become familiar with the data, we suggest the following steps, many
of which are detailed further in subsequent sections:

1. Use knowledge of the source of randomness to determine any definite limits on the
values it can produce. Be clear about which values, if any, are absolutely impos-

3.5 UNlVARlATE IID CASE WITH DATA 75

1 n 8 intervals of width 16 between 0 and 128 1

1 1 . 1
3 4 5 6 7 8

Interval

Figure 3.24 "Blocklike" histogram.

sible and thus undesirable in a simulation representation. When there are lower
and/or upper bounds on permissible values, be clear on whether some flexibility
can be allowed when choosing a probability model for the simulation; for exam-
ple, whereas in the real world it is impossible to accomplish a task in less than
one time unit, it might be perfectly acceptable to use a probability distribution
in the simulation that produced values as small as 0.95 time unit. Note that we
are suggesting flexibility in terms of larger ranges of possible values-we can't
consider ranges that are subsets of that demonstrated by the data.

32 intervals of width 4 between 0 and 128

Interval

Figure 3.25 "Ragged" histogram

76 INPUT DATA ANALYSIS

24

[n 16 intemh of width 8 between 0 and 128 I

Figure 3.26 Histogram with appropriate intervals.

2. "Fit" as many standard distributions (and members of flexible families) to the
data as possible, using ranges not completely inconsistent with those determined
in step 1. In general, there is no harm in fitting distributions with broader ranges
than we need; we just need to be careful about the final representation.

3. Use a reasonable set of criteria to rank the goodness of fit of the fitted distributions
to the data observed.

4. If any of the top-ranked models are terribly inconsistent with the assumed range
for source of randomness, rule them out.

5. Use a reasonable set of criteria to determine if the best of the fitted distributions
is a reasonable representation for the data.

6. If the best of the fitted distributions provides a reasonable representation of the
data, use it in the simulation. Otherwise, use an empirical distribution to represent
the data directly.

Each authority on simulation input modeling might have a different "reasonable" set
of criteria to apply in the steps outlined above, and the criteria applied might well depend
on the type, quantity, and quality of data available. The following general rules of thumb
should guide use of the goodness-of-fit options found in simulation input software:

1. Consider a number of measures of goodness of fit rather than a single one, since
each goodness-of-fit measure will be unreliable in some cases.

2. Do not depend on goodness-of-fit measures that rely overly on "clean" data sam-
ples (e.g., those relatively free of the problems mentioned in Section 3.3) or on
user-supplied parameters (such as histogram configurations), since such measures
can provide inconsistent results.

3.5 UNlVARlATE IID CASE WITH DATA 77

3.5.3 Practical Application of Standard Distributions and Flexible
Families

Distributions are "fit" to data sets by specifying values for their parameters with the
intent of making the distribution "resemble" the data. As an introductory example, con-
sider an exponential distribution that takes on values larger than zero [e.g., the location
(threshold) parameter is zero] and has a scale parameter f l that represents the mean of
the distribution. If we collect a sample of values, an intuitive estimator (formula) for /3 is
that of the sample average. (This estimator is also appropriate if we apply more sophis-
ticated arguments than intuition.) Statisticians have long considered desirable methods
for estimating parameters of distributions, and we can use their results, although the
context in which statisticians typically consider the problem differs from ours in one
important respect: they take the liberty of assuming that they know the form of the
underlying distribution. The names attributed by statisticians to parameter estimators
for particular distributions at times reflect the method used to derive the estimator (e.g.,
maximum likelihood, method of moments, or quantile), or one of the properties associ-
ated with the derived estimator (e.g., best linear unbiased estimator, uniformly minimum
variance unbiased estimator) (see ref. 9). In general, we recommend use of maximum
likelihood estimators (MLEs). When for technical reasons they are unavailable or have
undesirable properties, quantile estimators are often used. For many standard distribu-
tions MLEs are not available in explicit forms (e.g., the estimate is the sample average),
so iterative solution methods must be employed to find appropriate numerical solutions.

Distributions were fitted to the repair-time data, using a simulation input processing
package with the assumption that the range of fitted models should be consistent with
positive repair times. A total of 21 models were fitted to the data, and according to the
software's internal algorithm for ranking the fitted models, a lognormal distribution pro-
vided the best fit. To provide a contrast to this model, an exponential distribution with
a much lower ranking will also be shown in the example plots. In all cases the lognor-
mal distribution produces prototypical "good-looking" plots, whereas the exponential
produces prototypical "bad-looking" plots.

Once all of the parameters of a distribution have been specified, the distribution can
be compared with the sample observed. Many readers may be familiar with goodness-
of-fit tests in the form discussed in statistics courses (e.g., application of the chi-squared
goodness-of-fit test) and thus may be predisposed to make exclusive use of such methods
to compare fitted models with the sample. For the following reasons, in the context of
simulation input modeling, these classical goodness-of-fit methods are not completely
appropriate for and/or definitive in assessing quality of fit; therefore, more heuristic
graphical methods will be emphasized:

1. Classical statistical theories and methods have different premises than those (com-
monly) appropriate to simulation. As shown in Figure 3.27, classical goodness-of-fit
testing assumes that an appropriate (single) probability distribution is hypothesized and
then data are collected in a manner appropriate to the hypothesis. In simulation input
modeling, however, we almost always select multiple candidate distributions on the
basis of a sample that we collected previously. (Some statisticians have considered a sit-
uation that lies between the procedural extremes stated. For example, they might assume
it is known that data are produced by one of k listed distributions and investigate statis-
tical procedures for inferring which of the distributions is the true parent population.)
Classical goodness-of-fit testing may or may not hypothesize (before data collection)

78 INPUT DATA ANALYSIS

Hypothesis 0
2. Data

Collection

Statistical Modd

4. Goodness-cf-Fit Testing

Figure 3.27 Steps in classical goodness-of-fit testing.

some known parameter values, with the remaining being nuisance parameters that must
be estimated from the data. In contrast, in simulation input modeling, most if not all
parameters are typically estimated from the data (we might assume values for location
parameters for nonnegative continuous distributions, for example). Because we make
much "looser" assumptions than in classical goodness-of-fit testing, we must assume
that goodness-of-fit test results are only approximate. This approximate nature is com-
pounded whenever we consider distribution and/or parameter estimation combinations
for which there are no specific classical goodness-of-fit results; this topic is considered
more extensively below.

2. When performing classical goodness-of-fit testing we are attempting to ascertain
the truthfulness of the distributional hypothesis-we will either reject or fail to reject
the hypothesis that the (single, specified) distribution is a "true" representation of how
nature behaves. In simulation input modeling, the specific distribution (e.g., gamma)
typically is not especially important to us; what is essential is that we have some rea-
sonable representation of the underlying source of randomness-we cannot simply state
that all input models were rejected.

3. The operational characteristics of classical goodness-of-fit tests do not include a
provision for detecting "good-enough" fits, which might be appropriate in a simulation
context. As the sample size increases, the sensitivity of a classical goodness-of-fit test
to even minute differences increases, to the point that for large sample sizes (e.g., 1000
values) a goodness-of-fit test might reject a candidate model that by all other measures
appears to provide a good representation of the data.

Due to the highlighted problems with goodness-of-fit tests, we often rely on more
heuristic methods to assess the quality of fit, both in a relative sense (e.g., which is
best) and an absolute sense (e.g., whether it is good enough). We now briefly consider
a variety of heuristics that can be used to assess quality of fit and discuss their particu-
lar benefits and difficulties. We then consider formal goodness-of-fit tests that might be
implemented in input analysis software. We consider only continuous random variables
in the following discussion because they are much more frequently encountered in sim-
ulation practice; not all of these heuristics are available for discrete random variables.

A histogram is an estimate of the underlying probability distribution's density func-
tion. It is therefore reasonable to compare the estimate to the density function of a fitted
model by plotting the density over the histogram. (As a practical matter, although his-

3.5 UNlVARlATE IID CASE WITH DATA 79

Figure 3.28 Lognormal (good fit) and exponential (bad f i t) densities plotted over histogram.

tograms usually represent sample counts, proportions, or percentages, they can easily
be converted to density units, and vice versa.) In Figure 3.28 we see densities for two
distributions plotted over a histogram. As an alternative, one can determine the fre-
quency attributed to each histogram interval by the fitted model and compare the the-
oretical (expected) probabilities (or counts) with those observed in the sample. Figure
3.29 shows a comparison between the interval counts from the sample and the expected
counts from the lognormal and the exponential distribution. These are intuitive graphs
that are immediately appealing. However, they suffer from the shortcoming that sim-
ple changes in the histogram configuration can drastically change the plot's appearance
and subsequent interpretation of goodness of fit. (This is especially true for small sam-
ples and those samples where values have discrete attributes due to limited accuracy
in value recording.) Single-valued composites of the quality of fit can be constructed for

Figure 3.29 Lognormal (good fit) and exponential (bad fit) frequency comparison.

Figure 3.30 Lognormal (good fit) and exponential (bad fit) distribution function plots.

frequency plots, although their use should be limited due to the extreme variability in
results with different histogram configurations.

Many heuristics are derived from consideration of the sample and fitted model distri-
bution functions. Figure 3.30 shows the empirical cumulative distribution function F,(.)
[equation (3)] compared with the cumulative distribution functions of the two models.
In general, cumulative distribution functions from standard distributions will have an S-
shape, consistent with a single-mode density function [it might be noted that the exponen-
tial cumulative distribution function looks like the top half only of an S (as shown in Fig-
ure 3.30) and the uniform cumulative distribution function is a flattened s] . A number of
goodness-of-fit tests are derived from comparisons of the empirical and model distribu-
tion functions; the most familiar might be the Kolmogorov-Smirnov test discussed below.
Such tests provide simple numerical representations of the graphical comparison that can
serve as the basis for ranking alternative candidate distributions. A number of alternative
heuristics can be derived from the simple distribution function plot.

The simplest heuristic plots the differences ("errors") between the empirical and
model cumulative probabilities at each of the unique observations. The x-axis remains
the same as in the original plot, but the y-axis is changed to reflect positive and negative
differences that necessarily must be smaller in absolute value than 1. A reference line
corresponding to a difference of zero is very useful. In general, the closer the plot is to
the reference line, the better the quality of fit. However, no plot will be perfect, so some
standard should be derived that can be used to determine whether a particular differ-
ence is "large." Reasonable limit values can be derived from a number of goodness-of-fit
theoretical results; these limits will, in general, narrow as the sample size increases. In
Figure 3.31 we show the differences between the empirical distribution function and
the distribution functions for the fitted distributions; the lines at approximately *0.13
are limit values provided by the analysis software. It is possible to derive single-valued
composites of the graphed results, such as the largest absolute difference or the average
absolute difference, that are suitable for use in ranking candidate models. This is one
of the author's favorite plots for assessing both relative and absolute aspects of quality
of fit.

3.5 UNlVARlATE IID CASE WITH DATA 81

Figure 3.31 Distribution function differences for lognormal (good fit) and exponential (bad fit).

A P-P (probability-probability) plot compares the probabilities derived from the
empirical distribution and the fitted model; for each unique and ordered observation
xk we plot

abscissa = Fn(xk) ordinate = FM(xk) (4)

where FM(.) is the distribution function of the model under consideration. It is natural
to plot these points on a grid with both axes ranging from zero to 1 and to include a
reference diagonal line from (0,0) to (1,1), or, as will be shown in Figure 3.32, that
corresponds to the sample probability range (1 - i) / n to (n - i) /n. When the model
and sample correspond closely, the x-values will be close together and thus close to
the diagonal line. In general, the closer the resulting plot to the reference diagonal line,
the better the quality of fit. Due to their construction, P-P plots are most sensitive to
differences in the "centers" of the distributions (e.g., not the extremes or "tails"). P-P
plots for the fitted lognormal and exponential distributions are shown in Figure 3.32.
It is possible to derive numerical measures of the closeness of the plotted points to the
reference line, either from a regression framework or from a simple spatial interpretation
of the graph. In fact, goodness-of-fit tests can thus be derived from these plots.

A Q-Q (quantile-quantile) plot compares x-values (quantiles) derived from the
empirical distribution and the fitted model; for each unique and ordered observation
xk we plot

abscissa = xk ordinate = FG' [F,(xk)] (5)

where FG' (.) is the inverse distribution function of the model under consideration:

for 0 < p < I if x = ~ i ' (p) , then p = FM(x) (6)

It is natural to plot these points on a grid with both axes having the same range, cor-

82 INPUT DATA ANALYSIS

Sample Value

Figure 3.32 P-P plots for the lognormal (good fit) and exponential (bad fit)

responding to the minima/maxima of the extreme sample and model x-values, and to
include a reference diagonal line. When the model and sample correspond closely, the
quantities will be close together and thus close to the diagonal line. In general, the
closer the resulting plot to the reference diagonal line, the better the quality of fit. Due
to their construction, Q-Q plots are most sensitive to differences in the "tails" of the
distributions. In general, the upper tail corresponding to large values will be the source
of the largest problems for these plots. It is common in simulation to have distributions
with relatively "thick" upper tails (e.g., one where there is significant probability in the
upper tail, which contributes significantly to the expected value). Random samples from
such distributions can produce very bad Q-Q plots, due to a few of the largest values.
In general, we recommend being cautious about Q-Q plots: If they look "good," take
that as confirming evidence of good quality of fit; if they look "bad," do not deem the
model to be a bad model on the basis of this plot alone, particularly if the problems arise
from just a few upper tail points. In Figure 3.33 we see Q-Q plots for the two distribu-
tions. Note that in general the plot for the lognormal is very close to the reference line,
which extends over the range of the observations and deviates only at the very upper
tail. This is a remarkably good-looking Q-Q plot for a thick-tailed distribution like the
lognormal. Although single-valued numerical composites of the plot can be derived for
the purposes of ranking, these typically are not converted into goodness-of-fit tests.

As indicated earlier in the section, the author values heuristics over goodness-of-
fit tests when performing simulation input modeling. Yet these tests have their uses
when properly applied and interpreted. Unfortunately, goodness-of-fit tests are not given
reasonable treatment in many statistical texts and are sometimes misimplemented by
software developers. For these reasons, a rather detailed discussion of goodness-of-fit
tests is included for the interested reader.

Goodness-of-fit tests are specialized forms of hypothesis tests in which the null hypo-
thesis specifies the distribution that produced the data (e.g., "the data were produced by
a normal distribution"). The strongest null hypothesis used in goodness-of-fit testing,
and unfortunately the only one typically covered in most introductory statistics courses,
states that we not only know the distribution that produced the data but also the param-

3.5 UNlVARlATE IID CASE WITH DATA 83

0.158 25.158 50.158 75.158 100,158 125.158 150.158

Sample Value

Figure 3.33 Q-Q plots for the lognormal (good lit) and exponential (bad fit).

eters o f the distribution (e.g., "the data were produced by a normal distribution with
known mean and known standard deviation son) W e will consider this strong hypo-
thesis in detail before considering more realistic weaker alternatives.

The operational procedure o f a goodness-of-fit test is to calculate a function o f the
data observed and the specified model, T (x) , called a test statistic, and then to compare
the value o f the test statistic to what we call a critical value: If the statistic exceeds
the critical value, there is sufficient evidence to reject the stated null hypothesis. As in
most statistical testing, a goodness-of-fit test cannot prove that a sample was produced
by a specified distribution; we can only state that there was insufficient evidence to
reject such a hypothesis. This process can be rationalized as follows: Goodness-of-fit
test statistics are usually defined to measure errors between sample and model, such
that the larger the statistic value, the worse the error and correspondingly, the worse the
fit. Because T (x) is a function o f random variables (e.g., the sample values), it too is
a random variable. Even when the hypothesis is true, there will be measurable errors
between the observations and the parent population, and therefore in a test we must
make some allowance for the natural occurrence o f such errors: W e should dismiss the
reasonableness o f a hypothesis only when faced with extreme errors. Since the distribu-
tion o f the original sample values is completely known, it is often possible to derive an
exact distribution for T (x) , which typically depends on the sample size only; however,
it may also depend on the hypothesized distribution. W e can therefore set probabilistic
limits on the values o f T (x) that are acceptable-when a "level a test" is performed,
we allow T (x) to range over 100(1 - a) % of its range before rejecting the hypothesis.
Here a is the probability that we reject the hypothesis even though it is true, called
[ype I error. Since in goodness-of-fit testing T (x) is typically a nonnegative function,
there is single critical value (upper limit) on T (x) that is employed [the convention for
unbounded functions is to distribute 100(a/2)% into each tail].

W e can weaken the null hypothesis to make it more reasonable by removing the
assumption that we know the distribution's parameter values. This creates the immedi-
ate operational dilemma o f how to calculate T (x) , since the parameters o f a specified

84 INPUT DATA ANALYSIS

distribution are required. For the test results discussed in this chapter, statisticians have
assumed that maximum likelihood estimators (or at least estimators with similar prop-
erties) replace the unknown parameters in the statistic, which we now denote T(x ,8)
where 8 represents the estimated parameters. The introduction of parameter estimators
severely complicates the underlying problem for statisticians, because the parameter
estimators themselves are random variables that must be accounted for when consider-
ing the distribution of T(x,f?). In general, the distribution of T(x, 8) is not the same as
that of T(x); it typically depends on the distribution being considered as well as values
of the unknown parameters (we shall see one major exception). The aforementioned
complications have proved to be difficult obstacles for statisticians, so there are useful
results for relatively few distributions.

Before continuing, it should be emphasized that in simulation input modeling we
typically violate even the weak null hypothesis if we do not have a fixed single hypo-
thesized distribution choice before data collection. Even when we ignore this difficulty,
an additional problem arises in the normal course of analyzing data: the multiple com-
parisons problem. Test results are not independent of each other if we perform multiple
goodness-of-fit tests, regardless of whether we perform different tests with the same dis-
tributional null hypothesis or the same test with different distributional null hypotheses.
The lack of independence violates the desired test level on each of the tests performed.

We now consider three general goodness-of-fit tests and summarize the availability
of appropriate critical values. The most commonly encountered goodness-of-fit tests are
based on histograms intervals (e.g., chi-square) or on the empirical distribution function
(e.g., Kolmogorov-Smirnov). In a chi-squared goodness-of-fit test we divide the range
of the random variable under consideration into rn intervals:

(note that the interval number is taken to be the upper bound index, so we have rn
intervals numbered from 1 to m). The simplest way to create such intervals is to start
with a set of histogram intervals and to extend the first and last intervals to cover the
entire range of the random variable. Here all but possibly the first and last intervals
will share a common width W = Ck - C k - 1; be aware that the first and last intervals
might be infinite in size in order to match the overall range of the distribution under
consideration. For each interval we can count the number of observations falling into
the interval, which we can denote Ok. The number of values that we might "expect"
from the random variable is the number of sample values times the probability that
the random variable places into the interval, which we can denote Ek. The chi-squared
goodness-of-fit test statistic is then calculated as the sum of the error terms:

We can consider the numerator to be a squared-error term and the denominator to be a
weight that is inversely proportional to the number of "expected" points; the most weight
is placed on intervals corresponding to "rare" events! Clearly, changing the intervals will
alter both the Ok and Ek values, and thus the overall statistic can vary considerably and
unpredictably. Under the strong null hypothesis, when certain conditions (especially

3.5 UNlVARlATE IID CASE WITH DATA 85

IID) are met, the test statistic follows a chi-squared distribution with (m - 1) degrees of
freedom. This holds true for any choice of distribution. which makes this test universally
applicable.

The distributional result for the test statistic under the weaker null hypothesis is not
quite as straightforward. Here we know that the distribution of the test statistic, when
certain conditions are met, is bounded between two chi-squared distributions, one with
(m 1) degrees of freedom and the other with (m - p 1) degrees of freedom, where p
is the number of estimated parameters. This result also holds regardless of the choice
of distribution, which makes the test uniformly applicable.

For continuous distributions it is possible to choose the intervals in such a way as
to make each of the intervals hold exactly the same number of "expected" points by
using the interval bounds:

(e.g., for m = 10 intervals, we use Ck values that correspond to the Oth, loth, 20th,
. . . , 90th, and 100th percentiles of the distribution under consideration). Although use
of such '.equal-probable" intervals can help to prevent the undue influence of intervals
corresponding to "rare" events, it cannot change the inherent variability of the test-the
test statistic can vary considerably with minor changes in the number of equally probable
intervals. In the author's experience, it is generally possible to produce conflicting test
results with any data sample and model, simply by changing interval configurations
(even with equally probable intervals), and thus any strategy that attempts to compare
the chi-squared goodness-of-fit test results of different models should not be trusted
implicitly.

There has been serious consideration in the statistical literature of the conditions
under which chi-squared goodness-of-fit tests are reliable. These results are summarized
by Moore [lo], who proposes a number of guidelines for application of the test. In
general, equal-probable intervals should be used, and the "expected" number of model
points per interval should be reasonable (say, 3 to 5) . Even when these conditions are
met, the test suffers from some well-known deficiencies. Since we are aggregating data
into intervals, we are losing information; so other goodness-of-fit tests that do not use
intervals are preferable (statistically more powerful). As mentioned in the preceding
paragraph, any result that depends on histogram intervals can produce vastly different
results when the interval configuration changes. The strongest advantage to the test is
its universal applicability.

The Kolmogorov-Smirnov (K-S) and Anderson-Darling (A-D) tests both directly
compare a hypothesized model's distribution function to the discontinuous empirical
distribution function Fs(.) [Equation (2)]. Despite their disparate origins, both tests can
be calculated by considering n sample points. We will follow the notation of Stephens
[l I], who defines

and then uses a parenthetical subscript, q k , , to indicate the values in sorted order.
The K-S test looks for the supremum of the differences between the two distribution

functions. As shown in Figure 3.34, at each sample value the empirical distribution has

86 INPUT DATA ANALYSIS

Figure 3.34 Kolmogorov-Smimov test statistic components

a discontinuity, and therefore there is both a "from the left" difference and a "from the
right" difference at each point to consider. The test statistic can be calculated as

where

Under the strong null hypothesis there is a single distributional result for TKS(x) that
applies to all hypothesized distributions; Stephens provides a handy approximation
method that depends only on the sample size.

This test result cannot be extended to the case where parameters are estimated, so
each distributional choice in a weak hypothesis must be considered separately (although
some results can be applied to distributions that have functional relationships, such as
the normal/lognormal or extreme value/Weibull). Stephens presents a thorough review
of the critical value tables available and provides a number of handy approximation
methods.

The A-D test statistic is defined as a weighted average of the squared difference
between the distribution functions:

" [Fdx) - FM(X)I~ I-" f ~ (x) d x
FM(x)[l - FM(x)]

The A-D statistic places greatest emphasis on differences found in the tails. Fortunately,
the test statistic can be calculated using the much simpler formula:

Under the strong null hypothesis the distribution of the test statistic varies little for
samples of size at least 5. As with the K-S goodness of fit test, critical values must be

3.5 UNlVARlATE IID CASE WITH DATA 87

determined for each distributional assumption under the weak null hypothesis. Stephens
summarizes the available results for the A-D test. It is generally accepted that the A-D
test provides better results than the K-S when appropriate critical values for both tests
are available.

It is possible to use goodness-of-fit test statistic values as heuristic indicators of fit,
since the statistics are designed to measure the errors between fitted models and the data
available; the author relies heavily on test statistic values when comparing the relative
quality of fit afforded by alternative distributions. Note that simulation and classical
statistical practices diverge in this case. A ranking procedure based on goodness-of-
fit statistic values is statistically improper unless the critical values applicable to each
distribution are identical; a statistician would prefer to compare the observed levels of
the tests (the largest level at which the test does not reject the null hypothesis).

There are a number of nongraphical heuristics that can be used to compare candidate
distributions and to help determine whether a particular fitted distribution provides a
reasonable fit. Log-likelihood functions, which are central to the maximum likelihood
parameter estimation method, are defined for continuous distributions:

These values can be calculated for each candidate distribution and used as a ranking
mechanism. The log-likelihood function comparisons have natural appeal to a statisti-
cian and work very well in a simulation context. Characteristics of fitted distributions
such as quantiles, probabilities of exceeding specific values, means, and variances can
be compared with sample values or with reference values. The author believes that it
is essential to check such values when assessing distributional reasonableness.

3.5.4 Practical Application of Empirical Distributions

The empirical distribution function Fs(.) defined by equation (2) is applicable only to the
discrete case in a simulation context. For continuous random variables the distribution
function must be modified so that a linear interpolation of distribution values occurs
between the unique observations. (Note that this is actually intuitive if one takes the
sample histogram to be the shape of the empirical density function; constant density in
an interval implies a linear rise in the distribution across the interval.) The simulation-
compatible empirical distribution function for the sample repair times is shown in Figure
3.35.

It is possible to extend one or both tails of an empirical distribution function to
overcome the deficiency of having the limits of the distribution correspond exactly to the
observed sample range. To do so, one or two artificial sample points are added to the list
of unique sample values, which increases the number of points used in the definition of
Fs(.) . This is a reasonable course of action in simulation where nonnegative continuous
models are most common; we would choose as the new lower bound either zero or
a known limit. In Figure 3.36 we show an empirical distribution function extended to
cover the range [O, 1 SO].

The larger the number of unique sample values used in the definition of Fs(.), the
less time efficient will be the corresponding generator used in the running simulation.

Figure 3.35 Standard empirical distribution function.

To minimize the impact of large sample sizes and to provide a degree of smoothing of
the distribution, one can define alternative empirical distributions that aggregate sample
values into intervals just as with the chi-squared test, either with equal width or with
(approximately) equal probability.

One consideration when using continuous empirical distribution functions is that the
expected value of the empirical will not necessarily match the sample mean (due to the
linear interpolation in the intervals). Since the mean value may play an important role
in the simulation, the empirical mean should be assessed for reasonableness.

, 0.7. Empirical using 100 sample values plus 2 endpoints

0 25 50 75 100 125 150
X-Value

Figure 3.36 Extended empirical distribution function.

3.6 APPROACHES FOR HANDLING THE NON-IID CASE

Once the strong assumptions of IID are abandoned, there is very little definitive guidance
available for the simulationist. In fact, for the most part only partial methodologies are
available, and the supporting literature often serves as a demonstration of the method's
usefulness for a specific data set or class of generated data sets. Due to the difficulty of
the underlying statistical issues, few alternative methodologies exist and so comparative
performance reviews are not available.

One of the most promising areas of research is the derivation of methods for esti-
mating and assessing the goodness of fit of models applicable to certain forms of non-
stationary processes. Kuhl et al. [I21 report on methods for fitting a Poisson process
(i.e., exponential interevent times) where the exponential rate function can contain trend
and/or periodicity components. Such components are particularly germane to the simu-
lation of arrival processes to many systems. Once practical methods exist for handling
this case, there is the promise that methods could be developed to handle more com-
plicated interevent models such as distributions with shape parameters (e.g., gamma,
Weibull). It would then be possible to consider comparing the qualities of fit provided
by alternative models for the nonstationary case.

3.7 WHAT TO DO WHEN NO DATA ARE AVAILABLE

Simulation textbooks have very little to say on the topic of what to do when no data are
available. The cause is the vast majority of research in the mainstream statistical and
simulation communities and subsequent software development by vendors concerns the
cases where data ure available. Although unfortunate, the truth is that we do not have
adequate methodologies to handle reliably the case where data are not available. In this
section we consider a few of the general approaches to this situation and discuss their
applicability to simulation practice.

If a simulationist is very fortunate, he or she will be able to apply confidently a
model chosen for a different context or a generally applicable model. The model could
be standard for an industry or company, deduced from stochastic processes results (e.g.,
Poisson process arrivals), based on previous simulation input analyses or derived from
an analysis of data collected from a different system. The parameters of the model
might need to be adjusted to reflect the differing circumstances (e.g., increase the mean
by 10%). The key is that there is sufficient reason to be cnn$dent that the selected
distribution is reasonable for the new context.

If a simulationist is less fortunate, he or she will have access to one or more people
with some expert knowledge of actual or expected behavior. In this situation the simu-
lationist must elicit a number of subjective probability assessments from the expert(s),
which can be difficult to accomplish and often produces unreliable results [I 31. There
are two opposing tendencies that must be balanced by the simulationist. The larger the
number of probability assessments required, the more difficult and error-prone the elic-
itation process, whereas the larger the number of probability assessments available, the
more refined the resulting probability model. The crudest model applicable to this sit-
uation is a uniform distribution, for which subjective assessments of a minimum and
maximum value are required, where the range reflects close to 100% of occurrences.
The uniform distribution represents a noninformative assessment of the likelihood of
different values [14]. If a "central" value such as the mode (most likely) or mean can

90 INPUT DATA ANALYSIS

be elicited, it is possible to derive a triangular distribution, which supplies a more rea-
sonable distributional shape. Although deriving an estimate of the central value typi-
cally proves most difficult for experts, finding a reasonable maximum value is often as
difficult and no less critical. Specification of triangular distributions in this manner is
almost universally recommended by authors of simulation textbooks, despite the fact
that the resulting distribution will be grossly in error unless the true underlying prob-
ability distribution features the triangular shape and lacks a significant upper tail (an
unlikely event). If two percentiles or both "central" values (e.g., mode and mean) can
be assessed, an appropriate beta distribution can often be derived (there are some cases
where the beta is infeasible). The resulting probability distribution is intuitively more
appealing than the triangular, since the shape of a beta distribution can be dramatically
different than that of a triangle. However, because this method involves use of only
four subjectively assessed values, there is no guarantee that the resulting model would
be reasonable, even were accurate values available. Practical experience suggests that
many experts have difficulty producing the required information; further, there is often
significant variation in answers produced by multiple experts. In the rare situation where
a reliable and cooperative expert is available, other distributions can be "fitted" visually
using simulation input software. This might involve manipulation of a particular distri-
bution's parameters or deriving a special form of empirical distribution function from
assessments of multiple percentiles or probabilities (e.g., a Bezier distribution [IS]).

REFERENCES

1. Johnson, N. L., S. Kotz, and A. W. Kemp (1992). Univariate Discrete Distributions, 2nd ed.,
Houghton Mifflin, Boston.

2. Johnson, N. L., S. Kotz, and N. Balaknshnan (1994). Continuous Univariate Distributions,
Vol. 1, 2nd ed., Houghton Mifflin, Boston.

3. Johnson, N. L., S. Kotz, and N. Balakrishnan (1995). Continuous Univariate Distributions,
Vol. 2, 2nd ed., Houghton Mifflin, Boston.

4. D'Agostino, R. B., and M. A. Stephens (1986). Goodness-oflFit Techniques, Marcel Defier,
New York.

5. Nelson, B. L. (1995). Stochastic Modeling: Analysis and Simulation, McGraw-Hill, New
York.

6. Johnson, M. E. (1987). Multivariate Statistical Simulation, Wiley, New York.
7. Vincent, S., and A. M. Law (1995). ExpertFit: total support for simulation input model-

ing, in Proceedings of the 1995 Winter Simulation Conference, C . Alexopoulos, K. Kang,
W. R. Lilegdon, and D. Goldsman, eds. Association for Computing Machinery, New York,
pp. 395401.

8. D'Agostino, R. B. (1986). Graphical analysis, in Goodness-of-Fit Techniques, R. B.
D'Agostino and M. A. Stephens, eds., Marcel Dekker, New York, pp. 7-62.

9. Lehmann, E. L. (1983). Theory of Point Estimation, Wiley, New York.
10. Moore, D. S. (1986). Tests of the chi-squared type, in Goodness-of-Fit Techniques, R. B.

D'Agostino and M. A. Stephens, eds. Marcel Defier, New York, pp. 63-96.
11. Stephens, M. A. (1986). Tests based on EDF statistics, in Goodness-of-Fit Techniques, R. B.

D'Agostino and M. A. Stephens, eds. Marcel Dekker, New York, pp. 97-194.
12. Kuhl, M. E., J. R. Wilson, and M. A. Johnson (1997). Estimating and simulating Poisson pro-

cesses having trends or multiple periodicities, IEE Trunsactions, Vol. 29, No. 3, pp. 201-21 1.
13. Hogarth, R. M. (1980). Judgement and Choice, Wiley, New York.

REFERENCES 91

14. Banks, J., J . S. Carson 11, and B. L. Nelson (1996). I)iscrete-Ewzr S y s r m ~ Sirnulation, 2nd
ed., Prentice Hall, Upper Saddle River, N.J.

15. Wagner, M. A. F., and J. R. Wilson (1996). Recent developments in input modeling with
Bezier distributions, in Prowedings o f the I996 Winter Simulotior~ Conference, J . M . Charnes,
D. J. Morrice, D. T. Brunner, and J. J. Swain, eds., Association for Computing Machinery,
New York, pp. 144-1456

CHAPTER 4

Random Number Generation

PIERRE L'ECUYER
Universite de Montreal

4.1 INTRODUCTION

Random numbers are the nuts and bolts of simulation. Typically, all the randomness
required by the model is simulated by a random number generator whose output is
assumed to be a sequence of independent and identically distributed (IID) U(0 , l) ran-
dom variables [i.e., continuous random variables distributed uniformly over the interval
(0,1)]. These rundom numbers are then transformed as needed to simulate random vari-
ables from different probability distributions, such as the normal, exponential, Poisson,
binomial, geometric, discrete uniform, etc., as well as multivariate distributions and
more complicated random objects. In general, the validity of the transformation meth-
ods depends strongly on the IID U(0, I) assumption. But this aswmption is,fulse, since
the random number generators are actually simple deterministic programs trying to fool
the user by producing a deterministic sequence that looks random.

What could be the impact of this on the simulation results'? Despite this problem,
are there "safe" generators? What about the generators commonly available in system
libraries and simulation packages? If they are not satisfactory, how can we build better
ones? Which ones should be used, and where is the code? These are some of the topics
addressed in this chapter.

4.1.1 Pseudorandom Numbers

To draw the winning number for several million dollars in a lottery, people would gen-
erally not trust a computer. They would rather prefer a simple physical system that
they understand well, such as drawing balls from one or more container(s) to select the
successive digits of the number (as done, for example, by Loto Quebec each week in
Montreal). Even this requires many precautions: The balls must have identical weights
and sizes, be well mixed, and be changed regularly to reduce the chances that some
numbers come out more frequently than others in the long run. Such a procedure is

Handbook of Simulation, Edited by Jeny Banks.
ISBN 0-471-13403-1 O 1998 John Wiley & Sons, Inc

94 RANDOM NUMBER GENERATION

clearly not practical for computer simulations, which often require millions and mil-
lions of random numbers.

Several other physical devices to produce random noise have been proposed and
experiments have been conducted using these generators. These devices include gamma
ray counters, noise diodes, and so on [47, 621. Some of these devices have been com-
mercialized and can be purchased to produce random numbers on a computer. But they
are cumbersome and they may produce unsatisfnctovy outputs, as there may be signif-
icant correlation between the successive numbers. Marsaglia [90] applied a battery of
statistical tests to three such commercial devices recently and he reports that all three
failed the tests spectacularly.

As of today, the most convenient and most reliable way of generating the random
numbers for stochastic simulations appears to be via deterministic algorithms with a
solid mathematical basis. These algorithms produce a sequence of numbers which are
in fact not random at all, but seem to behave like independent random numbers; that
is, like a realization of a sequence of IID U(0, l) random variables. Such a sequence is
called pseudorandom and the program that produces it is called apseudorandom number
generator. In simulation contexts, the term random is used instead of pseudorandom (a
slight abuse of language, for simplification) and we do so in this chapter. The following
definition is taken from L'Ecuyer [62, 641.

Definition 1 A (pseudo)random number generator is a structure 5 = (S, so, T, U, G),
where S is a finite set of states, so E S is the initial state (or seed), the mapping T : S + S
is the transition function, U is a finite set of output symbols, and G : S -, U is the output
function.

The state of the generator is initially so and evolves according to the recurrence s, =
T(s,- I) , for n = 1, 2, 3, At step n, the generator outputs the number u, = G(s,). The
u,, n 2 0, are the observations, and are also called the random numbers produced by the
generator. Clearly, the sequence of states s, is eventually periodic, since the state space
S is finite. Indeed, the generator must eventually revisit a state previously seen; that is,
s, = si for some j > i 2 0. From then on, one must have s,,, = s;,, and u,,, = u;,, for
all n 2 0. The period length is the smallest integer p > 0 such that for some integer T 2 0
and for all n 2 T, sp+, = s,. The smallest T with this property is called the transient.
Often, T = 0 and the sequence is then called purely periodic. Note that the period length
cannot exceed ISI, the cardinality of the state space. Good generators typically have
their p very close to IS((otherwise, there is a waste of computer memory).

4.1.2 A Linear Congruential Generator

Example 1 The best-known and (still) most widely used types of generators are the
simple linear congruential generators (LCGs) [41, 57, 60, 821. The state at step n is an
integer x, and the transition function T is defined by the recurrence

x, = (a x , 1 + c) mod m (1)

where m > 0, a > 0, and c are integers called the modulus, the multiplier, and the
additive constant, respectively. Here, "mod m" denotes the operation of taking the least
nonnegative residue modulo m. In other words, multiply x,- 1 by a, add c, divide the

4.1 INTRODUCTION 95

result by rn, and put x, equal to the remainder of the division. One can identify s, with
x, and the state space S is the set (0, . . . , rn - 1 1. To produce values in the interval [0, I],
one can simply define the output function G by u, = G(x,) = x,/m.

When c = 0, this generator is called a multiplicative linear congruentid generutor
(MLCG). The maximal period length for the LCG is rn in general. For the MLCG it
cannot exceed rn - I , since x, = 0 is an absorbing state that must be avoided. Two pop-
ular values of m are m = z3' - 1 and m = 232. But as discussed later, these values are
too small for the requirements of today's simulations. LCGs with such small moduli
are still in widespread use, mainly because of their simplicity and ease of implemen-
tation, but we believe that they should be discarded and replaced by more robust gen-
erators.

For a concrete illustration, let m = 231 - 1 = 2147483647, c = 0, and a = 16807.
These parameters were originally proposed in [83]. Take xo = 12345. Then

xz = 16,807 x 207,482,415 mod m = 1,790,989,824

X? = 16,807 x 1,790,989,824 mod m = 2,035,175,616

and so on.

4.1.3 Seasoning the Sequence with External Randomness

In certain circumstances one may want to combine the deterministic sequence with
external physical noise. The simplest and most frequently used way of doing this in
simulation contexts is to select the seed so randomly. If so is drawn uniformly from S ,
say by picking balls randomly from a container or by tossing fair coins, the generator
can be viewed as an extensor of randomness: It stretches a short, truly random seed into
a longer sequence of random-looking numbers. Definition 1 can easily be generalized to
accommodate this possibility: Add to the structure a probability distribution p defined
on S and say that .so is selected from p.

In some contexts, one may want to rerandomize the state s, of the generator every
now and then, or to jump ahead from s, to s, +, for some random integer v. For example,
certain types of slot machines in casinos use a simple deterministic random number
generator, which keeps running at full speed (i.e., computing its successive states) even
when there is nobody playing with the machine. Whenever a player hits the appropriate
button and some random numbers are needed to determine the winning combination
(e.g.. in the game of Keno) or to draw a hand of cards (e.g., for poker machines), the
generator provides the output corresponding to its current state. Each time the player

96 RANDOM NUMBER GENERATION

hits the button, he or she selects a v , as just mentioned. This v is random (although not
uniformly distributed). Since typical generators can advance by more than 1 million
states per second, hitting the button at the right time to get a specific state or predicting
the next output value from the previous ones is almost impossible.

One could go further and select not only the seed, but also some parameters of the
generator at random. For example, for a MLCG, one may select the multiplier a at
random from a given set of values (for a fixed m) or select the pairs (a,m) at random
from a given set. Certain classes of generators for cryptographic applications are defined
in a way that the parameters of the recurrence (e.g., the modulus) are viewed as part of
the seed and must be generated randomly for the generator to be safe (in the sense of
unpredictability).

After observing that physical phenomena by themselves are bad sources of random
numbers and that the deterministic generators may produce sequences with too much
structure, Marsaglia [90] decided to combine the output of some random number gen-
erators with various sources of white and black noise, such as music, pictures, or noise
produced by physical devices. The combination was done by addition modulo 2 (bitwise
exclusive-or) between the successive bits of the generator's output and of the binary files
containing the noise. The result was used to produce a CD-ROM containing 4.8 billion
random bits, which appear to behave as independent bits distributed uniformly over the
set {0,1}. Such a CD-ROM may be interesting but is no universal solution: Its use
cannot match the speed and convenience of a good generator, and some applications
require much more random numbers than provided on this disk.

4.1.4 Design of Good Generators

How can one build a deterministic generator whose output looks totally random? Per-
haps a first idea is to write a computer program more or less at random that can also
modify its own code in an unpredictable way. However, experience shows that random
number generators should not be built at random (see Knuth [57] for more discussion
on this). Building a good random number generator may look easy on the surface, but
it is not. It requires a good understanding of heavy mathematics.

The techniques used to evaluate the quality of random number generators can be
partitioned into two main classes: The structural analysis methods (sometimes called
theoretical tests) and the statistical methods (also called empirical tests). An empirical
test views the generator as a black box. It observes the output and applies a statistical
test of hypothesis to catch significant statistical defects. An unlimited number of such
tests can be designed. Structural analysis, on the other hand, studies the mathematical
structure underlying the successive values produced by the generator, most often over
its entire period length. For example, vectors of t successive output values of a LCG
can be viewed as points in the t-dimensional unit hypercube [O,1If . It turns out that all
these points, over the entire period of the generator, form a regular lattice structure. As
a result, all the points lie in a limited number of equidistant parallel hyperplanes, in
each dimension t. Computing certain numerical figures of merit for these lattices (e.g.,
computing the distances between neighboring hyperplanes) is an example of structural
analysis. Statistical testing and structural analysis are discussed more extensively in
forthcoming sections. We emphasize that all these methods are in a sense heuristic:
None ever proves that a particular generator is perfectly random or fully reliable for
simulation. The best they can do is improve our confidence in the generator.

4.2 DESIRED PROPERTIES 97

4.1.5 Overview of What Follows

We now give an overview of the remainder of this chapter. In the next section we portray
our ideal random number generator. The desired properties include uniformity, indepen-
dence, long period, rapid jump-ahead capability, ease of implementation, and efficiency
in terms of speed and space (memory size used). In certain situations, unpredictabil-
ity is also an issue. We discuss the scope and significance of structural analysis as a
guide to select families of generators and choose specific parameters. Section 4.3 covers
generators based on linear recurrences. This includes the linear congruential, multiple
recursive, multiply-with-carry, Tausworthe, generalized feedback shift register gener-
ators, all of which have several variants. and also different types of combinations of
these. We study their structural properties at length. Section 4.4 is devoted to methods
based on nonlinear recurrences, such as inversive and quadratic congruential generators,
as well as other types of methods originating from the field of cryptology. Section 4.5
summarizes the ideas of statistical testing. In Section 4.6 we outline the specifications
of a modern uniform random number package and refer to available implementations.
We also discuss parallel generators briefly.

4.2 DESIRED PROPERTIES

4.2.1 Unpredictability and "True" Randomness

From the user's perspective, an ideal random number generator should be like a black
box producing a sequence that cannot be distinguished from a truly random one. In other
words, the goal is that given the output sequence (uo. ul, . . .) and an infinite sequence
of IID U(0, 1) random variables, no statistical test (or computer program) could tell
which is which with probability larger than 112. An equivalent requirement is that after
observing any finite number of output values, one cannot guess any given bit of any
given unobserved number better than by flipping a fair coin. But this is an impossible
dream. The pseudorandom sequence can always be determined by observing it suffi-
ciently, since it is periodic. Similarly, for any periodic sequence, if enough computing
time is allowed, it is always possible to construct a statistical test that the sequence will
fail spectacularly.

To dilute the goal we may limit the time of observation of the sequence and the
computing time for the test. This leads to the introduction of computational complexi~
into the picture. More specifically, we now consider a ,family of generators, {Gk, k =
1, 2, . . . } , indexed by an integral parameter k equal to the number of bits required to
represent the state of the generator. We assume that the time required to compute the
functions T and G is (at worst) polynomial in k. We also restrict our attention to the
class of statistical tests whose running time is polynomial in k. Since the period length
typically increases as 2" this precludes the tests that exhaust the period. A test is also
allowed to toss coins at random, so its outcome is really a random variable. We say that
the family { G k } is polynomial-time pe$ect if, for any polynomial-time statistical test
trying to distinguish the output sequence of the generator from an infinite sequence of
IID U(0, 1) random variables, the probability that the test makes the right guess does not
exceed 112 + e-", where E is a positive constant. An equivalent requirement is that no
polynomial-time algorithm can predict any given bit of u, with probability of success
larger than 112 + e-k', after observing uo, . . . , u, - 1 , for some E > 0. This setup is based
on the idea that what cannot be computed in polynomial time is practically impossible to

98 RANDOM NUMBER GENERATION

compute if k is reasonably large. It was introduced in cryptology, where unpredictability
is a key issue (see [4, 6, 59, 781 and other references given there).

Are efficient polynomial-time perfect families of generators available? Actually,
nobody knows for sure whether or not such a family exists. But some generator fam-
ilies are conjectured to be polynomial-time perfect. The one with apparently the best
behavior so far is the BBS, introduced by Blum, Blum, and Shub [4], explained in the
next example.

Example 2 The BBS generator of size k is defined as follows. The state space Sk is
the set of triplets (p, q, x) such that p and q are (k/2)-bit prime integers, p + 1 and q + 1
are both divisible by 4, and x is a quadratic residue modulo rn = pq, relatively prime to
rn (i.e., x can be expressed as x = y 2 mod m for some integer y that is not divisible by p
or q). The initial state (seed) is chosen randomly from Sk, with the uniform distribution.
The state then evolves as follows: p and q remain unchanged and the successive values
of x follow the recurrence

x, = x;_ I mod rn.

At each step, the generator outputs the v k least significant bits of x, (i.e., u, = x, mod
2 " k) , where v k I K log k for some constant K. The relevant conjecture here is that with
probability at least 1 - e-k' for some E > 0, factoring m (i.e., finding p or q, given m)
cannot be done in polynomial time (in k). Under this conjecture, the BBS generator has
been proved polynomial-time perfect [4, 1241. Now, a down-to-earth question is: How
large should be k to be safe in practice? Also, how small should be K? Perhaps no one
really knows. A k larger than a few thousands is probably pretty safe but makes the
generator too slow for general simulation use.

Most of the generators discussed in the remainder of this chapter are known not to be
polynomial-time perfect. However, they seem to have good enough statistical properties
for most reasonable simulation applications.

4.2.2 What Is a Random Sequence?

The idea of a truly random sequence makes sense only in the (abstract) framework
of probability theory. Several authors (see, e.g., [57]) give definitions of a random
sequence, but these definitions require nonperiodic infinite-length sequences. When-
ever one selects a generator with a fixed seed, as in Definition 1, one always obtains
a deterministic sequence of finite length (the length of the period) which repeats itself
indefinitely. Choosing such a random number generator then amounts to selecting a
finite-length sequence. But among all sequences of length p of symbols from the set
U , for given p and finite U , which ones are better than others? Let I U (be the cardi-
nality of the set U . If all the symbols are chosen uniformly and independently from U ,
each of the IUIP possible sequences of symbols from U has the same probability of
occurring, namely I U J - P . So it appears that no particular sequence (i.e., no generator)
is better than any other. A pretty disconcerting conclusion! To get out of this dead end,
one must take a different point of view.

Suppose that a starting index n is randomly selected, uniformly from the set { 1, 2,
. . . , p) , and consider the output vector (or subsequence) u, = (u,, . . . , u , , , I) , where

4.2 DESIRED PROPERTIES 99

t << p . Now, u, is a (truly) random vector. We would like u, to be uniformly distributed
(or almost) over the set U' of all vectors of length t . This requires p 2 I U I f , since there
are at most p different values of u, in the sequence. For p < I UI', the set P = {u,,,
1 I n I p] can cover only part of the set U'. Then one may ask I to be uniformly
spread over U'. For example, if U is a discretization of the unit interval [0,1], such as
U = (0, l lm. 2/m. . . . , (m - l)/m) for some large integer m, and if the points of \Ir
are evenly distributed over U', they are also (pretty much) evenly distributed over the
unit hypercube [O, I]'.

Example 3 Suppose that U = (0, 1/100, 2/ 100, . . . , 99/100) and that the period of
the generator is p = lo4. Here we have (U / = 100 and p = (UI2. In dimension 2, the
pairs u,, = (u,, u,,+ 1) can be uniformly distributed over u 2 , and this happens if and only
if each pair of successive values of the form (i/ 100, j/ IOO), for 0 < i, j < I00 occurs
exactly once over the period. In dimension t > 2, we have I UI' = lo2' points to cover
but can cover only lo4 of those because of the limited period length of our generator.
In dimension 3, for instance, we can cover only 104 points out of lo6. We would like
those lo4 points that are covered to be very uniformly distributed over the unit cube
[O, I]'.

An even distribution of P over U t , in all dimensions t , will be our basis for discrim-
inating among generators. The rationale is that under these requirements, subsequences
of any r successive output values produced by the generator, from a random seed, should
behave much like random points in the unit hypercube. This captures both unifwmitv
and independence: If u, = (u,, , . . . , u, +, _) is generated according to the uniform dis-
tribution over [O, I] ' , the components of u, are independent and uniformly distributed
over [0,1]. This idea of looking at what happens when the seed is random, for a given
finite sequence, is very similar to the cunning ensemble idea of Compagner [I 1, 121,
except that we use the framework of probability theory instead.

The reader may have already noticed that under these requirements, P will not look
at all like a random set of points, because its distribution over U' is too even (or
superuniform, as some authors say [116]). But what the foregoing model assumes is
that only a few points are selected at random from the set I. In this case, the best one
can do for these points to be distributed approximately as IID uniforms is to take P
superuniformly distributed over U'. For this to make some sense, p must be several
orders of magnitude larger than the number of output values actually used by the sim-
ulation.

To assess this even distribution of the points over the entire period, some (theoretical)
understanding of their structural properties is necessary. Generators whose structural
properties are well understood and precisely described may look less random, but those
that are more complicated and less understood are not necessarily better. They may
hide strong correlations or other important defects. One should avoid generators without
convincing theoretical support. As a basic requirement, the period length must be known
and huge. But this is not enough. Analyzing the equidistribution of the points as just
discussed, which is sometimes achieved by studying the lattice structure, usually gives
good insight on how the generator behaves. Empirical tests can be applied thereafter,
just to improve one's confidence.

100 RANDOM NUMBER GENERATION

4.2.3 Discrepancy

A well-established class of measures of uniformity for finite sequences of numbers are
based on the notion of discrepancy. This notion and most related results are well covered
by Niederreiter [102]. We only recall the most basic ideas here.

Consider the N points u, = (u,, . . . , u , + ~ - I) , for n = 0, . . . , N - 1 , in dimension
t, formed by (overlapping) vectors of t successive output values of the generator. For
any hyper-rectangular box aligned with the axes, of the form R = n;=, [a,, o,), with
0 I a, < 0, I 1, let I(R) be the number of points u, falling into R, and V (R) =

(0, - aj) be the volume of R. Let be the set of all such regions R. and

I D:) = max V (R) -
R E

This quantity is called the t-dimensional (extreme) discrepancy of the set of points {uo,
. . . , UN- 1 }. If we impose aj = 0 for all j , that is, we restrict R to those boxes which have
one corner at the origin, then the corresponding quantity is called the star discrepancy,
denoted by D:"). Other variants also exist, with richer R.

A low discrepancy value means that the points are very evenly distributed in the unit
hypercube. To get superuniformity of the sequence over its entire period, one might want
to minimize the discrepancy D!) or D,*(') for t = 1, 2, A major practical difficulty
with discrepancy is that it can be computed only for very special cases. For LCGs, for
example, it can be computed efficiently in dimension t = 2, but for larger t , the comput-
ing cost then increases as O(Nt). In most cases, only (upper and lower) bounds on the
discrepancy are available. Often, these bounds are expressed as orders of magnitude as a
function of N, are defined for N = p , and/or are averages over a large (specific) class of
generators (e.g., over all full-period MLCGs with a given prime modulus). Discrepancy
also depends on the rectangular orientation of the axes, in contrast to other measures
of uniformity, such as the distances between hyperplanes for LCGs (see Section 4.3.4).
On the other hand, it applies to all types of generators, not only those based on linear
recurrences.

We previously argued for superuniformity over the entire period, which means seek-
ing the lowest possible discrepancy. When a subsequence of length N is used (for
N << p), starting, say, at a random point along the entire sequence, the discrepancy
of that subsequence should behave (viewed as a random variable) as the discrepancy of
a sequence of IID U(O,1) random variables. The latter is (roughly) of order o(N-' /~)
for both the star and extreme discrepancies.

Niederreiter [I021 shows that the discrepancy of full-period MLCGs over their entire
period (of length p = m- I), on the average over multipliers a, is of order O(m-'(logm)'
log log(m+ 1)). This order is much smaller (for large m) than ~ (m - ' / ~) , meaning super-
uniformity. Over small fractions of the period length, the available bounds on the dis-
crepancy are more in accordance with the law of the iterated logarithm [loo]. This is
yet another important justification for never using more than a negligible fraction of the
period.

Suppose now that numbers are generated in [0, 11 with L fractional binary digits.
This gives resolution 2-L, which means that all u,'s are multiples of 2-L. It then follows
[I021 that D;") I 2-L for all t 2 1 and N 2 1. Therefore, as a necessary condition for
the discrepancy to be of the right order of magnitude, the resolution 2-L must be small

4.2 DESIRED PROPERTIES 101

enough for the number of points N that we plan to generate: 2-L should be much smaller
than N - ' / ~ . A too coarse discretization implies a too large discrepancy.

4.2.4 Quasi-Random Sequences

The interest in discrepancy stems largely from the fact that deterministic error bounds
for (Monte Carlo) numerical integration of a function are available in terms of D:)
and of a certain measure of variability of the function. In that context, the smaller the
discrepancy, the better [because the aim is to minimize the numerical error, not really to
imitate IID U(0, 1) random variables]. Sequences for which the discrepancy of the first
N values is small for all N are called low-discrepancy or quusi-random sequences [102].
Numerical integration using such sequences is called quusi-Monte Curlo integration. To
estimate the integral using N points, one simply evaluates the function (say, a function
of t variables) at the first N points of the sequence, takes the average, multiplies by
the volume of the domain of integration, and uses the result as an approximation of the
integral. Specific low-discrepancy sequences have been constructed by Sobol', Faure,
and Niederreiter, among others (see ref. 102). Owen [I061 gives a recent survey of their
use. In this chapter we concentrate on pseudorandom sequences and will not discuss
quusi-random sequences further.

4.2.5 Long Period

Let us now return to the desired properties of pseudorandom sequences, starting with
the length of the period. What is long enough? Suppose that a simulation experiment
takes N random numbers from a sequence of length p. Several reasons justify the need
to take p >> N (see, e.g., refs. 21, 64, 86, 102, 112). Based on geometric arguments,
Ripley [I 121 suggests that p >> N~ for linear congruential generators. The papers [75,
791 provide strong experimental support for this, based on extensive empirical tests.
Our previous discussion also supports the view that p must be huge in general.

Period lengths of 2'2 or smaller, which are typical for the default generators of many
operating systems and software packages, are unacceptably too small. Such period lengths
can be exhausted in a matter of minutes on today's workstations. Evenp = 264 is a relatively
small period length. Generators with period lengths over 2200 are now available.

4.2.6 Efficiency

Some say that the speed of a random number generator (the number of values that it
can generate per second, say) is not very important for simulation, since generating the
numbers typically takes only a tiny fraction of the simulation time. But there are several
counterexamples, such as for certain large simulations in particle physics [26] or when
using intensive Monte Carlo simulation to estimate with precision the distribution of a
statistic that is fast to compute but requires many random numbers. Moreover, even if a
fast generator takes only, say, 5% of the simulation time, changing to another one that is
20 times slower will approximately double the total simulation time. Since simulations
often consume several hours of CPU time, this is significant.

The memory size used by a generator might also be important in general, especially
since simulations often use several generators in parallel, for instance to mainlain syn-
chronization for variance reduction purposes (see Section 4.6 and refs. 7 and 60 for
more details).

102 RANDOM NUMBER GENERATION

4.2.7 Repeatability, Splitting Facilities, and Ease of Implementation

The ability to replicate exactly the same sequence of random numbers, called repeatabil-
ity, is important for program verification and to facilitate the implementation of certain
variance reduction techniques [7, 55, 60, 1131. Repeatability is a major advantage of
pseudorandom sequences over sequences generated by physical devices. The latter can
of course be stored on disks or other memory devices, and then reread as needed, but
this is less convenient than a good pseudorandom number generator that fits in a few
lines of code in a high-level language.

A code is said to be portable if it works without change and produces exactly the
same sequence (at least up to machine accuracy) across all "standard" compilers and
computers. A portable code in a high-level language is clearly much more convenient
than a machine-dependent assembly-language implementation, for which repeatability
is likely to be more difficult to achieve.

Ease of implementation also means the ease of splitting the sequence into (long) dis-
joint substreams and jumping quickly from one substream to the next. In Section 4.6 we
show why this is important. For this, there should be an efficiency way to compute the
state s,,, for any large v , given s,. For most linear-type generators, we know how to do
that. But for certain types of nonlinear generators and for some methods of combination
(such as shufling), good jump-ahead techniques are unknown. Implementing a random
number package as described in Section 4.6 requires efficient jump-ahead techniques.

4.2.8 Historical Accounts

There is an enormous amount of scientific literature on random number generation. Law
and Kelton [60] present a short (but interesting) historical overview. Further surveys and
historical accounts of the old days are provided in refs. 47, 53, and 119.

Early attempts to construct pseudorandom number generators have given rise to all
sorts of bad designs, sometimes leading to disatrous results. An illustrative example
is the middle-square method, which works as follows (see, e.g., ref. 57, 60). Take a
b-digit number x i _ 1 (say, in base 10, with b even), square it to obtain a 2b-digit number
(perhaps with zeros on the left), and extract the b middle digits to define the next number
xi. To obtain an output value u, in [0,1), divide x; by lob. The period length of this
generator depends on the initial value and is typically very short, sometimes of length
1 (such as when the sequence reaches the absorbing state x; = 0). Hopefully, it is no
longer used. Another example of a bad generator is RANDU (see G4 in Table I).

4.3 LINEAR METHODS

4.3.1 Multiple-Recursive Generator

Consider the linear recurrence

where the order k and the modulus m are positive integers, while the coeflcients a , , . . . ,
ak are integers in the range {-(m - l) , . . . , m - 1) . Define Z, as the set (0, 1, . . . ,
m - 1] on which operations are performed modulo m. The state at step n of the multi-

ple recursive generator (MRG) [57, 62, 1021 is the vector s, = (x,, . . . , x , + k I)
E 7';. The output function can be defined simply by u,, = G(s,) = x,/rn, which gives
a value in [0,1], or by a more refined transformation if a better resolution than Ilrn is
required. The special case where k = 1 is the MLCG mentioned previously.

The characteristic polynomial P of (2) is defined by

The maximal period length of (2) is p = ink - 1, reached if and only if rn is prime and
P is a primitive polynomial over %,, identified here as the finite field with rn elements.
Suppose that rn is prime and let r = (rnk - l) / (r n 1). The polynomial P is primitive over
%, if and only if it satisfies the following conditions, where everything is assumed to
be modulo m (see ref. 57)

(a) [(- 1)" ' ~ k] ' ~ ')I4 Z 1 for each prime factor q of rn - I
(b) zr mod P(z) = (1)'+ 'uk

(c) f"'4 mod P(z) has degree > 0 for each prime factor q of r, I < q < r

For k = I and u = a , (the MLCG case), these conditions simplify to a f 0 (mod rn) and
a''" - l)/4 Z I (mod rn) for each prime factor q of m I. For large r, finding the factors q to
check condition (c) can be too difficult, since it requires the factorization of r. In this case,
the trick is to choose rn and k so that r is prime (this can be done only for prime k) . Testing
primality of large numbers (usually probabilistic algorithms, for example, as in [73, 1 1 I])
is much easier than factoring. Given rn, k, and the factorizations of rn - 1 and r, primitive
polynomials are generally easy to find, simply by random search.

If rn is not prime, the period length of (2) has an upper bound typically much lower
than rnk - 1. For k = 1 and rn = 2@, e 2 4, the maximum period length is 2e-2 , which
is reached if a1 ; 3 or 5 (mod 8) and xo is odd [57, p. 201. Otherwise, if rn = p' for
p prime and e 2 1 , and k > 1 or p > 2, the upper bound is (p k - I) p C 1 [36]. Clearly,
p = 2 is very convenient from the implementation point of view, because the modulo
operation then amounts to chopping-off the higher-order bits. So to compute ux mod
rn in that case, for example with e = 32 on a 32-bit computer, just make sure that the
overflow-checking option or the compiler is turned off, and compute the product a x
using unsigned integers while ignoring the overflow.

However, taking rn = 2' imposes a big sacrifice on the period length, especially for
k > 1. For example, if k = 7 and rn = 2" - 1 (a prime), the maximal period length is
(2" - I) ~ - 1 = 2217. But for m = 2" and the same value of k, the upper bound becomes
p 5 Q 7 - 1) 2 3 1 < P 7 , which is more than 218' times shorter. For k = 1 and p = 2, an
upper bound on the period length of the ith least significant bit of x, is max(1, 2'-2)
[7], and if a full cycle is split into 2d equal segments, all segments are identical except
for their d most significant bits [20, 261. For k > 1 and p = 2, the upper bound on the
period length of the ith least significant bit is (2k -- 1) 2 ' I. So the low-order bits are
typically much too regular when p = 2. For k = 7 and rn = 23', for example, the least
significant bit has period length at most 27 - 1 = 127, the second least significant bit
has period length at most 2Q7 - I) = 254, and so on.

Example 4 Consider the recurrence x, = 10,205x,- mod 2'" with xo = 12,345. The
first eight values of x,, in base 10 and in base 2, are

104 RANDOM NUMBER GENERATION

The last two bits are always the same. The third least significant bit has a period length
of 2, the fourth least significant bit has a period length of 4, and so on.

Adding a constant c as in (1) can slightly increase the period length. The LCG with
recurrence (1) has period length m if and only if the following conditions are satisfied
a57, P. 161)

1. c is relatively prime to m.

2. a - 1 is a multiple of p for every prime factor p of m (including rn itself if m is
prime).

3. If m is a multiple of 4, then a - 1 is also a multiple of 4.

For rn = 2e 2 4, these conditions simplify to c is odd and a mod 4 = 1. But the low-order
bits are again too regular: The period length of the ith least significant bit of x, is at
most 2'.

A constant c can also be added to the right side of the recurrence (2). One can show
(see ref. [62]) that a linear recurrence of order k with such a constant term is equivalent
to some linear recurrence of order k + 1 with no constant term. As a result, an upper
bound on the period length of such a recurrence with m = pe is (p k + l - 1)pe- I , which
is much smaller than mk for large e and k.

All of this argues against the use of power-of-2 moduli in general, despite their
advantage in terms of implementation. It favors prime moduli instead. Later, when dis-
cussing combined generators, we will also be interested in moduli that are the products
of a few large primes.

4.3.2 Implementation for Prime m

Fork > 1 and prime m, for the characteristic polynomial P to be primitive, it is necessary
that ak and at least another coefficient aj be nonzero. From the implementation point of
view, it is best to have only two nonzero coefficients; that is, a recurrence of the form

X , = (arx, - , + akx, - k) mod m (4)

with characteristic trinomial P defined by P(z) = zk - arzk-' - ak. Note that replacing
r by k - r generates the same sequence in reverse order.

When m is not a power of 2, computing and adding the products modulo m in (2)
or (4) is not necessarily straightforward, using ordinary integer arithmetic, because of
the possibility of overflow: The products can exceed the largest integer representable

4.3 LINEAR METHODS 105

on the computer. For example, if m = 2" - 1 and a1 = 16,807, then x , I can be as
large as 23' - 2, so the product alx,- I can easily exceed 2". L'Ecuyer and C6ti [76]
study and compare different techniques for computing a product modulo a large integer
m, using only integer arithmetic, so that no intermediate result ever exceeds m. Among
the general methods, working for all representable integers and easily implementable
in a high-level language, decomposition was the fastest in their experiments. Roughly,
this method simply decomposes each of the two integers that are to be multiplied in
two blocks of bits (e.g., the 15 least significant bits and the 16 most significant ones,
for a 3 1-bit integer) and then cross-multiplies the blocks and adds (modulo m) just as
one does when multiplying large numbers by hand.

There is a faster way to compute a x mod m for 0 < a , x < m, called approximate
factoring, which works under the condition that

u(m mod a) < m. (5)

This condition is satisfied if and only if a = i or a = LmliJ for i < & (here LxJ denotes
the largest integer smaller or equal to x, so Lmlil is the integer division of m by i). To
implement the approximate factoring method, one initially precomputes (once for all)
the constants q = Lmlal and r = m mod a. Then, for any positive integer x < m, the
following instructions have the same effect as the assignment x + ax mod m, but with
all intermediate (integer) results remaining strictly between m and m [7, 61, 1071:

Y 'L x/qI;
x + a(x - yq) - yr;
IF x i 0 T H E N x + x + mEND.

As an illustration, if m = 231 - 1 and a = 16,807, the generator satisfies the condition,
since 16,807 < &. In this case, one has q = 127,773 and r = 2836. Hormann and
Derflinger [51] give a different method, which is about as fast, for the case where m =
2" - I . Fishman [41, p. 6041 also uses a different method to implement the LCG with
m = 2" - 1 and a = 95,070,637, which does not satisfy (5).

Another approach is to represent all the numbers and perform all the arithmetic mod-
ulo m in double-precision floating point. This works provided that the multipliers ai are
small enough so that the integers six,-i and their sum are always represented exactly
by the floating-point values. A sufficient condition is that the floating-point numbers
are represented with at least

bits of precision in their mantissa, where [xi denotes the smallest integer larger or equal
to x. On computers with good 64-bit floating-point hardware (most computers nowa-
days), this approach usually gives by far the fastest implementation (see, e.g., [68] for
examples and timings).

4.3.3 Jumping Ahead

To jump ahead from x, to x,,, with an MLCG, just use the relation

106 RANDOM NUMBER GENERATION

X , + , = avx, mod m = (a k o d m)x, mod rn

If many jumps are to be performed with the same v , the constant uv mod rn can be
precomputed once and used for all subsequent computations.

Example 5 Again, let m = 2,147,483,647, a = 16,807, and xo = 12,345. Suppose that
we want to compute xs directly from xo, so v = 3. One easily finds that 16,807' mod
m = 1,622,650,073 and xs = 1,622,650,073~~ mod m = 2,035,175,616, which agrees
with the value given in Example 1. Of course, we are usually interested in much larger
values of v , but the method works the same way.

For the LCG, with c f 0, one has

c(aV - 1)
X ,+, = aYx, + [a - 1

] mod m

To jump ahead with the MRG, one way is to use the fact that it can be represented as
a matrix MLCG: X, = AX, - 1 mod m, where X, is s, represented as a column vector
and A is a k x k square matrix. Jumping ahead is then achieved in the same way as for
the MLCG:

X, + = AvXn mod m = (Av mod m)X, mod m

Another way is to transform the MRG into its polynomial representation [64], in which
jumping ahead is easier, and then apply the inverse transformation to recover the original
representation.

4.3.4 Lattice Structure of LCGs and MRGs

A lattice of dimension t, in the t-dimensional real space IRf, is a set of the form

where 7, is the set of all integers and (V I , . . . , V,} is a basis of R'. The lattice L is thus
the set of all integer linear combinations of the vectors V I , . . . , V,, and these vectors
are called a lattice basis of L. The basis { W I , . . . , W , } of !Kt which satisfies Vj W, =

hij for all 1 I i, j I t (where the prime means "transpose" and where tiij = 1 if i = j ,
0 otherwise) is called the dual of the basis { V I , . . . , V,) and the lattice generated by
this dual basis is called the dual lattice to L.

Consider the set

of all overlapping t-tuples of successive values produced by (2), with u, = x,/m, from

4.3 LINEAR METHODS 107

all possible initial seeds. Then this set T , is the intersection of a lattice L, with the
t-dimensional unit hypercube I' = [0, I)'. For more detailed studies and to see how to
construct a basis for this lattice L, and its dual, see refs. 23, 57, 73, 77. For t 5 k it is
clear from the definition of T, that each vector (xu, . . . , x , 1) in Xi, can be taken as
so, so T , = '/,:,,/rn = (%'/rn)n I f ; that is, L, is the set of all t-dimensional vectors whose
coordinates are multiples of Ilm, and T , is the set of m' points in L, whose coordinates
belong to (0, I/m, . . . , (m l)/m}. For a full-period MRG, this also holds if we fix so
in the definition of T , to any nonzero vector of '/:, and then add the zero vector to T, .
In dimension t > k, the set T, contains only rnk points, while %:,,/rn contains rnf points.
Therefore, for large t, T , contains only a small fraction of the t-dimensional vectors
whose coordinates are multiples of llrn.

For full-period MRGs, the generator covers all of T , except the zero state in one
cycle. In other cases, such as for MRGs with nonprime moduli or MLCGs with power-
of-2 moduli, each cycle covers only a smaller subset of T,, and the lattice generated by
that subset is often equal to L,, but may in some cases be a strict sublattice or subgrid
(i.e., a shifred luttice of the form Vo + L where Vo E 'R' and L is a lattice). In the
latter case, to analyze the structural properties of the generator, one should examine
the appropriate sublattice or subgrid instead of L,. Consider, for example, an MLCG
for which rn is a power of 2, a mod 8 = 5, and xo is odd. The t-dimensional points
constructed from successive values produced by this generator form a subgrid of L,
containing one-fourth of the points [3, 501. For a LCG with rn a power of 2 and c Z 0,
with full period length p = rn, the points all lie in a grid that is a shift of the lattice
L, associated with the corresponding MLCG (with the same a and m). The value of c
determines only the shifting and has no other effect on the lattice structure.

Example 6 Figures 4.1 to 4.3 illustrate the lattice structure of a small, but instructional,
LCGs with (prime) modulus m = 101 and full period length p = 100, in dimension t = 2.

'L1n

Figure 4.1 All pairs (u,,, u, + 1) for the LCG with m = 101 and a = 12.

108 RANDOM NUMBER GENERATION

Un

Figure 4.2 All pairs (u,, un+ 1) for the LCG with rn = 101 and a = 7.

They show all 100 pairs of successive values (u,, u, + 1) produced by these generators,
for the multipliers a = 12, a = 7, and a = 51, respectively. In each case, one clearly
sees the lattice structure of the points. Any pair of vectors forming a basis determine
a parallelogram of area 1/101. This holds more generally: In dimension t , the vectors
of any basis of L, determine a parallelepiped of volume 1/mk. Conversely, any set of t
vectors that determine such a parallelepiped form a lattice basis.

The points are much more evenly distributed in the square for a = 12 than for a =

Figure 4.3 All pairs (u,, u,+ 1) for the LCG with m = 101 and a = 51.

4.3 LINEAR METHODS 109

51, and slightly more evenly distributed for a = 12 than for a = 7. The points of L,
are generally more evenly distributed when there exists a basis comprised of vectors of
similar lengths. One also sees from the figures that all the points lie in a relative small
number of equidistant parallel lines. In Figure 3, only two lines contain all the points
and this leaves large empty spaces between the lines, which is bad.

In general, the lattice structure implies that all the points of TI lie on a family of
equidistant parallel hyperplanes. Among all such families of parallel hyperplanes that
cover all the points, take the one for which the successive hyperplanes are farthest apart.
The distant dl between these successive hyperplanes is equal to 1/1,, where I , is the
length of a shortest nonzero vector in the dual lattice to L,. Computing a shortest nonzero
vector in a lattice L means finding the combination of values of z, in (6) giving the
shortest V. This is a quadratic optimization problem with integer variables and can be
solved by a branch-and-bound algorithm, as in [15, 401. In these papers the authors use
an ellipsoid method to compute the bounds on the z, for the branch-and-bound. This
appears to be the best (general) approach known to date and is certainly much faster
than the algorithm given in [23] and [57]. This idea of analyzing dl was introduced
by Coveyou and MacPherson [18] through the viewpoint of spectral analysis. For this
historical reason, computing d l is often called the spectral test.

The shorter the distance dl , the better, because a large d, means thick empty slices
of space between the hyperplanes. One has the theoretical lower bound

where y, is a constant which depends only on t and whose exact value is currently
known only for t I 8 [57]. So, for t I 8 and T 2 8, one can define the figures of merit
St = d$dt and MT = rninkstgT St , which lie between 0 and 1. Values close to 1 are
desired. Another lower bound on d,, for t > k, is (see [67])

This means that an MRG whose coefficients a, are small is guaranteed to have a large
(bad) d,.

Other figures of merit have been introduced to measure the quality of random number
generators in terms of their lattice structure. For example, one can count the minimal
number of hyperplanes that contain all the points or compute the ratio of lengths of
the shortest and longest vectors in a Minkowski-reduced basis of the lattice. For more
details on the latter, which is typically much more costly to compute than dl , the reader
can consult [77] and the references given there. These alternative figures of merit do
not tell us much important information in addition to dl.

Tables 4.1 and 4.2 give the values of dl and St for certain LCGs and MRGs. All
these generators have full period length. The LCGs of the first tables are well known
and most are (or have been) heavily used. For m = 2" - 1, the multiplier a = 742,938,285
was found by Fishman and Moore [42] in an exhaustive search for the MLCGs with
the best value of M6 for this value of m. It is used in the GPSS/H simulation environ-
ment. The second multiplier, a = 16807, was originally proposed in [83], is suggested

TABLE 4.1 Distances Between Hyperplanes for Some LCGs

112 RANDOM NUMBER GENERATION

TABLE 4.2 Distances Between Hyperplanes for Some MRGs

in many simulation books and papers (e.g., [7, 107, 1141) and appears in several soft-
ware systems such as the AWESIM and ARENA simulation systems, MATLAB [94],
the IMSL statistical library [54], and in operating systems for the IBM and Macin-
tosh computers. It satisfies condition (5). The IMSL library also has available the two
multipliers 397,204,094 and 950,706,376, with the same modulus, as well as the pos-
sibility of adding a shuffle to the LCG. The multiplier a = 630,360,016 was proposed
in [log], is recommended in [60, 921 among others, and is used in software such as
the SIMSCRIPT 11.5 and INSIGHT simulation programming languages. Generator G4,
with modulus m = 2" and multiplier u = 65,539, is the infamous RANDU generator,
used for a long time in the IBM/360 operating system. Its lattice structure is particu-

4.3 LINEAR METHODS 1 1 3

larly bad in dimension 3, where all the points lie in only 15 parallel planes. Law and
Kelton [60] give a graphical illustration. Generator G5, with m = 232, a = 69,069, and c
= 1, is used in the VAX/VMS operating system. The LCG G6, with modulus m = 24X,
multiplier u = 25,214,903,917, and constant c = 11, is the generator implemented in the
procedure drand48 of the SUN Unix system's library [I 171. G7, whose period length
is slightly less than 240, is used in the Maple mathematical software. We actually rec-
ommend none of the generators GI to G7. Their period lengths are too short and they
fail many statistical tests (see Section 4.5).

In Table 4.2, G8 and G9 are two MRGs of order 7 found by a random search for
multipliers with a "good" lattice structure in all dimensions t 2 2 0 , among those giving
a full period with m = 2" - 19. For G9 there are the additional restrictions that a1 and
a7 satisfy condition (5) and ai = 0 for 2 1 i 16. This m is the largest prime under 23'
such that (m 7 l)/(m- 1) is also prime. The latter property facilitates the verification of
condition (c) in the full-period conditions for an MRG. These two generators are taken
from [73], where one can also find more details on the search and a precise definition
of the selection criterion. It turns out that G9 has a very bad figure of merit Sn, and
larger values of d, than G8 for t slightly larger than 7. This is due to the restrictions
a; = 0 for 2 5 i < 6, under which the lower bound (9) is always much larger than d:
for t = 8. The distances between the hyperplanes for G9 are nevertheless much smaller
than the corresponding values of any LCG of Table 4.1, so this generator is a clear
improvement over those. G8 is better in terms of lattice structure, but also much more
costly to run, because there are seven products modulo m to compute instead of two at
each iteration of the recurrence. The other generators in this table are discussed later.

4.3.5 Lacunary Indices

Instead of constructing vectors of successive values as in (7), one can (more generally)
construct vectors with values that are a fixed distance apart in the sequence, using lucu-
nary indices. More specifically, let I = { i l , i2, . . . , i,} be a given set of integers and
define, for an MRG,

Consider the lattice L,(I) spanned by Tf(I) and %I, and let d,(I) be the distance between
the hyperplanes in this lattice. L'Ecuyer and Couture [77] show how to construct bases
for such lattices, how to compute d,(l), and so on. The following provides "quick-and-
dirty" lower bounds on d , (I) [13, 671:

1. If I contains all the indices i such that ak - ,+ 1 f 0, then

In particular, if x, = (a ,x , , + u k x n k) mod m and I = (0, k r , k) , then d3(l) L
(I +a: +a,2)-'/'.

2. If m can be written as m = I c,,a'~ for some integers el,, then

11 4 RANDOM NUMBER GENERATION

As a special case of (1 O), consider the lagged-Fibonacci generator, based on a recur-
rence whose only two nonzero coefficients satisfy a, = f 1 and ak = +I . In this case, for
I = {0, k - r , k] , d3(I) t 1/& = 0.577. The set of all vectors (u,, u,+k-,, u , + ~) pro-
duced by such a generator lie in successive parallel planes that are at distance I/&
to each other, and orthogonal to the vector (1,1,1). Therefore, apart from the vector
(0,0,0), all other vectors of this form are contained in only two planes! Specific instances
of this generator are the one proposed by Mitchell and Moore and recommended by
Knuth [57], based on the recurrence x, = (xn-24 + xn -55) mod 2' for e equal to the
computer's word length, as well as the addrans function in the SUN Unix library
[I 171, based on x, = (x , - ~ + x,_ 17) mod zz4. These generators should not be used, at
least not in their original form.

4.3.6 Combined LCGs and MRGs

Several authors advocated the idea of combining in some way different generators (e.g.,
two or three different LCGs), hoping that the composite generator will behave better
than any of its components alone. See refs. 10, 57, 60, 62, and 87, and dozens of other
references given there. Combination can provably increase the period length. Empirical
tests show that it typically improves the statistical behavior as well. Some authors (e.g.,
refs. 8, 46, and 87) have also given theoretical results which (on the surface) appear to
"prove" that the output of a combined generator is "more random" than (or at least "as
random" as) the output of each of its components. However, these theoretical results
make sense only for random variables defined in a probability space setup. For (deter-
ministic) pseudorandom sequences, they prove nothing and can be used only as heuristic
arguments to support the idea of combination. To assess the quality of a specific com-
bined generator, one should make a structural analysis of the combined generator itself,
not only analyze the individual components and assume that combination will make
things more random. This implies that the structural effect of the combination method
must be well understood. Law and Kelton [60, Prob. 7.61 give an example where com-
bination makes things worse.

The two most widely known combination methods are:

I. Shuffling one sequence with another or with itself.

2. Adding two or more integer sequences modulo some integer mo, or adding
sequences of real numbers in [O,l] modulo 1, or adding binary fractions bitwise
modulo 2.

Shuffling one LCG with another can be accomplished as follows. Fill up a table of
size d with the first d output values from the first LCG (suggested values of d go from
2 up to 128 or more). Then each time a random number is needed, generate an index
I E (1, . . . , d) using the log,(d) most significant bits of the next output value from
the second LCG, return (as output of the combined generator) the value stored in the
table at position I, then replace this value by the next output value from t h e j r s t LCG.
Roughly, the first LCG produces the numbers and the second LCG changes the order of

4.3 LINEAR METHODS 1 15

their occurrence. There are several variants of this shuffling scheme. In some of them,
the same LCG that produces the numbers to fill up the table is also used to generate
the values of I. A large number of empirical investigations performed over the past
30 years strongly support shuffling and many generators available in software libraries
use it (e.g., [54, 110, 1171). However, it has two important drawbacks: (I) the effect
of shuffling is not well-enough understood from the theoretical viewpoint, and (2) one
does not know how to jump ahead quickly to an arbitrary point in the sequence of the
combined generator.

The second class of combination method, by modular addition, is generally better
understood theoretically. Moreover, jumping ahead in the composite sequence amounts
to jumping ahead with each of the individual components, which we know how to do
if the components are LCGs or MRGS.

Consider J MRGs evolving in parallel. The jth MRG is based on the recurrence:

for j = 1 , . . . , J. We assume that the moduli m, are pairwise relatively prime and that
each recurrence is purely periodic (has zero transient) with period length p,. Let 61,
. . . , 6 J be arbitrary integers such that for each j , 6; and m, have no common factor.
Define the two combinations

Zll

Z, = (s f i j x ; , ,) mod m u, = - I

and

wl; = (i Oi $) mod I
j : l

J Let k = max(kl, . . . , kJ) and m = nJ_, m,. The following results were proved in ref.
80 for the case of MLCG components (k = 1) and in ref. 65 for the more general case:

1. The sequences { u,) and { w, } both have period length p = LCM(p I , . . . , p J) (the
least common multiple of the period lengths of the components).

2. The w,, obey the recurrence

where the a; can be computed by a formula given in [65] and do not depend on
the 6,.

3. One has u, = w , + E , , , with A 5 t n 5 A+, where A and A+ can be computed as
explained in ref. 65 and are generally extremely small when the rn, are close to
each other.

1 16 RANDOM NUMBER GENERATION

The combinations (12) and (13) can then be viewed as efficient ways to implement
an MRG with very large modulus m. A structural analysis of the combination can be
done by analyzing this MRG (e.g., its lattice structure). The MRG components can be
chosen with only two nonzero coefficients aij, both satisfying condition (3 , for ease
of implementation, and the recurrence of the combination (14) can still have all of its
coefficients nonzero and large. If each mj is an odd prime and each MRG has maximal

period length p j = rn: - 1 , each p, is even, so p 2 (mt' - I) - (m - 1) ' and

this upper bound is attained if the (m: - 1)/2 are pairwise relatively prime [65]. The
combination (1 3) generalizes an idea of Wichmann and Hill [126], while (1 2) is a gener-
alization of the combination method proposed by L'Ecuyer [61]. The latter combination
somewhat scrambles the lattice structure because of the added "noise" E , .

Example 7 L'Ecuyer [65] proposes the following parameters and gives a computer
code in the C language that implements (12). Take J = 2 components, 6 , = -62 = 1 ,
ml = 23' - 1, mz = 231 - 2,000, 169, k l = kz = 3, (a l ,] , al-2, ~ 1 ~ 3) = (0, 63,308,
- 183,326), and (a2, 1, a z , ~ , a2, 3) = (86,098, 0, -539,608). Each component has period
length p j = mi3 - 1, and the combination has period length p = p1p2/2 = 21g5. The MRG
(14) that corresponds to the combination is called G10 in Table 2, where distances
between hyperplanes for the associated lattice are given. Generator G I 0 requires four
modular products at each step of the recurrence, so it is slower than G9 but faster than
G8. The combined MLCG originally proposed by L'Ecuyer [61] also has an approxi-
mating LCG called GI 1 in the table. Note that this combined generator was originally
constructed on the basis of the lattice structure of the components only, without exam-
ining the lattice structure of the combination. Slightly better combinations of the same
size have been constructed since this original proposal [80, 771. Other combinations of
different sizes are given in [68].

4.3.7 Matrix LCGs and MRGs

A natural way to generalize LCGs and MRGs is to consider linear recurrences for vec-
tors. with matrix coefficients

where A], . . . , Ak are L x L matrices and each X, is an L-dimensional vector of elements
of Z,, which we denote by

At each step, one can use each component of X, to produce a uniform variate: u ,~+ , - =

x,,,/m. Niederreiter [I051 introduced this generalization and calls it the multiple recur-
sive matrix method for the generation of vectors. The recurrence (1 5) can also be written
as a matrix LCG of the form X, = A X , 1 mod m, where

4.3 LINEAR METHODS 11 7

are a matrix of dimension kL x kL and a vector of dimension kL, respectively (here I
is the L x L identity matrix). This matrix notation applies to the MRG as well, with L
= 1.

Is the matrix LCG more general than the MRG? Not much. If a k-dimensional vector
X, follows the recurrence X, = AX, - I mod m, where the k x k matrix A has a primitive
characteristic polynomial P(z) = zk-alzk- ' - . . . a k , then X, also follows the recurrence
[48, 62, 1011

X, = (alX, - 1 + . . . + akX, - k) mod rn (17)

So each component of the vector XI, evolves according to (2). In other words, one
simply has k copies of the same MRG sequence in parallel, usually with some shifting
between those copies. This also applies to the matrix MRG (15), since it can be written
as a matrix LCG of dimension kL and therefore corresponds to kL copies of the same
MRG of order kL (and maximal period length mkL - 1). The difference with the single
MRG (2) is that instead of taking successive values from a single sequence, one takes
values from different copies of the same sequence, in a round-robin fashion. Observe
also that when using (17), the dimension of X, in this recurrence (i.e., the number of
parallel copies) does not need to be equal to k.

4.3.8 Linear Recurrences with Carry

Consider a generator based on the following recurrence:

where "div" denotes the integer division. For each n, x, E Zb, c,, E '/', and the state at
step n is s , = (x,, . . . , x n + k 1 , c,). As in [14, 16, 881, we call this a multiply-with-carry
(MWC) generator. The idea was suggested in [58, 911. The recurrence looks like that
of an MRG, except that a carry c, is propagated between the steps. What is the effect
of this carry?

Assume that b is a power of 2, which is very nice form the implementation viewpoint.
Define a0 = - 1,

1 18 RANDOM NUMBER GENERATION

and let a be such that a b mod m = 1 (a is the inverse of b in arithmetic modulo m).
Note that m could be either positive or negative, but for simplicity we now assume that
m > 0. Consider the LCG:

There is a close correspondence between the LCG (20) and the MWC generator, assum-
ing that their initial states agree [16]. More specifically, if

holds for n = 0, then it holds for all n. As a consequence, I u, - w, I I l /b for all n. For
example, if b = 232, then u, and w, are the same up to 32 bits of precision! The MWC
generator can thus be viewed as just another way to implement (approximately) a LCG
with huge modulus and period length. It also inherits from this LCG an approximate
lattice structure, which can be analyzed as usual.

The LCG (20) is purely periodic, so each state z , is recurrent (none is transient).
On the other hand, the MWC has an infinite number of states (since we imposed no
bound on c,) and most of them turn out to be transient. How can one characterize the
recurrent states? They are (essentially) the states so that correspond to a given zo via
(20)-(21). Couture and L'Ecuyer [16] give necessary and sufficient conditions for a
state so to be recurrent. In particular, if a1 2 0 for 1 2 1, all the recurrent states satisfy
0 I c, < a1 + .. . + ak. In view of this inequality, we want the a1 to be small, for their
sum to fit into a computer word. More specifically, one can impose a1 + .. . + ak I b.
Now b is a nice upper bound on the c, as well as on the x,.

Since b is a power of 2, a is a quadratic residue and so cannot be primitive mod m.
Therefore, the period length cannot reach m - 1 even if rn is prime. But if (m - 1)/2 is
odd and 2 is primitive mod m [e.g., if (m - 1)/2 is prime], then (20) has period length
p = (m- 1)/2.

Couture and L'Ecuyer [16] show that the lattice structure of the LCG (20) satisfies
the following: In dimensions t I k, the distances d, do not depend on the parameters
a l , . . . , ak, but only on b, while in dimension t = k + 1, the shortest vector in the dual
lattice to L, is (ao, . . . , ak), so that

The distance d k + 1 is then minimized if we put all the weight on one coefficient a / . It
is also better to put more weight on ak, to get a larger m. S o one should choose ak close
to b, with a" + . . . + ak I b. Marsaglia [88] proposed two specific parameter sets. They
are analyzed in [16], where a better set of parameters in terms of the lattice structure
of the LCG is also given.

Special cases of the MWC include the add-with-carry (AWC) and subtract-with-
borrow (SWB) generators, originally proposed by Marsaglia and Zaman [91] and sub-
sequently analyzed in [13, 1221. For the AWC, put a, = ak = -a0 = 1 for 0 < r < k and
all other a / equal to zero. This gives the simple recurrence

where I denotes the indicator function, equal to 1 if the bracketted inequality is true and
to 0 otherwise. The SWB is similar, except that either a , or ak is - 1 and the carry c, is 0
or - 1. The correspondence between AWC/SWB generators and LCGs was established
in ref. 122.

Equation (22) tells us very clearly that all AWC/SWB generators have a bad lattice
structure in dimension k + 1. A little more can be said when looking at the lacunary
indices: For I = (0, r, k J, one has ds(I) = 1 /& and all vectors of the form (w,, w, +, ,
w , , + ~) produced by the LCG (20) lie in only two planes in the three-dimensional unit
cube, exactly as for the lagged-Fibonacci generators discussed in Section 4.3.5. Obvi-
ously, this is bad.

Perhaps one way to get around this problem is to take only k successive output
values, then skip (say) v values, take another k successive ones, skip another v , and so
on. Liischer [85] has proposed such an approach, with specific values of v for a specific
SWB generator, with theoretical justification based on chaos theory. James [56] gives a
Fortran implementation of Liischer's generator. The system Mathemutica uses a SWB
generator ([127, p. 1019]), but the documentation does not specify if it skips values.

4.3.9 Digital Method: LFSR, GFSR, TGFSR, etc., and Their Combination

The MRG (2), matrix MRG (1 5), combined MRG (1 2), and MWC (1 8-1 9) have res-
olution I/m, I/m, I /ml, and I/b, respectively. (The resolution is the largest number
x such that all output values are multiples of x.) This could be seen as a limitation.
To improve the resolution, one can simply take several successive x, to construct each
output value u,. Consider the MRG. Choose two positive integers s and L I k, and
redefine

Call s the step size and L the number of digits in the m-adic expansion. The state at step
n is now s,, = (x,,, . . . , x n s + k I) . The output values u, are multiples of m-L instead
of m-I. This output sequence, usually with L = s, is called a digital multistep sequence
[64, 1021. Taking s > L means that s - L values of the sequence (x,,) are skipped at
each step of (23). If the MRG sequence has period p and if s has no common factor
with p , the sequence {u,] also has period p .

Now, it is no longer necessary for m to be large. A small m with large s and L can
do as well. In particular, one can take m = 2. Then {x,) becomes a sequence of bits
(zeros and ones) and the u, are constructed by juxtaposing L successive bits from this
sequence. This is called a linear feedback shijt register (LFSR) or Tausworthe generator
[41, 64, 102, 1181, although the bits of each u, are often filled in reverse order than
in (23). An efficient computer code that implements the sequence (23), for the case
where the recurrence has the form x, = (x , , ,. + x,,- k) mod 2 with s I r and 2r > k,
can be found in refs. 66, 120, and 121. For specialized jump-ahead algorithms, see [22,
661. Unfortunately, such simple recurrences lead to LFSR generators with bad structural

120 RANDOM NUMBER GENERATION

properties (see refs. 11, 66, 97, and 120 and other references therein), but combining
several recurrences of this type can give good generators.

Consider J LFSR generators, where the jth one is based on a recurrence {xj,,)
with primitive characteristic polynomial Pi(z) of degree ki (with binary coefficients), an
m-adic expansion to L digits, and a step size s, such that sj and the period length pj =
2 k ~ - 1 have no common factor. Let {uj,,} be the output sequence of the jth generator
and define u, as the bitwise exclusive-or (i.e., bitwise addition modulo 2) of ul,,, . . . ,
uj,,. If the polynomials Pl(z), . . . , Pj(2) are pairwise relatively prime (no pair of poly-
nomials has a common factor), the period length p of the combined sequence {u,) is
equal to the least common multiple of the individual periods p 1 , . . . , p ~ . These pj can
be relatively prime, so it is possible here to have p = pj. The resulting combined
generator is also exactly equivalent to a LFSR generator based on a recurrence with
characteristic polynomial P(z) = Pl(z) . . . Pj(z). All of this is shown in [121], where
specific combinations with two components are also suggested. For good combinations
with more components, see ref. 66. Wang and Compagner [125] also suggested similar
combinations, with much longer periods. They recommended constructing the combi-
nation so that the polynomial P(z) has approximately half of its coefficients equal to 1.
In a sense, the main justification for combined LFSR generators is the efficient imple-
mentation of a generator based on a (reducible) polynomial P(z) with many nonzero
coefficients.

The digital method can be applied to the matrix MRG (15) or to the parallel MRG
(17) by making a digital expansion of the components of X, (assumed to have dimension
L):

The combination of (15) with (24) gives the multiple recursive matrix method of Nieder-
reiter [103]. For the matrix LCG, L'Ecuyer [64] shows that if the shifts between the
successive L copies of the sequence are all equal to some integer d having no common
factor with the period length p = mk - 1, the sequence (24) is exactly the same as the
digital multistep sequence (23) with s equal to the inverse of d modulo m. The converse
also holds. In other words, (23) and (24), with these conditions on the shifts, are basi-
cally two different implementations of the same generator. So one can be analyzed by
analyzing the other, and vice versa. If one uses the implementation (24), one must be
careful with the initialization of Xo, . . . , Xk - 1 in (17) to maintain the correspondence:
The shift between the states (xo,j, . . . , xk- I , ~) and (xoSj+l, . . . , xk- l , j + 1) in the MRG
sequence must be equal to the proper value d for all j.

The implementation (24) requires more memory than (23), but may give a faster gen-
erator. An important instance of this is the generalized feedback shift register (GFSR)
generator [43, 84, 1231, which we now describe. Take m = 2 and L equal to the com-
puter's word length. The recurrence (17) can then be computed by a bitwise exclusive-or
of the X, - j for which aj = 1. In particular, if the MRG recurrence has only two nonzero
coefficients, say ak and a,, we obtain

X, = X , , @ X , k

4.3 LINEAR METHODS 121

where O denotes the bitwise exclusive-or. The output is then constructed via the binary
fractional expansion (24). This GFSR can be viewed as a different way to implement
a LFSR generator, provided that it is initialized accordingly, and the structural proper-
ties of the GFSR can then be analyzed by analyzing those of the corresponding LFSR
generator [44, 641.

For the recurrence (17), we need to memorize kL integers in %,. With this memory
size, one should expect a period length close to mkL, but the actual period length cannot
exceed mk - 1. A big waste! Observe that (17) is a special case of (15), with A, = ai l .
An interesting idea is to "twist" the recurrence (17) slightly so that each ai l is replaced
by a matrix A; such that the corresponding recurrence (15) has full period length m k L 1
while its implementation remains essentially as fast as (1 7). Matsumoto and Kurita [95,
961 proposed a specific way to do this for GFSR generators and called the resulting
generators twisted GFSR (TGFSR). Their second paper and ref. 98 and 120 point out
some defects in the generators proposed in their first paper, proposes better specific
generators, and give nice computer codes in C. Investigations are currently made to
find other twists with good properties. The multiple recursive matrix method of ref.
103 is a generalization of these ideas.

4.3.1 0 Equidistribution Properties for the Digital Method

Suppose that we partition the unit hypercube [0,1)' into m" cubic cells of equal size.
This is called a (t, 1)-equidissection in base m. A set of points is said to be (t, I)-equidis-
tributed if each cell contains the same number of points from that set. If the set contains
mk points, the (t , I)-equidistribution is possible only for 1 5 Lk/tl. For a given digital
multistep sequence, let

(where repeated points are counted as many times as they appear in TI) and I, = min(L,
Lk/tJ). If the set T, is (t, 1,)-equidistributed for all t I k, we call it a maximally equidis-
tributed (ME) set and say that the generator is ME. If it has the additional property that
for all t, for I, < I 5 L, no cell of the (t, 1)-equidissection contains more than one point,
we also call it collision-free (CF). ME-CF generators have their sets of points TI very
evenly distributed in the unit hypercube, in all dimensions t.

Full-period LFSR generators are all (Lk/sJ, s)-equidistributed. Full-period GFSR gen-
erators are all (k, 1)-equidistributed, but their (k, I)-equidistribution for 1 > 1 depends on
the initial state (i.e., on the shifts between the different copies of the MRG). Fushimi
and Tezuka [45] give a necessary and sufficient condition on this initial state for (t, L)-
equidistribution, for t = Lk/LI. The condition says that the tL bits (xo, 1 , . . . , x " , ~ ,
. . . , x I , , . . . , x 1 ,) must be independent, in the sense that the tL x k matrix
which expresses them as a linear transformation of (xo, I , . . . , xk.- 1 ,)) has (full) rank
tL. Fushimi [44] gives an initialization procedure satisfying this condition.

Couture et al. [I71 show how the (t, I)-equidistribution of simple and combined LFSR
generators can be analyzed via the lattice structure of an equivalent LCG in a space of
formal series. A different (simpler) approach is taken in ref. 66: Check if the matrix
that expresses the first 1 bits of u, as a linear transformation of (xu, . . . , x k 1) has full
rank. This is a necessary and sufficient condition for (t, 1)-equidistribution.

An ME LFSR generator based on the recurrence x,, = (xn -607 + xn- 273) mod 2,

122 RANDOM NUMBER GENERATION

with s = 512 and L = 23, is given in ref. 23. But as stated previously, only two nonzero
coefficients for the recurrence is much too few. L'Ecuyer [66, 701 gives the results of
computer searches for ME and ME-CF combined LFSR generators with J = 2, 3, 4,
5 components, as described in subsection 4.3.9. Each search was made within a class
with each component j based on a characteristic trinomial Pj (z) = zkl - zr] - 1, with L
= 32 or L = 64, and step size sj such that s, I r, and 2rj > k,. The period length is p =

(2kl - 1) . . . (2 k ~ - 1) in most cases, sometimes slightly smaller. The searches were for
good parameters r, and s j . We summarize here a few examples of search results. For
more details, as well as specific implementations in the C language, see refs. 66 and
70.

Example 8
(a) For J = 2, kl = 3 1, and k2 = 29, there are 2565 parameter sets that satisfy the con-

ditions above. None of these combinations is ME. Specific combinations which
are nearly ME, within this same class, can be found in ref. 21.

(b) Let J = 3, k l = 31, kz = 29, and k3 = 28. In an exhaustive search among 82,080
possibilities satisfying our conditions within this class, 19 ME combinations were
found, and 3 of them are also CF.

(c) Let J = 4, k l = 31, k2 = 29, k3 = 28, and k4 = 25. Here, in an exhaustive search
among 3,283,200 possibilities, we found 26,195 ME combinations, and 4,744 of
them also CF.

These results illustrate the fact that ME combinations are much easier to find as J
increases. This appears to be due to more possibilities to "fill up" the coefficients of
P(z) when it is the product of more trinomials. Since GFSR generators can be viewed as
a way to implement fast LFSR generators, these search methods and results can be used
as well to find good combined GFSRs, where the combination is defined by a bitwise
exclusive-or as in the LFSR case.

One may strengthen the notion of (t, 1)-equidistribution as follows: Instead of looking
only at equidissections comprised of cubic volume elements of identical sizes, look at
more general partitions. Such a stronger notion is that of a (q, k, t)-net in base m, where
there should be the same number of points in each box for any partition of the unit
hypercube into rectangular boxes of identical shape and equal volume m ~ - ~ , with the
length of each side of the box equal to a multi le of l/m. Niederreiter [102] defines
a figure of merit r(') such that for all t > L ~ / L 9 , the mk points of T, for (23) form a
(q, k, 1)-net in base m with q = k - r('). A problem with 6') is the difficulty to compute
it for medium and large t (say, t > 8).

4.4 NONLINEAR METHODS

An obvious way to remove the linear (and perhaps too regular) structure is to use a
nonlinear transformation. There are basically two classes of approaches:

1 . Keep the transition function T linear, but use a nonlinear transformation G to
produce the output.

2. Use a nonlinear transition function T.

4.4 NONLINEAR METHODS 123

Several types of nonlinear generators have been proposed over the last decade or so,
and an impressive volume of theoretical results have been obtained for them. See, for
example, refs. 3 1, 34, 59, 78, 102, and 104 and other references given there. Here, we
give a brief overview of this rapidly developing area.

Nonlinear generators avoid lattice structures. Typically, no t-dimensional hyperplane
contains more than t overlapping t-tuples of successive values. More important, their
output behaves much like "truly" random numbers, even over the entire period, with
respect to discrepancy. Roughly, there are lower and upper bounds on their discrep-
ancy (or in some cases on the average discrepancy over a certain set of parameters)
whose asymptotic order (as the period length increases to infinity) is the same as that
of an IID U(0 , I) sequence of random variables. They have also succeeded quite well
in empirical tests performed so far [49]. Fast implementations with specific well-tested
parameters are still under development, although several generic implementations are
already available [49, 711.

4.4.1 Inversive Congruential Generators

To construct a nonlinear generator with long period, a first idea is simply to add a
nonlinear twist to the output of a known generator. For example, take a full-period
MRG with prime modulus rn and replace the output function u,, = x,/m by

<.n
z n = (i n + l i ; ') m o d r n and u , = -

rn

where i, denotes the ith nonzero value in the sequence {x,] and i;' is the inverse of
in modulo rn . (The zero values are skipped because they have no inverse.) For x, f 0,
its inverse x i ' can be computed by the formula x i ' = x:-2 mod rn, with O(logrn)
multiplications modulo rn. The sequence {z,) has period rnk I, under conditions given
in refs. 31 and 102. This class of generators was introduced and first studied in refs.
28, 27, and 30. For k = 2, (26) is equivalent to the recurrence

where a, and a2 are the MRG coefficients.
A more direct approach is the explicit inversive congruential method of ref. 32,

defined as follows. Let x,, = an + c for n 2 0, where a # 0 and c are in %, and
rn is prime. Then, define

zn = x i 1 = an+^)^-^ modrn and u, = 5
rn

This sequence has period p = rn. According to ref. 34, this family of generators seems
to enjoy the most favorable properties among the currently proposed inversive and
quadratic families. As a simple illustrative example, take rn = 2" - 1 and a = c =
1 . (However, at the moment, we are not in a position to recommend these particular
parameters nor any other specific ones.)

124 RANDOM NUMBER GENERATION

Inversive congruential generators with power-of-2 moduli have also been studied
[30, 31, 351. However, they have have more regular structures than those based on
prime moduli [31, 341. Their low-order bits have the same short period lengths as for
the LCGs. The idea of combined generators, discussed earlier for the linear case, also
applies to nonlinear generators and offers some computational advantages. Huber [52]
and Eichenauer-Herrmann [33] introduced and analyzed the following method. Take J
inversive generators as in (27), with distinct prime moduli ml, . . . , mJ, all larger than
4, and full period length p, = mj. For each generator j, let zj,, be the state at step n and
let uj,, = zj,,/mj. The output at step n is defined by the following combination:

U, = (uJ , ,+ . . .+uJ , ,) mod 1

The sequence {u,) turns out to be equivalent to the output of an inversive generator (27)
with modulus m = ml . . . m~ and period length p = m. Conceptually, this is pretty similar
to the combined LCGs and MRGs discussed previously, and provides a convenient way
to implement an inversive generator with large modulus m. Eichenauer-Herrmann [33]
shows that this type of generator has favorable asymptotic discrepancy properties, much
like (26-28).

4.4.2 Quadratic Congruential Generators

Suppose that the transformation T is quadratic instead of linear. Consider the recurrence

x, = (ax: I + bx, - 1 + C) mod m

where a , b, c E Z, and x, E Y4, for each n. This is studied in refs. 29, 37, 57, and
102. If m is a power of 2, this generator has full period (p = m) if and only if a is even,
(b - a) mod 4 = 1, and c is odd. Its t-dimensional points turn out to lie on a union of
grids. Also, the discrepancy tends to be too large. Our usual caveat against power-of-2
moduli applies again.

4.4.3 BBS and Other Cryptographic Generators

The BBS generator, explained in Section 4.2, is conjectured to be polynomial-time per-
fect. This means that for a large enough size k, a BBS generator with properly (ran-
domly) chosen parameters is practically certain to behave very well from the statistical
point of view. However, it is not clear how large k must be and how K can be chosen in
practice for the generator to be really safe. The speed of the generator slows down with
k, since at each step we must square a 2k-bit integer modulo another 2k-bit integer. An
implementation based on fast modular multiplication is proposed by Moreau [99].

Other classes of generators, conjectured to be polynomial-time perfect, have been
proposed. From empirical experiments, they have appeared no better than the BBS.
See refs. 5, 59, and 78 for overviews and discussions. An interesting idea, pursued for
instance in ref. 1, is to combine a slow but cryptographically strong generator (e.g.,
a polynomial-time perfect one) with a fast (but unsecure) one. The slow generator is
used sparingly, mostly in a preprocessing step. The result is an interesting compromise
between speed, size, and security. In ref. 1, it is also suggested to use a block cipher
encryption algorithm for the slow generator. These authors actually use triple-DES (three

4.5 EMPIRICAL STATISTICAL TESTING 125

passes over the well-known data encryption standard algorithm, with three different
keys), combined with a linear hashing function defined by a matrix. The keys and the
hashing matrix must be (truly) random. Their fast generator is implemented with a six-
regular expander graph (see their paper for more details).

4.5 EMPIRICAL STATISTICAL TESTING

Statistical testing of random number generators is indeed a very empirical and heuristic
activity. The main idea is to seek situations where the behavior of some function of the
generator's output is significantly different than the normal or expected behavior of the
same function applied to a sequence of IID uniform random variables.

Example 9 As a simple illustration, suppose that one generates n random numbers
from a generator whose output is supposed to imitate IID U(0, 1) random variables.
Let T be the number of values that turn out to be below i, among those n. For large
n, T should normally be not too far from 4 2 . In fact, one should expect T to behave
like a binomial random variable with parameters (n, 4). So if one repeats this experi-
ment several times (e.g., generating N values of T), the distribution of the values of T
obtained should resemble that of the binomial distribution (and the normal distribution
with mean n/2 and standard deviation 4 1 2 for large n). If N = 100 and n = 10000,
the mean and standard deviation are 5000 and 50, respectively. With these parameters,
if one observes, for instance, that 12 values of T are less than 4800, or that 98 values of
T out of 100 are less than 5000, one would readily conclude that something is wrong
with the generator. On the other hand, if the values of T behave as expected, one may
conclude that the generator seems to reproduce the correct behavior for this particular
statistic T (and for this particular sample size). But nothing prevents other statistics than
this T to behave wrongly.

4.5.1 General Setup

Define the null hypothesis Ho as: "The generator's output is a sequence of IID U(0, 1)
random variables." Formally, this hypothesis is false, since the sequence is periodic and
usually deterministic (except perhaps for the seed). But if this cannot be detected by
reasonable statistical tests, one may assume that Ho holds anyway. In fact, what really
counts in the end is that the statistics of interest in a given simulation have (sample)
distributions close enough to their theoretical ones.

A statistical test for Ho can be defined by any function T of a finite number of U(0, 1)
random variables, for which the distribution under Ho is known or can be approximated
well enough. The random variable T is called the test statistic. The statistical test tries
to find empirical evidence against Ho.

When applying a statistical test to a random number generator, a single-level proce-
dure computes the value of T, say t i , then computes the p-value

and, in the case of a two-sided test, rejects Ho if 61 is too close to either 0 or 1. A
single-sided test will reject only if 6 , is too close to 0, or only if it is too close to 1.

126 RANDOM NUMBER GENERATION

The choice of rejection area depends on what the test aims to detect. Under Ho, 61 is
a U(0, 1) random variable.

A two-level test obtains (say) N "i~dependent" copies of T , denoted TI , . . . , T N , and
computes their empirical distribution F N . This empirical distribution is then compared to
the theoretical distribution of T under Ho, say F, via a standard goodness-of-fit test, such
as the Kolmogorov-Smirnov (KS) or Anderson-Darling tests [25, 11 51. One version of
the KS goodness-of-fit test uses the statistic

for which an approximation of the distribution under H o is available, assuming that the
distribution F is continuous [25]. Once the value dN of the statistic DN is known, one
computes the p-value of the test, defined as

which is again a U(0,I) random variable under Ho. Here one would reject Ho if 62 is
too close to 0.

Choosing N = 1 yields a single-level test. For a given test and a fixed computing
budget, the question arises of what is best: To choose a small N (e.g., N = 1) and base the
test statistic T on a large sample size, or the opposite? There is no universal winner. It
depends on the test and on the alternative hypothesis. The rationale for two-level testing
is to test the sequence not only globally, but also locally, by looking at the distribution of
values of T over shorter subsequences [57]. In most cases, when testing random number
generators, N = 1 turns out to be the best choice because the same regularities or defects
of the generators tend to repeat themselves over all long-enough subsequences. But it
also happens for certain tests that the cost of computing T increases faster than linearly
with the sample size, and this gives another argument for choosing N > 1.

In statistical analyses where a limited amount of data is available, it is common
practice to fix some significance level a in advance and reject H o when and only when
the p-value is below a. Popular values of a are 0.05 and 0.01 (mainly for historical
reasons). When testing random number generators, one can always produce an arbitrary
amount of data to make the test more powerful and come up with a clean-cut decision
when suspicious p-value occur. We would thus recommend the following strategy. If the
outcome is clear, for example if the p-value is less than 10-lo, reject Ho. Otherwise, if
the p-value is suspicious (0.005, for example), then increase the sample size or repeat the
test with other segments of the sequence. In most cases, either suspicion will disappear
or clear evidence against Ho will show up rapidly.

When Ha is not rejected, this somewhat improves confidence in the generator but
never proves that it will always behave correctly. It may well be that the next test T
to be designed will be the one that catches the generator. Generally speaking, the more
extensive and varied is the set of tests that a given generator has passed, the more
faith we have in the generator. For still better confidence, it is always a good idea to
run important simulations twice (or more), using random number generators of totally
different types.

4.5 EMPIRICAL STATISTICAL TESTING 127

4.5.2 Available Batteries of Tests

The statistical tests described by Knuth [57] have long been considered the "standard"
tests for random number generators. A Fortran implementation of (roughly) this set of
tests is given in the package TESTRAND [24]. A newer battery of tests is DIEHARD,
designed by Marsaglia [87, 891. It contains more stringent tests than those in ref. 57,
in the sense that more generators tend to fail some of the tests. An extensive testing
package called TestUO 1 [71], that implements most of the tests proposed so far, as well
as several classes of generators implemented in generic form, is under development.
References to other statistical tests applied to random number generators can be found
in refs. 63, 64, 71, 75, 74 , 69, 79, and 116.

Simply testing uniformity, or pair correlations, is far from enough. Good tests are
designed to catch higher-order correlation properties or geometric patterns of the suc-
cessive numbers. Such patterns can easily show up in certain classes of applications
[39, 49, 751. Which are the best tests? No one can really answer this question. If the
generator is to be used to estimate the expectation of some random variable T by gen-
erating replicates of T, the best test would be the one based on T as a statistic. But this
is impractical, since if one knew the distribution of T, one would not use simulation to
estimate its mean. Ideally, a good test for this kind of application should be based on
a statistic T' whose distribution is known and resembles that of T. But such a test is
rarely easily available. Moreover, only the user can apply it. When designing a general
purpose generator, one has no idea of what kind of random variable interests the user.
So, the best the designer can do (after the generator has been properly designed) is to
apply a wide variety of tests that tend to detect defects of different natures.

4.5.3 Two Examples of Empirical Tests

For a short illustration, we now apply two statistical tests to some of the random number
generators discussed previously. The first test is a variant of the well-known seriul test
and the second one is a close-pairs test. More details about these tests, as well as refined
variants, can be found in refs. 57, 74 , 75, 79.

Both tests generate n nonoverlapping vectors in the t-dimensional unit cube 10, I)'.
That is, they produce the point set:

PI = {U, = (U,+ 1 1 , . . ., U , ; I) , ; = I , . . . , n }

where Uo, U . . . is the generator's output. Under Ho, PI contains n IID random vectors
uniformly distributed over the unit hypercube.

For the serial test, we construct a (t , I)-equidissection in base 2 of the hypercube (see
Section 4.3.10), and compute how many points fall in each of the k = 2" cells. More
specifically, let X, be the number of points U, falling in cell j , for j = I, . . . , k , and
define the chi-square statistic

Under Ho, the exact mean and variance of x2 are p = E[X '] = k - 1 and a 2 = v a r [x 2]
= 2 (k I)(n - I)/n, respectively. Moreover, if n -,- for fixed k , x2 converges in distri-

128 RANDOM NUMBER GENERATION

bution to a chi-square random variable with k 1 degrees of freedom, whereas if n -, w

and k - - simultaneously so that n/k - y for some constant y, (x 2 - p) / u converges
in distribution to a N(0,l) (a standard normal) random variable. Most authors use a
chi-square approximation to the distribution of x', with n/k 2 5 (say) and very large n.
But one can also take k >> n and use the normal approximation, as in the forthcoming
numerical illustration.

For the close-pairs test, let D,,i,j be the Euclidean distance between the points U,
and U, in the unit torus, i.e., where the opposite faces of the hypercube are identified
so that points facing each other on opposite sides become close to each other. For s 2 0
let Y,(s) be the number of distinct pairs of points i < j such DA,i,jV,n(n - 1)/2 I s,
where V , is the volume of a ball of radius 1 in the t-dimensional real space. Under Ho,
for any constant sl > 0, as n -, w, the process {Y,(s),O I s I sl] converges weakly to
a Poisson process with unit rate. Let 0 = T,,o I T,, 1 I Tn,2 I . . . be the jump times
of the process Y,, and let W,, ; = 1 - exp[-(T,, i - T,, , - 1)I. For a fixed integer rn > 0
and large enough n, the random variables W,, I , . . . , W,,, are approximately IID U(0, 1)
under Ho. To compare their empirical distribution to the uniform, one can compute, for
example, the Anderson-Darling statistic

and reject Ho if the p-value is too small (i.e., if A: is too large).
These tests have been applied to the generators GI to G11 in Tables 4.1 and 4.2. We

took N = 1 and dimension t = 3. We applied two instances of the serial test, one named
ST1, with n = 2" and I = 9, which gives k = 2" and n/k = 1/128, and the second one
named ST2, with n = 222 and I = 10, so k = 230 and n/k = 1/256. For the close-pairs
(CP) test, we took n = 218 and rn = 32. In each case, 3n random numbers were used,
and this value is much smaller than the period length of the generators tested. For all
generators, at the beginning of the first test, we used the initial seed 12345 when a single
integer was needed and the vector (12,345, . . . , 12,345) when a vector was needed. The
seed was not reset between the tests. Table 4.3 gives the p-values of these tests for GI
to G5. For G6 to G11, all p-values remained inside the interval (0.01, 0.99).

For the serial test, the p-values that are too close to 1 (e.g., ST1 and ST2 for GI)
indicate that the n points are too evenly distributed among the k cells compared to what
one would expect from random points (x 2 is too small). On the other hand, the very
small p-values indicate that the points tend to go significantly more often in certain cells

TABLE 4.3 The p-Values of Two Empirical Tests Applied to Generators
G1 to GI1

Generator ST1 ST2 CP

G I 1 - 9.97 x 10-6 > I - 10-15 4 0 - l S

G2 0.365 <lo-Is <lo-l5
G3 1 - 2.19 x <10-15 <lo-"
G4 < lo-'5 <lo-l5 <lo-'s
G5 0.950 >I - 10-l5 4 0 - 1 ~

4.5 EMPIRICAL STATISTICAL TESTING 129

than in others (X' is too large). The p-values less than 10-l5 for the CP test stem from
the fact that the jumps of the process Y, tend to be clustered (and often superposed),
because there are often equalities (or almost) among the small Dl,,ij's, due to the lattice
structure of the generator [75, 1121. This implies that several W,,; are very close to
zero, and the Anderson-Darling statistic is especially sensitive for detecting this type
of problem. As a general rule of thumb, all LCGs and MRGs, whatever be the quality
of their lattice structure, fail spectacularly this close-pairs test with N = 1 and rn = 32
when n exceeds the square root of the period length [75].

G6 and G7 pass these tests, but will soon fail both tests if we increase the sample
size. For G8 to GI 1 , on the other hand, the sample size required for clear failure is so
large that the test becomes too long to run in reasonable time. This is especially true
for G8 and G10.

One could raise the issue of whether these tests are really relevant. As mentioned in
the previous subsection, the relevant test statistics are those that behave similarly as the
random variable of interest to the user. So, relevance depends on the application. For
simulations that deal with random points in space, the close-pairs test could be relevant.
Such simulations are performed, for example, to estimate the (unknown) distribution of
certain random variables in spatial statistics [19]. As an illustration, suppose one wishes
to estimate the distribution of mini,, D,,:,, for some fixed n , by Monte Carlo simulation.
For this purpose, generators GI to G5 are not to be trusted. The effect of failing the
serial or close-pairs test in general is unclear. In many cases, if not so many random
numbers are used and if the application does not interact constructively with the struc-
ture of the point set produced by the generator, no bad effect will show up. On the other
hand, simulations using more than, say, 232 random numbers are becoming increasingly
common. Clearly, GI to G5 and all other generators of that size are unsuitable for such
simulations.

4.5.4 Empirical Testing: Summary

Experience from years of empirical testing with different kinds of tests and different
generator families provides certain guidelines [49, 63, 69,74,75, 81, 891. Some of these
guidelines are summarized in the following remarks.

1. Generators with period length less than 2" (say) can now be considered as "baby
toys" and should not be used in general software packages. In particular, all LCGs
of that size fail spectacularly several tests that run in a reasonably short time and
use much less random numbers than the period length.

2. LCGs with power-of-2 moduli are easier to crack than those with prime moduli,
especially if we look at lower-order bits.

3. LFSRs and GFSRs based on primitive trinomials, or lagged-Fibonacci and
AWC/SWB generators, whose structure is too simple in moderately large dimen-
sion, also fail several simple tests.

4. Combined generators with long periods and good structural properties do well in
the tests. When a large fraction of the period length is used, nonlinear inversive
generators with prime modulus do better than the linear ones.

5. In general, generators with good theoretical figures of merit (e.g., good lattice
structure or good equidistribution over the entire period, when only a small frac-
tion of the period is used) behave better in the tests. As a crude general rule,

130 RANDOM NUMBER GENERATION

generators based on more complicated recurrences (e.g., combined generators)
and good theoretical properties perform better.

4.6 PRACTICAL RANDOM NUMBER PACKAGES

4.6.1 Recommended Implementations

As stated previously, no random number generator can be guaranteed against all pos-
sible defects. However, there are generators with fairly good theoretical support, that
have been extensively tested, and for which computer codes are available. We now
give references to such implementations. Some of them are already mentioned ear-
lier. We do not reproduce the computer codes here, but the user can easily find
them from the references. More references and vointers can be found from the
pages http://www. i r o .umontreal. ca/-lecuyer and http://randorn.rnat .
sbg . ac . at on the World Wide Web.

Computer implementations that this author can suggest for the moment include those
of the MRGs given in [73], the combined MRGs given in [65, 681, the combined Taus-
worthe generators given in [66, 701, the twisted GFSRs given in [96, 981, and perhaps
the RANLUX code of [56].

4.6.2 Multigenerator Packages with Jump-Ahead Facilities

Good simulation languages usually offer many (virtual) random number generators,
often numbered 1, 2, 3, In most cases this is the same generator but starting with
different seeds, widely spaced in the sequence. L'Ecuyer and C6t6 [76] have constructed
a package with 32 generators (which can be easily extended to 1024). Each generator
is in fact based on the same recurrence (a combined LCG of period length near 26'),
with seeds spaced 250 values apart. Moreover, each subsequence of 250 values is split
further into 2" segments of length z3O. A simple procedure call permits one to have
any of the generators jump ahead to the beginning of its next segment, or its current
segment, or to the beginning of its first segment. The user can also set the initial seed
of the first generator to any admissible value (a pair of positive integers) and all other
initial seeds are automatically recalculated so that they remain 2-50 values apart. This
is implemented with efficient jump-ahead tools. A boolean switch can also make any
generator produce antithetic variates if desired.

To illustrate the utility of such a package, suppose that simulation is used to com-
pare two similar systems using common random numbers, with n simulation runs for
each system. To ensure proper synchronization, one would typically assign different
generators to different streams of random numbers required by the simulation (e.g., in
a queueing network, one stream for the interarrival times, one stream for the service
times at each node, one stream for routing decisions, etc.), and make sure that for each
run, each generator starts at the same seed and produces the same sequence of numbers
for the two systems. Without appropriate tools, this may require tricky programming,
because the two systems do not necessarily use the same number of random numbers
in a given run. But with the package in ref. 76, one can simply assign each run to a
segment number. With the first system, use the initial seed for the first run, and before
each new run, advance each generator to the beginning of the next segment. After the
nth run, reset the generators to their initial seeds and do the same for the second system.

REFERENCES 131

The number and length of segments in the package of ref. 76 are now deemed too
small for current and future needs. A similar package based on a combined LCG with
period length near 212' in given in ref. 72, and other systems of this type, based on
generators with much larger periods, are under development. In some of those packages,
generators can be seen as objects that can be created by the user as needed, in practically
unlimited number.

When a generator's sequence is cut into subsequences spaced, say, v values apart
as we just described, to provide for multiple generators running in parallel, one must
analyze and test the vectors of nonsuccessive output values (with lacunary indices; see
Section 4.3.5) spaced v values apart. For LCGs and MRGs, for example, the lattice
structure can be analyzed with such lacunary indices. See refs. 38 and 77 for more
details and numerical examples.

4.6.3 Generators for Parallel Computers

Another situation where multiple random number generators are needed is for simu-
lation on parallel processors. The same approach can be taken: Partition the sequence
of a single random number generator with very long period into disjoint subsequences
and use a different subsequence on each processor. So the same packages that provide
multiple generators for sequential computers can be used to provide generators for par-
allel processors. Other approaches, such as using completely different generators on
the different processors or using the same type of generator with different parameters
(e.g., changing the additive term or the multiplier in a LCG), have been proposed but
appear much less convenient and sometimes dangerous [62, 641. For different ideas and
surveys on parallel generators, the reader can consult refs. 2, 9, 22, 93, and 109.

ACKNOWLEDGMENTS

This work has been supported by NSERC-Canada Grant ODGP0110050 and
SMF0169893, and FCAR-Qukbec Grant 93ER1654. Thanks to Christos Alexopoulos,
Jerry Banks, Raymond Couture, Hannes Leeb, Thierry Moreau, and Richard Simard for
their helpful comments.

REFERENCES

1 . Aiello, W., S. Rajagopalan, and R. Venkatesan (1996). Design of practical and provably good
random number generators. Manuscript (contact v e n k i e @ b e l l c o r e . corn).

2. Anderson, S. L. (1990). Random number generators on vector supercomputers and other
advanced architecture. SIAM Review, Vol. 32, pp. 221-25 I.

3. Atkinson, A. C. (1980). Tests of pseudo-random numbers. Applied Statistics, Vol. 29, pp.
164-171.

4. Blum, L., M. Blum, and M. Schub (1986). A simple unpredictable pseudo-random number
generator. SIAM Journal on Computing, Vol. 15, No. 2, pp. 364-383.

5. Boucher, M. (1994). La gineration pseudo-aliatoire cryptographiquement sicuritaire et ses
considirations pratiques. Master's thesis, Dipartement d'I.R.O., Universitk de MontrCal.

6. Brassard, G. (1988). Modern Cryptology-A Tutorial, Vol. 325 of Lecture Notes in Computer
Science. Springer-Verlag, New York.

132 RANDOM NUMBER GENERATION

7 . Bratley, P., B. L. Fox, and L. E. Schrage (1987). A Guide to Simulation, 2nd ed., Springer-
Verlag, New York.

8. Brown, M. and H . Solomon (1979). On combining pseudorandom number generators. Annals
of Statistics, Vol. 1, pp. 691-695.

9. Chen, J . and P. Whitlock (1995). Implementation o f a distributed pseudorandom number gen-
erator. In H. Niederreiter and P. J.-S. Shiue, editors, Monte Carlo and Quasi-Monte Carlo
Methods in ScientGc Computing, number 106 in Lecture Notes in Statistics, pp. 168-185.
Springer-Verlag, New York.

10. Callings, B. J . (1987). Compound random number generators. Journal o f the American Sta-
tistical Association, Vol. 82, NO. 398, pp. 525-527.

Compagner, A. (1991). The hierarchy o f correlations in random binary sequences. Journal
of Statistical Physics, Vol. 63, pp. 883-896.

Compagner, A. (1995). Operational conditions for random number generation. Physical
Review E, Vol. 52, No. 5-B, pp. 5634-5645.
Couture, R. and P. L'Ecuyer (1994). On the lattice structure o f certain linear congruential
sequences related to AWC/SWB generators. Mathematics of Computation, Vol. 62, No. 206,
pp. 798-808.
Couture, R. and P. L'Ecuyer (1995). Linear recurrences with carry as random number gen-
erators. In Proceedings of the 1995 Winter Simulation Conference, pp. 263-267.

Couture, R. and P. L'Ecuyer (1996). Computation o f a shortest vector and Minkowski-reduced
bases in a lattice. In preparation.

Couture, R. and P. L'Ecuyer (1997). Distribution properties o f multiply-with-carry random
number generators. Mathematics of Computation, Vol. 66, No. 218, pp. 591-607.

Couture, R., P. L'Ecuyer and S. Tezuka (1993). On the distribution o f k-dimensional vectors
for simple and combined Tausworthe sequences. Mathematics of Computation, Vol. 60, No.
202, pp. 749-761, S 1 1-S16.

Coveyou, R. R. and R. D. MacPherson (1967). Fourier analysis o f uniform random number
generators. Journal of the ACM, Vol. 14, pp. 100-119.
Cressie, N . (1993). Statistics for Spatial Data. Wiley, New York.

De Matteis, A. and S. Pagnutti (1988). Parallelization o f random number generators and long-
range correlations. Numerische Mathematik, Vol. 53, pp. 595-608.

De Matteis, A. and S. Pagnutti (1990). A class o f parallel random number generators. Parallel
Computing, Vol. 13, pp. 193-198.

Deik, I. (1990). Uniform random number generators for parallel computers. Parallel Com-
puting, Vol. 15, pp. 155-164.

Dieter, U . (1975). How to calculate shortest vectors in a lattice. Mathematics of Computation,
Vol. 29, No. 131, pp. 827-833.
Dudewicz, E. J . and T. G. Ralley (1981). The Handbook of Random Number Generation and
Testing with TESTRAND Computer Code. American Sciences Press, Columbus, Ohio.
Durbin, J . (1973). Distribution Theory for Tests Based on the Sample Distribution Function.
SIAM CBMS-NSF Regional Conference Series in Applied Mathematics. SIAM, Philadelphia.
Durst, M. J . (1989). Using linear congruential generators for parallel random number gen-
eration. In Proceedings of the 1989 Winter Simulation Conference, pp. 462466. IEEE
Press.

Eichenauer, J. , H. Grothe, J. Lehn, and A. Topuz6glu (1987). A multiple recursive nonlin-
ear congruential pseudorandom number generator. Manuscripts of Computation, Vol. 60, pp.
375-384.
Eichenauer-Herrmann, J . (1994). On generalized inversive congruential pseudorandom num-
bers. Mathematics of Computation, Vol. 63, pp. 293-299.

REFERENCES 133

34. Eichenauer-Herrmann, J. (1995). Pseudorandom number generation by nonlinear methods.
International Statistical Reviews, Vol. 63, pp. 247-255.

35. Eichenauer-Herrmann, J. and H. Grothe (1992). A new inversive congruential pseudorandom
number generator with power of two modulus. ACM Transactions on Modeling and Computer
Simulation, Vol. 2, No. 1, pp. 1-1 1.

36. Eichenauer-Herrmann, J., H. Grothe, and J. Lehn (1989). On the period length of pseudo-
random vector sequences generated by matrix generators. Mathematics of Computation, Vol.
52, No. 185, pp. 145-148.

37. Eichenauer-Herrmann, J. and H. Niederreiter (I 995). An improved upper bound for the dis-
crepancy of quadratic congruential pseudorandom numbers. Acta Arithmetica, Vol. LXIX.2,
pp. 193-198.

38. Entacher, K. (1998). Bad subsequences of well-known linear congruential pseudorandom
number generators. ACM Transactions on Modeling and Computer Simulation, Vol. 8, No.
1, pp. 61-70.

39. Ferrenberg, A. M., D. P. Landau, and Y. J. Wong (1992). Monte Carlo simulations: Hidden
errors from "good" random number generators. Physical Review Letters, Vol. 69, No. 23, pp.
3382-3384.

40. Fincke, U. and M. Pohst (1985). Improved methods for calculating vectors of short length
in a lattice, including a complexity analysis. Mathematics of Computation, Vol. 44, pp. 463-
471.

41. Fishman, G. S. (1996). Monte Carlo: Concepts, Algorithms, and Applications. Springer Series
in Operations Research. Springer-Verlag, New York.

42. Fishman, G. S. and L. S. Moore 111 (1986). An exhaustive analysis of multiplicative con-
gruential random number generators with modulus Z3' - 1. SIAM Journal on Scientific and
Statistical Computing, Vol. 7, No. 1, pp. 2 4 4 5 .

43. Fushimi, M. (1983). Increasing the orders of equidistribution of the leading bits of the Taus-
worthe sequence. Information Processing Letters, Vol. 16, pp. 189-1 92.

44. Fushimi, M. (1989). An equivalence relation between Tausworthe and GFSR sequences and
applications. Applied Mathematics Letters, Vol. 2, No. 2, pp. 135-137.

45. Fushimi, M. and S. Tezuka (1983). The k-distribution of generalized feedback shift register
pseudorandom numbers. Communications of the ACM, Vol. 26, No. 7, pp. 516-523.

46. Good, I. J. (1950). Probability and the Weighting of Evidence. Griffin, London.

47. Good, I. J. (1969). How random are random numbers'? The American Statistician, Vol. , pp.
4 2 4 5 .

48. Grothe, H. (1987). Matrix generators for pseudo-random vectors generation. Stutistische
H&, Vol. 28, pp. 233-238.

49. Hellekalek, P. (1995). Inversive pseudorandom number generators: Concepts, results, and
links. In C. Alexopoulos, K. Kang, W. R. Lilegdon, and D. Goldsman, editors, Proceedings
of the 1995 Winter Simulation Conference, pp. 255-262. IEEE Press.

50. Hoaglin, D. C. and M. L. King (1978). A remark on algorithm AS 98: The spectral test
for the evaluation of congruential pseudo-random generators. Applied Statistics, Vol. 27, pp.
375-377.

51. Hormann, W. and G. Derflinger (1993). A portable random number generator well suited
for the rejection method. ACM Transactions on Mathematical Sofmare, Vol. 19, No. 4, pp.
489495.

52. Huber, K. (1994). On the period length of generalized inversive pseudorandom number gen-
erators. Applied Algebra in Engineering, Communications, and Computing, Vol. 5, pp. 255-
260.

53. Hull, T. E. (1962). Random number generators. SIAM Review, Vol. 4, pp. 230-254.

134 RANDOM NUMBER GENERATION

IMSL (1987). IMSL Library User's Manual, Vol. 3. IMSL, Houston, Texas
James, F. (1990). A review of pseudorandom number generators. Computer Physics Commu-
nications, Vol. 60, pp. 329-344.
James, F. (1994). RANLUX: A Fortran implementation of the high-quality pseudoran-
dom number generator of Liischer. Computer Physics Communications, Vol. 79, pp. 11 1-
114.
Knuth, D. E. (1981). The Art of Computer Programming, Volume 2: Seminumerical Algo-
rithms, second edition. Addison-Wesley, Reading, Mass.
Koq, C. (1995). Recurring-with-carry sequences. Journal of Applied Probability, Vol. 32, pp.
966-97 1.
Lagarias, J. C. (1993). Pseudorandom numbers. Statistical Science, Vol. 8, No. 1, pp. 31-
39.
Law, A. M. and W. D. Kelton (1991). Simulation Modeling and Analysis, second edition.
McGraw-Hill, New York.

L'Ecuyer, P. (1988). Efficient and portable combined random number generators. Communi-
cations of the ACM, Vol. 31, No. 6, pp. 742-749 and 774. See also the correspondence in
the same journal, Vol. 32, No. 8 (1989), pp. 1019-1024.
L'Ecuyer, P. (1990). Random numbers for simulation. Communications of the ACM, Vol. 33,
No. 10, pp. 85-97.
L'Ecuyer, P. (1992). Testing random number generators. In Proceedings of the 1992 Winter
Simulation Conference, pp. 305-3 13. IEEE Press.
L'Ecuyer, P. (1994). Uniform random number generation. Annals of Operations Research,
Vol. 53, pp. 77-120.

L'Ecuyer, P. (1996). Combined multiple recursive random number generators. Operations
Research, Vol. 44, No. 5, pp. 816-822.

L'Ecuyer, P. (1996). Maximally equidistributed combined Tausworthe generators. Mathemat-
ics of Computation, Vol. 65, No. 213, pp. 203-213.
L'Ecuyer, P. (1997). Bad lattice structures for vectors of non-successive values produced by
some linear recurrences. INFORMS Journal on Computing, Vol. 9, No. I, pp. 5 7 4 0 .
L'Ecuyer, P. (1997). Good parameters and implementations for combined multiple recursive
random number generators. Manuscript.
L'Ecuyer, P. (1997). Tests based on sum-functions of spacings for uniform random numbers.
Journal of Statistical Computation and Simulation, Vol. 59, pp. 251-269.
L'Ecuyer, P. (1998). Tables of maximally equidistributed combined LFSR generators. Math-
ematics of Computation, To appear.
L'Ecuyer, P. (Circa 2000). TestU01: Un logiciel pour appliquer des tests statistiques B des
gknkrateurs de valeurs alkatoires. In preparation.
L'Ecuyer, P. and T. H. Andres (1997). A random number generator based on the combination
of four LCGs. Mathematics and Computers in Simulation, Vol. 44, pp. 99-107.

L'Ecuyer, P., F. Blouin, and R. Couture (1993). A search for good multiple recursive random
number generators. ACM Transactions on Modeling and Computer Simulation, Vol. 3, No.
2, pp. 87-98.
L'Ecuyer, P., A. Compagner, and J.-F. Cordeau (1997). Entropy tests for random number
generators. Manuscript.
L'Ecuyer, P., J.-F. Cordeau, and R. Simard (1997). Close-point spatial tests and their appli-
cation to random number generators. Submitted.
L'Ecuyer, P. and S. C6td (1991). Implementing a random number package with splitting facil-
ities. ACM Transactions on Mathematical Software, Vol. 17, No. 1, pp. 98-111.

L'Ecuyer, P. and R. Couture (1997). An implementation of the lattice and spectral tests for

136 RANDOM NUMBER GENERATION

99. Moreau, T. (1996). A practical "perfect" pseudo-random number generator. Manuscript.
100. Niederreiter, H. (1985). The serial test for pseudorandom numbers generated by the linear

congruential method. Numerische Mathematik, Vol. 46, pp. 51-68.
101. Niederreiter, H. (1986). A pseudorandom vector generator based on finite field arithmetic.

Marhematica Japonica, Vol. 31, pp. 759-774.
102. Niederreiter, H. (1992). Random Number Generation and Quasi-Monte Carlo Methods, vol-

ume 63 of SIAM CBMS-NSF Regional Conference Series in Applied Mathematics. SIAM,
Philadelphia.

103. Niederreiter, H. (1 995). The multiple-recursive matrix method for pseudorandom number gen-
eration. Finite Fields and their Applications, Vol. 1, pp. 3-30.

104. Niederreiter, H. (1995). New developments in uniform pseudorandom number and vector
generation. In H. Niederreiter and P. J.-S. Shiue, editors, Monte Carlo and Quasi-Monte Carlo
Methods in Scientijc Computing, number 106 in Lecture Notes in Statistics, pp. 87-120.
Springer-Verlag.

105. Niederreiter, H. (1995). Pseudorandom vector generation by the multiple-recursive matrix
method. Mathematics of Computation, Vol. 64, No. 209, pp. 279-294.

106. Owen, A. B. (1998). Latin supercube sampling for very high dimensional simulations. ACM
Transactions of Modeling and Computer Simulation, Vol. 8, No. 1, pp. 7 1-1 02.

107. Park, S. K. and K. W. Miller (1988). Random number generators: Good ones are hard to
find. Communications of the ACM, Vol. 31, No. 10, pp. 1192-1201.

108. Payne, W. H., J. R. Rabung, and T. P. Bogyo (1969). Coding the Lehmer pseudorandom
number generator. Communications of the ACM, Vol. 12, pp. 85-86.

109. Percus, D. E. and M. Kalos (1989). Random number generators for MIMD parallel proces-
sors. Journal of Parallel and Distributed Computation, Vol. 6, pp. 477497.

110. Press, W. H. and S. A. Teukolsky (1992). Portable random number generators. Computers in
Physics, Vol. 6, No. 5, pp. 522-524.

11 1. Rabin, M. 0. (1980). Probabilistic algorithms for primality testing. J. Number Theory, Vol.
12, pp. 128-138.

112. Ripley, B. D. (1987). Stochastic Simulation. Wiley, New York.
113. Ripley, B. D. (1990). Thoughts on pseudorandom number generators. Journal of Computa-

tional and Applied Mathematics, Vol. 31, pp. 153-163.
114. Schrage, L. (1979). A more portable fortran random number generator. ACM Transactions

on Mathematical Software, Vol. 5, pp. 132-138.
115. Stephens, M. S. (1986). Tests based on EDF statistics. In R. B. D'Agostino and M. S.

Stephens, editors, Goodness-of-Fit Techniques. Marcel Dekker, New York and Basel.
116. Stephens, M. S. (1986). Tests for the uniform distribution. In R. B. D'Agostino and M. S.

Stephens, editors, Goodness-of-Fit Techniques, pp. 33 1-366. Marcel Dekker, New York and
Basel.

117. Sun Microsystems (1991). Numerical Computations Guide. Document number 800-5277-10.
118. Tausworthe, R. C. (1965). Random numbers generated by linear recurrence modulo two.

Mathematics of Computation, Vol. 19, pp. 201-209.
119. Teichroew, D. (1965). A history of distribution sampling prior to the era of computer and its

relevance to simulation. Journal of the American Statistical Association, Vol. 60, pp. 2749 .
120. Tezuka, S. (1995). Uniform Random Numbers: Theory and Practice. Kluwer Academic Pub-

lishers, Norwell, Mass.
121. Tezuka, S. and P. UEcuyer (1991). Efficient and portable combined Tausworthe random num-

ber generators. ACM Transactions on Modeling and Computer Simulation, Vol. 1, No. 2, pp.
99-1 12.

122. Tezuka, S., P. L'Ecuyer, and R. Couture (1994). On the add-with-carry and subtract-with-bor-

REFERENCES 137

row random number generators. ACM Transactions of' Modeling and Cornputer Simulation,
Vol. 3, No. 4, pp. 315-331.

123. Tootill, J. P. R., W. D. Robinson, and D. J. Eagle (1973). An asymptotically random Taus-
worthe sequence. Journal o f the ACM, Vol. 20, pp. 469-481.

124. Vazirani, U. and V. Vazirani (1984). Efficient and secure pseudo-random number genera-
tion. In Proceedings of the 25th IEEE Symposium on Foundations of Computer Science, pp.
458463.

125. Wang, D. and A. Compagner (1993). On the use of reducible polynomials as random number
generators. Mathematics of Computation, Vol. 60, pp. 363-374.

126. Wichmann, B. A. and I. D. Hill (1982). An efficient and portable pseudo-random number
generator. Applied Statistics, Vol. 31, pp. 188-190. See also corrections and remarks in the
same journal by Wichmann and Hill, Vol. 33 (1984) p. 123; McLeod Vol. 34 (1985) pp.
198-200; Zeisel Vol. 35 (1986) p. 89.

127. Wolfram, S. (1996). The Mathemutica Book, third edition. Wolfram MedialCambridge Uni-
versity Press, Champaign, USA.

CHAPTER 5

Random Variate Generation

RUSSELL C. H. CHENG

University of Kent at Canterbury

5.1 INTRODUCTION

In Chapter 4 the generation of (pseudo)random numbers was discussed. In this chapter,
by rundom number is always meant a uniform random variable, denoted by RN(O,I),
whose distribution function is

Thus random numbers are always uniformly distributed on the unit interval (0,l). Ran-
dom number generation is an important topic in its own right (see Chapter 4). In contrast,
random variate generation always refers to the generation of variates whose probability
distribution is different from that of the uniform on the interval (0,l). The basic problem
is therefore to generate a random variable, X, whose distribution function

is assumed to be completely known, and which is different from that of (I).
Most mainframe computing systems contain libraries with implementations of gen-

erators for the more commonly occurring distributions. Generators are also available in
many of the existing statistical and simulation packages for personal computers. Choice
of a generator often has as much to do with properties of the distribution to be used, as
with the properties of the generator itself. In the description of specific generators given
below, emphasis is therefore given to the underlying characteristics of the distributions
being considered and in the relations between different distributions. This information
should be useful in aiding the understanding of properties of generators. The intention
is to allow an informed choice to be made, and the algorithms will then not need to be

Hundbook of Simulation, Edited by Jerry Banks.
ISBN 0-471-13403-1 O 1998 John Wiley & Sons, Inc.

140 RANDOM VARIATE GENERATION

treated so much as black box implementations. Additionally, general principles and gen-
eral methods of random variate generation are described which will enable the reader
to construct generators for nonstandard distributions.

Random variable generators invariably use as their starting point a random number
generator, which yields RN(O,l), with distribution given by (1). The technique is to
transform or manipulate one or more such uniform random variables in some efficient
way to obtain a variable with the desired distribution (2). In this chapter it will be
assumed that a source of random numbers is available. In addition to being uniform, the
random numbers must also be mutually independent. A significant problem, discussed
in Chapter 4, is to construct generators which produce random numbers that can safely
be treated as being independent. It will be assumed in what follows that such a random
number generator is available. In what follows it is assumed that a sequence of numbers
produced by such a generator: { U I , U 2 , . . .) behaves indistinguishably from a sequence
of independently distributed RN(0,l) variates.

As with all numerical techniques, there will usually be more than one method avail-
able to generate variates from some prescribed distribution. Four factors should be con-
sidered in selecting an appropriate generator:

1. Exactness. This refers to the distribution of the variates produced by the gener-
ator. The generator is said to be exact if the distribution of variates generated has the
exact form desired. In certain applications where the precise distribution is not critical,
a method may be acceptable which may be good as far as the other factors are con-
cerned, but which produces variates whose distribution only approximates that of the
desired one.

2. Speed. This refers to the computing time required to generate a variate. There
are two contributions to the overall time. Usually, an initial setup time is needed to
construct constants or tables used in calculating the variate. Calculation of the variate
itself then incurs a further variable generation time. The relative importance of these
two contributions depends on the application. There are two cases. The more usual one
is where a sequence of random variates is needed, all with exactly the same distribution.
Then the constants or tables need be setup only once, as the same values can be used
in generating each variate of the sequence. In this case the setup time is negligible and
can be ignored. However, if each variate has a different distribution, this setup time will
be just as important, since in this case it has to be added to every marginal generation
time.

3. Space. This is simply the computer memory requirement of the generator. Most
algorithms for random variate generation are short. However, some make use of exten-
sive tables, and this can become significant if different tables need to be held simulta-
neously in memory.

4 . Simplicity. This refers to both the algorithmic simplicity and the implementational
simplicity. Its importance depends on the context of the application. If, for example, the
generator is needed in a single study, a simple generator that is easy to understand and to
code will usually be more attractive than a complicated alternative even if the latter has
better characteristics as far as other factors are concerned. If variates from a particular
distribution are needed often and there is not already a library implementation, it will
be worthwhile selecting a generator that is exact and fast and to write an efficiently
coded version for permanent use.

In general, random variate generation will be only an incidental part of a computer

5.2 GENERAL PRINCIPLES 141

simulation program. The users who need to make their own generator will usually there-
fore not wish to spend an inordinate time writing and testing such generators. Preference
has thus been given below to specific methods which are simple and reasonably fast
without necessarily being the fastest.

Section 5.2 covers general principles commonly used in variate generation. Section
5.3 then discusses how these ideas are specialized for continuous random variables,
together with specific algorithms for the more commonly occurring continuous distri-
butions. Section 5.4 repeats this discussion for the case of discrete random variables.
Section 5.5 covers extensions to multivariate distributions. In Section 5.6 we discuss
the generation of stochastic processes.

Good references to the subject are refs. 1 to 3. A good elementary introduction to
the subject is given in ref. 4, Chapter 9. A more advanced discussion is given in ref. 5,
Chapter 3.

5.2 GENERAL PRINCIPLES

As mentioned in Section 5.1, from now on it is assumed that a (pseudo) random number
generator is available that produces a sequence of independent RN(0,l) variates, with the
understanding that each time this function is called, a new RN(0,I) variate is returned
that is independent of all variates generated by previous calls to this function.

5.2.1 Inverse Transform Method

When X is a continuously distributed random variable, the distribution can be defined by
its density function f (x). The density function allows the probability that X lies between
two given values a and b(> u) to be evaluated as

From its definition, (2), it will be seen that the distribution function in this case can be
evaluated from the density function as the integral

The distribution function is thus strictly increasing and continuous (Figure 5. I). In this
case, for any 0 < u < 1, the equation F(x) = u can be solved to give a unique x. If (and
this is the critical proviso) the inverse of a distribution function can be expressed in a
simple form, this process can be denoted by rewriting the equation in the equivalent
form x = F 1 (u) ; so that x is expressed as an explicit function of u. This function F '
is called the inverse of F. This yields the following convenient method for generating
variables with the given distribution function F.

142 RANDOM VARIATE GENERATION

Figure 5.1 Inverse transform method X = F - ' (u) , continuous distribution.

Inverse Transform Method (Continuous Case)

Let U = RN(O,l)
Return X = F - I (U)

To show that it works, all that is needed is to verify that the distribution function of X
is indeed F [i.e., that Pr(X I x) = F(x)]. Now

Pr(X I x) = P~[F- ' (u) I x] = Pr[U I F(x)]

But the right-hand probability is the distribution function of a uniform random variable
evaluated at the value F(x), and from (1) this is equal to F(x), as required.

The best known and most useful example is when X is an exponentially distributed
random variable with mean a > 0. Its distribution function is

l e x p j ~) x > O
F(x) =

otherwise

Solving u = F(x) for x in this case yields

A random variate with distribution function (3) is therefore obtained by using this for-
mula (4) to calculate X, with u generated as a U(0, 1) variate.

5.2 GENERAL PRINCIPLES 143

Figure 5.2 Inverse transform method X = F - ' (U) , exponential distribution

Example I Figure 5.2 illustrates the use of the formula in the case when a = 1.
The curve is the distribution function F(x) = 1 - e-I. Two random variates have been
generated using (4). For the first variate the random number is ul = 0.7505 and this is
depicted on the vertical (y) scale. The horizontal distance at this vertical height from
the y-axis to the graph of F(x) is xl = - ln(1 - 0.7505) = 1.388. This is the correspond-
ing exponential variate that is generated. Similarly, the random number u2 = 0.1449
generates the exponential variate value x;? = 0.1565.

Random variates from many distributions can be generated in this way. The most
commonly occurring are listed in Section 5.5.2. Johnson [6] lists the following additional
cases.

1. Burr:

2. Laplace:

ln(2u) u s 4
F - I (u) =

l n [2 (1 - u)] u > $

144 RANDOM VARIATE GENERATION

3. Logistic:

4. Pareto:

In all these cases further flexibility is afforded by rescaling (a) and relocation (b)
using the linear transformation

although some care may be needed in interpreting the meaning of a and b in particular
contexts.

The inverse transform method extends to discrete random variables. Suppose that X
takes only the values X I , x2, . . . , x, with probabilities p; = Pr(X = xi) such that x:=, p;
= 1. The distribution function for such a variable is

It can be verified (see, e.g., ref. 2) that if the inverse is defined by

the inverse transform method will still work despite the discontinuities in F(x) (see
Figure 5.3). Moreover, we still have Pr(X I x) = F(x), so that X generated in this way
has the required discrete distribution. The method reduces to:

Inverse Transform Method (Discrete Case)

Let U = RN(0,l)
Let i = 1
While (F (x i) < U) {i = i + 1)
Return X = xi

Because the method uses a linear search, it can be inefficient if n is large. More
efficient methods are described later.

If a table of x; values with the corresponding F(x;) values is stored, the method is
also called the table look-up method. The method runs through the table comparing U
with each F(x;), and returning, as X, the first x; encountered for which F(xi) 2 U .

5.2 GENERAL PRINCIPLES 145

Figure 5.3 Inverse transform method X = F - ' (u) , Bin(4, 0.25) distribution.

Example 2 The well-known binomial distribution Bin(n,p), described later, is an
example of a discrete distribution. The possible values that X can take in this case are 0,
1, . . . n, with probabilities that depend on the parameters p and n (the general formula
is given below). For the case n = 4 and p = 0.25, the possible values are x, = i for i =

0, I , 2, 3, 4; and the distribution function is given in Table 5.1.
The table look-up method works as follows. Suppose that u = 0.6122 is a given

random number. Looking along the row of F(x,) values, it will be seen that F(xo) =

0.3164 < u = 0.6122 < F(xl) = 0.7383. Thus xl = 1 is the first x, encountered for which
u I F(x,). The variate generated in this case is therefore X = 1. The generation of this
particular variate is depicted geometrically in Figure 5.3.

Sometimes the test of whether F(x;) < u takes a simple and explicit algebraic form.
An example is the geometric distribution described below.

5.2.2 Acceptance-Rejection Method

The acceptance-rejection method is most easily explained for a continuous distribution.
Suppose that we wish to sample from the distribution with density f(x) but that it is
difficult to do so by the inverse transform method. Suppose now that the following three
assumptions hold (see also Figure 5.4):

1. There is another function e(x) that dominates f(x) in the sense that e(x) > f'(x)
for all x.

TABLE 5.1 Distribution of Bin(4,0.25)

i 0 1 2 3 4

146 RANDOM VARIATE GENERATION

I 7

,
, a

) X
X X X X

I Accepted X's

Figure 5.4 Acceptance-rejection method, points uniformly scattered under e(x), gamma distri-
bution with b = 2.

2. It is possible to generate points uniformly scattered under the graph of e(x) (above
the x-axis). Denote the coordinates of such a typical point by (X, Y).

3. If the graph off (x) is drawn on the same diagram, the point (X, Y) will be above
or below it according as Y > f(X) or Y I f(X).

The acceptance-rejection method works by generating such points (X, Y) and return-
ing the X coordinate as the generated X value, but only if the point lies under the graph
off (x) [i.e., only if Y I f(X)]. Intuitively it is clear that the density of X is proportional
to the height o f f , so that X has the correct density. A formal proof can be found in
ref. 3.

There are many ways of constructing e(x). One requirement is that the area between
the graphs off and e be small, to keep the proportion of points rejected small, as such
points represent wasted computing effort. A second requirement is that it should be
easy to generate points uniformly distributed under e(x). The average number of points
(X, Y) needed to produce one acceptable X will be called the trials ratio. Clearly, the
trials ratio is always greater than or equal to unity. The closer the trials ratio is to unity,
the more efficient is the resulting generator.

A neat way of constructing a suitable e(x) is to take e(x) = Kg(x), where g(x) is the
density of a distribution for which an easy way of generating variates already exists. It
can be shown that if X is a variate from this density, then points of the form (X, Y) =

(X, KUg(X)), where U is a RN(0,I) variable that is generated independently of X, will
be uniformly distributed under the graph of e(x). For a proof of this result see Devroye
[I]. Usually, K is taken just large enough to ensure that e(x) 2 f(x) (see assumption 1
above).

The trials ratio is precisely K. The method is thus dependent on being able to find
a density g(x) for which K can be kept small.

A nice example of this last technique is the third method given below for generating
from the gamma distribution GAM(1, b), due to Fishman [7] . The method is valid for
the case b > 1. The distribution has density f(x) = x b - ' exp(-x)/r(b), x > 0. There
is no general closed-form expression for the distribution function, so the inverse trans-

5.2 GENERAL PRINCIPLES 147

form method is not easy to implement for this distribution. Fishman's method takes an
exponential envelope e(x) = K exp(-x/b)/b. A little calculation shows that if we set

then e(x) 2 j (x) for all x 2 0. For values of b close to unity, K also remains close to
unity and K does not increase all that fast as b increases (K = 1 when b = 1 , K = 1.83
when b = 3, and K = 4.18 when b = 15). The method is thus convenient when gamma
variates are needed for b not too large, which is often the case. Figure 5.4 illustrates
the envelope and the gamma distribution for the case b = 2, showing how the envelope
fits quite neatly over the gamma density function, even though its shape is somewhat
different.

5.2.3 Composition Method

Suppose that a given density f can be written down as the weighted sum of r other
densities:

where the weights, pi, satisfy p, > 0 and Cr=, p i = 1. The density f is then said to be
a mixture or a compound density. An example of where such a mixture of distributions
occurs is a queueing simulation where customer arrivals are composed of a mixture
of different customer types, each with its own arrival pattern. If methods exist for the
generation of variates from the component densities f i , the following method can be
used to generate from the mixture density.

Composition Method

Setup: Let F I = ~ : = l p , for j = 1 , 2, . . . , r
Let U = RN(0,l)
Set 1 = 1
While (FL < U) {i = i + l]
Return X = XL, a varlate drawn from the density f,

The method simply selects the ith component distribution with probability pi and then
returns a variate from this distribution.

One use of the method is to split up the range of X into different intervals in such
a way that it is easy to sample from each interval. Another common use is where the
first component is made easy to generate from and also has a high probability of being
chosen. Then the generator will probably generate from this easy distribution and will
only occasionally have to resort to generation from one of the other distributions. Several
fast normal variate generators have been constructed in this way [I].

RANDOM VARIATE GENERATION

Figure 5.5 Translation of a distribution using a location parameter.

5.2.4 Translations and Other Simple Transforms

Although not strictly a method in its own right, often a random variable can be obtained
by some elementary transformation of another. Many explicit generators fall into this
category. For example, a lognormal variable is simply an exponentiated normal variable;
a chi-squared variable with one degree of freedom (X f) is simply a standard normal
variable that has been squared. Even more elementary than such transformations, but
forming a broad class, are the location-scale models. If X is a continuously distributed
random variable with density function f (x), say, we can rescale and reposition the dis-
tribution by the linear transform

where a is a given scale constant (typically, a > 0) and b is a given location constant.
The variable Y is thus a location-scale version of X and has density g(y) given by

Note that if X has a restricted range, Y will be restricted, too. For example, if X > 0,
then Y > b (if a > 0). Figure 5.5 illustrates a random variate X that has been translated
to a new location that is b units away from its original position.

Below we shall give distributions in their most commonly used form. Sometimes this
form incorporates the location-scale formulation; an example is the normal distribution.
Sometimes this form incorporates the scale parameter but not the location parameter;
an example is the Weibull distribution. It is left to the reader to extend these forms to
their full version if needed.

5.3 CONTINUOUS DISTRIBUTIONS 149

5.3 CONTINUOUS DISTRIBUTIONS

5.3.1 lnverse Transform by Numerical Solution of F(X) = U

In this section we list generators for a number of commonly occurring continuous distri-
butions. If a generator is required for a distribution not listed and the inverse distribution
is not expressible in simple terms, the inverse transform method can still be employed
by solving F(X) = U numerically for X. The following bisection method is one way of
doing this.

Inverse Transform Method by Bisection

Setup: Let6= 0.001, say
Let U = RN(0,l)
Let a = -1.0 While(F(a) > U) {a = 2a]
Let b = +1.0 While (F(b) < U) {b= 2bl
While (b - a > 6) {
X= (a + b)/ 2
~f (F(x) 5 U) a = X
Else b = X

I

Notes:

1. The generator assumes that F(x) can be calculated for all x.

2. The method first finds an interval (a, b) in which X lies and then checks the mid-
point of the interval to see which side of this X lies on. This reduces the length of
the interval of uncertainty for X by half. The process is repeated by considering
the midpoint of this reduced interval, and so on, until the width of the interval of
uncertainty for X is reduced to a prescribed, sufficiently small, value 6.

3. The initial interval (a , b) in which X lies is obtained by setting arbitrary initial
values for a and b (i.e., a = - I and b = 1). These values are then doubled repeat-
edly until a 5 X 5 b. This procedure can be replaced by a more efficient one if a
convenient one exists. For example, if X is positive, the setup for a can become

For unimodal densities with known mode X,, the following alternative is quicker.
(See ref. 1 for details on how the method works.)

Inverse Transform Method by Newton-Raphson Iteration

Setup: 6 = 0.001, Y,= F(Xm)
Let U = RN(0,l) Set X = X,T, Y = Y ,,, h = Y U

~hile(lh1 >6) {
X = X h / f (X)
h = F(X) - U

I
Return X

150 RANDOM VARIATE GENERATION

Notes:

1. Convergence is guaranteed for unimodal densities because F (x) is convex for
x E (-=, Xm), and concave for x E (X,, m).

2. The tolerance criterion guarantees that the value of F (X) for the X value returned
will be within 6 of U . However, it does not guarantee that X will be close to the
exact solution of F (X) = U .

With both previous generators, if F (x) is not known, it can be evaluated from the
integral of the density f (x) :

using numerical quadrature. This is likely to be a slow procedure.

5.3.2 Specific Continuous Distributions

Uniform U(a, b), a < b

Density:

1
a < x < b

otherwise

Distribution Function:

Generator: Inverse transform method:

L e t U = RN(0,l)
R e t u r n X = a + (b- a) U

Exponential EXP(a), a > 0

Density:

X x > o

f (x) =
otherwise

5.3 CONTINUOUS DISTRIBUTIONS 151

Distribution Function:

X
1 - e x p (;) x > 0

F (x) =

otherwise

Generator: Inverse transform method:

Generate U = RN (O , 1)
Return X = -a In (1 - Ci)

Note: The parameter a > 0 is the mean of the distribution. The rate parameter is a - ' .

Weibull WEIB(a, b), a, b > 0

Density:

(0 otherwise

Distribution Function.

(0 otherwise

Generutor: Inverse transform method:

Notes:

1. Some references replace 1 - U with U in the final formula for X, as this also has
the U (0 , I) distribution. However, this is not usually recommended; see ref. 3.

2. The parameters a , b > 0 are scale and shape parameters, respectively.

3. The special case b = 1 is the exponential distribution.

4. If X is a Weibull variate, xb is an exponential variate with mean ab. Conversely,
if E has exponential distribution with mean ab, then E'/" is Weibull with scale
and shape parameters a and b , respectively.

152 RANDOM VARIATE GENERATION

Extreme Value EXTREME(p, a), u > 0

Density:

Distribution Function:

Generator: Inverse transform method:

Let U = RN(0,l)
Return X = -a In [-ln (U) I + p

Note: The extreme value distribution is sometimes given in the form where X is the
negative of that given here.

Gamma GAM(a,b), a,b > 0

Density:

L O otherwise

where r (b) is the gamma function:

Distribution Function: No simple closed form.

Here a > 0 and b > 0 are scale and shape parameters, respectively. The key parameter
is the shape parameter, and no single method of generation is satisfactory for all values
of b. The following methods cover different ranges of b.

Generator 1. Acceptance-rejection given by Ahrens and Dieter [8]; requires that 0 <
b < I:

Setup: P = (e + b)/e where e = 2.71828 . . . is the base of the natural
logarithm.
While (True) {
Let U= RN(O,l), W = f l U
If (W< l){
Let Y = wl/b, V = RN(O,I)
If ('VS e-Y) Return X = aY

5.3 CONTINUOUS DISTRIBUTIONS 153

I
E l s e {

L e t Y = - l n [(p - W)/ b] , V = R N (0 , I)

I f (V S y h l) R e t u r n X = d Y

I
I

Generator 2. Acceptance-rejection Cheng [9] ; requires that b > 1 :

S e t u p : a = (21,-1)'/" , = b b 1 n 4 , y = b + a - l , 6 = l + l n 4 . 5 .

W h i l e (T r u e) (
L e t U1 = R N (O , l) , U 2 = R N (0 , 1)
L e t V = a l n [~ ~ / (l - U l)] , Y = bev, Z = u ~ u ~ , W = + y V - Y

~f (~ + 6 - 4 . 5 Z > O) {
R e t u r n X = a Y

I
E l s e {

If (W 2 I n Z) R e t u r n X = aY

I
I

Note: The trials ratio improves from 4/e = 1.47 to (4/7r)'/' = 1.13 as b increases
from I to 00.

Generator 3. Acceptance-rejection Fishman [7]; requires that b > I . The method is
simple and is efficient for values of b < 5, say:

W h i l e (T r u e) {
L e t UL = R N (0 , 1) , U2 = R N (0 , 1) , VI = - I n U1, V2 = - I n ii2
I f (v, > (b - 1) (V1 - I n V1 - 1)) {

R e t u r n X = a V l

I
I

Note: The trials ratio degrades from unity at b = 1 , to 2.38 at b = 5, to 2.84 at b =
7.

k-Erlang ERL(m, k), m > 0, k a Positive Integer

Density: Same as that of GAM(m/k, k) [i.e., GAM(a, h) with a = rnlk and b = k (an
integer)]

Distribution Function: No closed form except for the case k = 1 .

Generator 1. If X is a k-Erlang variate with mean rn, it is the same as the sum of k
independent exponential variates each with mean rnlk:

L e t U1 = R N (O , l) , U2 = R N (O , I) , . . . , U k = R N (0 , l)

R e t u r n X = (m / k) l n [(l - U l) (I - U2) . . . (I - U k)]

154 RANDOM VARIATE GENERATION

Generator 2. Generate X as a gamma variate with a = m / k and b = k:

Return X = GAM (m / k , k)

Note: The first method is more efficient for small values of k (k < 10, say). For
larger values of k, the second method is faster and not to subject to finite arithmetic
error through repeated multiplication of quantities all less than unity as might occur
with the first method.

Normal N(K, u2), u > 0

Density:

Here p is the mean and a 2 is the variance of the distribution.

Distribution Function: No closed-form expression.

Generator: Polar version of the Box-Muller [lo]; special transform:

While (T r u e) {
Generate U1, U 2 , RN (0,l) v a r i a t e s .
Let V , = 2u1 - 1, V, = 2u2 - 1, W = V: + V$
I f (W < l){

L e t Y = [(- 2 I n FI) / w l 1 I 2
Return X I = p + u V I Y and X2 = p + aV2Y
I

I

Notes:

1. The method returns pairs of independent normal variates, each with mean p and
variance a 2 . If only one variate is needed each time, just XI can be returned; the
method is then not as efficient, as X2 is not used even though most of the work
to get it is done.

2. There are many alternative methods. The one shown above is one of the sim-
plest and is reasonably fast. The original Box-Muller method simply returns XI
= Rcos T and X2 = R sin T, where R = [-2 In(UI)] and T = 2aU2. This is elegantly
simple but does require the relatively slow calculation of a sine and a cosine.

3. The standard normal distribution is where p = 0 and a = 1.

Chi-Squared with k Degrees of Freedom X2(k), k a Positive Integer

Density and Distribution Function: These are the same as those of G A M (2 , k / 2) .
Generator I : Use the relationship with the gamma distribution:

Return X = GAM(2 , k / 2)

5.3 CONTINUOUS DISTRIBUTIONS 155

Generator 2: When k is even, use the relationship with the k-Erlang distribution:

Return X = ERL (k, k/2)

Generutor 3: When k is small and a fast normal variate generator is available, use
the fact that X 2 (k) is the sum of k independent squared standard normal vari-
ates:

Return X

t-Distribution t(v), v a Positive Integer

Density:

This is called the t-distribution with v degrees of'freedorn.

Generator: Use the fact that X = t (v) has the same distribution as the ratio z/G,
where Z is a standard normal variate and Y is a X 2 (~) variate independent of Z:

Let Z = N (o , I) , W =
Return X = z/W

Lognormal LN(p, a'), cr > 0

Density:

Distribution Function: No simple closed form.

Generator: Use the property that if Y is N (p , a 2) , then X = eY is LN(p , u 2) :

L e t Y = N (p , a ")
Return X = eY

Note: If I9 and T~ are the mean and variance of the lognormal, respectively, they are
related to p and a 2 by the formulas

I9 O 2 + r 2
p = In and a 2 = l n -

2/82+72 0'

So to generate lognormals with given mean and variance, these formulas should be used
in computing the correct p and u 2 to use in the generator.

Density:

L O otherwise

where B(p, q) is the beta function:

and p, q > 0 are shape parameters.
Distribution Function: No closed form in general.
Generator I: If G I and G2 are independent GAM(a, p) and GAM(a, q) gamma vari-

ates, then X = G I / (G I + G2) is a BETA(p,q) variate:

Let G, = GAM(a,p)
Let G2 = GAM(a, q)
Return X = G ~ / (GI + G2)

Generator 2: For p, q > 1 , Cheng (1 11 gives the following acceptance-rejection
method with bounded trials ratio (< 4/e = 1.47):

Generator 3: For p ,q < 1, Johnk [12] gives the following acceptance-rejection
method:

Do {
Let U = RN(0, I), V = RN(0,l)
y= u1/P, z= v1/9

}While(Y+ Z > 1)
ReturnX= Y/(Y+ Z)

Inverse Gaussian IG(p, A), A > 0, p > 0

Density:

5.3 CONTINUOUS DISTRIBUTIONS 157

Distribution Function:

where cP is the distribution function of N(0, I) , the standard normal distribution.

Generator: Use the many-to-one transformation of Michael et al. [I 31:

Setup: Let 6 = h / p
Let Z = N (O , 1) , Y = z2
Let T = 1 + (Y - J .) / (~ +)

Let U = R N (O , 1)
I f (u 5 1 / (1 + T)) R e t u r n X = p T

Else Return X = p / T

Notes:

1. The method is based on the fact that

is a chi-squared variable with one degree of freedom when X is an IG(p,X) vari-
able. If Y is generated as a chi-squared variate and equation (5) solved for X,
this gives two possible values for X: X = pT or X = p/T. The randomized choice
ensures that the resulting overall distribution of X is IG(p,X).

2. The parameterization using 41 = X/p as shape parameter rather than X is often
preferable, as the shape, when measured by +, is invariant as p varies.

Pearson Type V PTS(a, b), a, b > 0

Density:

(0 otherwise

where a is a scale parameter and b a shape parameter.

Generator: X = PTS(a, b) is precisely the same as the reciprocal of a gamma variate
with scale l / a and shape b:

R e t u r n X = ~ / G A M (l l a , b)

Note: The mean is a / (b - I) , which exists only when b > I . So b must be set greater
than unity if the variates generated are to have finite mean.

158 RANDOM VARIATE GENERATION

Pearson Type VI PT6(a, p, q), a, p, q > 0

Density:

L O otherwise

Scale parameter a > 0 and shape parameters p, q > 0.

Generator I : Use the fact that X = PT6(l,p, q) has precisely the same distribution as
Y/(1 - Y) , where Y = BETA(p, q). This is known as a beta variate of the second
kind [14]:

L e t Y = B E T A (p , q)
R e t u r n X = aY/ (1 - Y)

Generator 2: Use the fact that if Y I = GAM(a,p) and y2 = GAM(a, q) , with Y 1 , Y2
independent, then Y1/Y2 has the same distribution as PT6(a,p, q):

L e t Y1 = GAM (a , p) , Y2 = GAM (a , q)
R e t u r n X = Y1/Y2

Note: The mean is ap/(q - l) , which exists only when q > 1.

F-Distribution F(v I , up), v I , up Positive Integers

Density and Distribution Function: This is a distribution frequently used in statis-
tical tests. It is known as the F-distribution with vl and v2 degrees of freedom.
It is a special case of PT6, being the same distribution as PT6(a,p, q) with a =

v2/v1, p = v1/2, q = v2/2.
Generator: Use the fact that X = F(v1, v2) has the same distribution as the ratio of

two independent X 2 variates each scaled by its own mean:

Triangular TRl(a, b, c), a < b < c

Density:

f (x) =

2(x - a)
a l x l b

(0 otherwise

The shape of the density gives the distribution its name (see Figure 5.6).

5.3 CONTINUOUS DISTRIBUTIONS 159

Figure 5.6 Density function for the triangular distribution

Distribution Function:

Generator: F(x) can be inverted. The inverse transform method gives

S e t u p : P = (b - - a) / (c a)
L e t U = RN(0,l)
I ~ (u < ~) T = & C I

E l se T = 1 - d (1 - 6) (1-U)
R e t u r n X = a + (c- a) T

Cauchy CAUCHY(a, b), b > 0

Density:

Distribution Function:

1 1 x - a
F(x) = - + - arctan -- - m < x < w

2 x b

Generator: The distribution function can be inverted. The inverse transform method
gives

Let U = RN(0,I)
Return X = a + b t a n i r U

160 RANDOM VARIATE GENERATION

Notes:

1. The distribution does not have a finite mean, even though it is symmetric about
a. The distribution has long tails.

2. The ratio of two independent standard normal variates has the CAUCHY(0,l)
distribution.

von Mises VM(K), K > 0

Density:

where I. is the modified Bessel function of the first kind of order zero (see
Abramowitz and Stegun [15] for details of the Bessel function).

Generator: Use the Best and Fisher [16] rejection method:

Setup r = 1 + d G D p = (r-&)/(2K) s = (1 + p2)/(2p)
Do I
u= U(-1, I) , v = U(-1, 1)
z = cos ?fu
w= (1 + SZ)/(S + Z)
Y = K (s - W)
)While (W(2 - W) < VAND ln(W/V) + 1 < W)

Return X = sgn U/ cos W

Note: X is the random angle of the direction on a circle.

Empirical Distribution EDF(x,, x,, . . . , x,,)
Distribution: Suppose that xl, x.2, . . . , xn is a random sample of size n. A piecewise

linear distribution function can be constructed corresponding to this sample as
follows. First sort the x's into ascending order: x(l) I: x(z, I . . . I x(,). The
smoothed empirical distribution function is then

Generator: The smoothed distribution function can be inverted. Using the inverse
transform method gives

Let U=RN(O,l), A = (n- l)U, i = trunc (A) + 1
Return X = + (A - i + 1) (~ (i + ~) - x (~ ,)

Here trunc(A) denotes integer part of A.

5.4 DISCRETE DISTRIBUTIONS 161

5.4 DISCRETE DISTRIBUTIONS

The general methods of Section 5.2 are in principle available for constructing discrete
variate generators. However. the special characteristics of discrete variables imply that
modifications of the general techniques are usually necessary. Two general methods
are especially useful: the look-up table method and the alias method. In what follows
trunc(x) and frac(x) mean the integer and fractional part of x.

5.4.1 Look-up Tables

The basic technique was described in Section 5.2.1. If the table is large, the look-up
procedure can be slow, with the ith value requiring i steps to find. A simple alternative
is to use a binary search to home in more rapidly on the value to be returned. We assume
that the distribution has the form

For distributions where the number of points extends to infinity, an appropriate cutoff
for the distribution must be made. For example, set n so that

P, > 1 - 6 = 0.99999, say

The precise value of the cutoff has to be selected carefully. For example, if the simu-
lation involves tail probabilities that are important, 6 must be chosen small enough to
enable these probabilities to be estimated sufficiently accurately.

Look-up by Binary Search

Let U = RN(O,I), A = 0 , B = n

W h i l e (A < B 1){
i = trunc[(A+ B)/ 2 1
If(U> P i) A = i
Else B = i
1

Return X = Xi

An alternative is to make a table of the starting points approximately every (n/m)th
entry, in the same way that the letters of the alphabet form convenient starting points
for search in a dictionary.

Look-up by Indexed Search. Set up the index table:

i = O
For (j = O t o m - I){

W h i l e (P , < j / r n) { i = i + 1)
Q , = i
1

162 RANDOM VARIATE GENERATION

Let U= R N (o , ~) , j= trunc(mU) i = Q ,
J

Wh i l e (U2 Pi) { i = i + 1)
Return X = Xi

5.4.2 Alias Method

The alias method, proposed by Walker [17], gives a way of returning a value from a
table without searching. For a more recent reference, clear explanation is given in ref. 3.
Assume that the distribution still has the form (6). We select a value of j in the range(1,
2, . . . , n) all with equal probability. We then return one of two values: either the selected
j which we return with probability qj, or a precomputed alternative called the alias of
j: a(j) , which is returned with probability 1 - qj. The a (j) and qj are selected to ensure
that overall, the probability of returning each j is pj, as required. A setup that does not
need linked lists is given below. For a discussion of how it works and faster versions
of the setup using linked lists, see ref. 2. (The definition and implementation of linked
lists is discussed in ref. 3.)

Setup for Alias Method

For(j= 1 t o n) {
Let q j = 1 , r j = pj, t j = True

1
For(k= 1 t o n - I){

rmi, = 2 . 0
F o r (1 = 1 t o n) {

I£ (ri = r j) Exit
t i = ~ a 1 s e , a (i) = j , q i = n r i , rj= r j - (1 - q i) / n

1

Alias Method

5.4.3 Empirical Distribution

Empirical distributions can be handled as a special case of a discrete distribution. Sup-
pose that XI, x2, . . . , X, is a random sample of size n. Assume that each value has equal
probability of occurring:

Then variates can be generated from this discrete distribution using

L e t U = R N (O , l) , i = t r u n c (n U) + 1

Return X = xl

Sampling Without Replacement; Permutations
The following modification (see ref. 18) allows sampling of m 5 n items from the
random sample X I , xz, . . . , x , of size n, without replacement. To avoid losing the original
order, assume that the x's are held in the array a;, i = 1, 2, . . . , n:

F o r (j = l t o m) {
Let U = R N (O , l) , i = t r u n c [(n j + 1) U l + j
a = a . , a =ai, a,= a 1 7

1
R e t u r n a!, a2, . . . , am

The routine progressively swaps each entry with one drawn from the remaining list.
At the end of the call the entries in the first m positions (i.e., a , , 02, . . . , a,) contain the
elements sampled without replacement. The advantage of this algorithm is that repeated
calls to it give further samples. The special case m = n generates a random permutation
of the initial sample.

5.4.4 Specific Discrete Distributions

The general look-up table or alias method is available for all the distributions listed
below. So these two general methods will not be stated explicitly in individual cases
unless there is a special interest in doing so.

Bernoulli BER(p), 0 < p < 1

Probability Mass Function:

x = { 1 with probability p
0 with probability 1 - p

This represents a trial with probability p of success and probability (1 - p) of failure.

Generator: Elementary look-up table:

Let U = R N (0 , l)
If (U S p) R e t u r n X = 1
Else R e t u r n X = 0

164 RANDOM VARIATE GENERATION

Binomial BIN(n, p), n a Positive Integer, 0 < p < 1

Probability Mass Function:

(0 otherwise

where

is the binomial coejjicient.

Generator: Use the special property that X = BIN(n,p) if it is the sum of n inde-
pendent B E R (p) variables:

X = 0
For(i = 1 ton){
Let B = B E R (p) , X = X + B

I
Return X

Note: The generation time increases linearly with n. One of the general methods
will be preferable for n large (> 20, say).

Geometric GEOM(p), 0 < p < 1

Probability Mass Function:

p = { - pIX x = O , l , ...
otherwise

This gives the number of failures before the first success is encountered in a sequence
of independent Bernoulli trials.

Generator: The distribution function is invertible:

Setup: a = l/ln (1 - p)
Let U = R N (O , l)

Return X = trunc (a In U)

Negative Binomial NEGBIN(n, p), n an Integer, 0 < p < 1

Probability Mass Function:

l o otherwise

5.4 DISCRETE DISTRIBUTIONS 165

This gives the number of failures before the nth success is encountered in a sequence
of independent Bernoulli trials.

Generator: By definition this variable is the sum of n independent GEOM(p) vari-
ables:

X = 0

F o r (i = l t o n) {
L e t Y = G E O M (p) , X = X + Y

I
R e t u r n X

Note: The generation time increases linearly with n. One of the general methods
will be preferable for n large (> 10, say).

Hypergeometric HYP(a, b), a, b Positive Integers

Probability Mass Function:

(0 otherwise

Consider a population where a individuals have a particular characteristic and b do
not. If n 5 a + b individuals are selected without replacement, the number X with
the characteristic has the given hypergeometric distribution.

Generator: Fishman [19] gives the following inverse transform method:

S e t u p : a = p o = [b ! (a + b - n) ! l / [(b - n) ! i a + b) ! l
L e t A = a , B = a , X = 0
L e t U = RN(0,l)
While (U > A) {

X = X + 1, B = B (a - X) (n - X) / [(X + 1) (b - n + X + I), A = A + B

I
R e t u r n X

Poisson POIS&), A > 0

Probability Mass Function:

L O otherwise

If events occur randomly in time at rate r and X is the number of events that occurs
in a time period t , then X = POIS(rt).

Generator I : The direct method is to count the number of events in an appropriate
time period, as indicated above:

166 RANDOM VARIATE GENERATION

Setup: a = e-h
Let p = 1, X = -1
While(p> a) (
Let U=RN(O,l), p = P U , X = X + 1

I
Return X

Generator 2: The time taken by generator 1 to return a variate increases
approximately as A. So for large X (> 30, say) it is slow. The following
acceptance-rejection technique given by Atkinson [20] is then preferable:

Setup: a = i r m , b = a/X, c = 0 . 7 6 7 3.36/A, d = In c lnb-A

Do I
Do l
U = RN(O,l), Y = [a - ln((1 - U) / U) I / b
) w h i l e (~ 5 - i)

Let X = trunc(Y+ i), V = RN(0,l)
]While(a- b Y + l n [~ / (l + e a - b Y) 2] > d + X l n X l n X !)

Return X

Generator 3: An alternative to generator 2 uses the fact that for large X, the distri-
bution of A-1/2(~ - A) tends to that of the standard normal. For large X (> 20,
say) we then have the following:

Setup: a =

Let Z = N(0,l)
Let X=max[O, trunc(0.5 + A + aZ) I
Return X

5.5 MULTIVARIATE DISTRIBUTIONS

5.5.1 General Methods

The generation of multivariate distributions is not nearly as well developed as that of
the univariate case. The key requirement in the generation of multivariate samples is
the need to ensure an appropriate correlation structure among the components of the
multivariate vector. Often the correlation arises because the variates are the output of a
stochastic model with a certain structure; for example, the variates may describe the state
of some stochastic process at given points in time. Correct sampling from the underlying
form of the multivariate distribution can then be obtained simply by ensuring that the
variates are generated according to the definition of the process. It is often not only
more natural but considerably easier to generate multivariate samples in this way rather
than to attempt to derive the distribution itself and then generate variates directly from
it. There is one general approach that is sometimes useful, however [6].

Conditional Sampling
Let X = (X I , X2, . . . , x,)~ be a random vector with joint distribution function F(xl,
x2, . . . , x,). Suppose that the conditional distribution of Xi given that Xi = xi, for i =

5.5 MULTIVARIATE DISTRIBUTIONS 167

1 , 2 , . . . , J - 1 , is known, for each J . Then the vector X can be built up one component
at a time, with each component obtained by sampling from a univariate distribution:

Generate xl from the distribution Fl (x)
Generate x2 from the distribution F2 (xlxl = xl)

Generate x3 from the distribution F3 (xlxl = xl, X2 = x2)
. . .
Generate x, from the distribution F,(xlxl = xl , X2 = x2, . . . , Xn- 1 =

xn- 1)
R e t u r n X = (xl , x2, . . . , x,)*

The usefulness of this method is dependent on the availability of the conditional
distributions, and on the ease of sampling from them.

5.5.2 Special Distributions

Multivariate Normal MVN(p, Z)

Density:

where p is a n x 1 vector and Z is a n x n positive-definite symmetric matrix.

Generator: The simplest method uses a linear transformation of a set of independent
N(0 , I) variates: Z = (ZI , Z2, . . . , z ,) ~ is transformed into X = LZ + p, where L
is a lower triangular matrix satisfying 2 = L L ~ . L can be obtained by the standard
Choleski decomposition [19].

Setup: L (see below)
Let a = 6
For (i = 1 to n) {LI i = ail/ a]
Let i = 2
While (True) {

S = 0
For (j = 1 to i - 1) S = S + L~~~

L . . = (a i i - S) 1 I
1/2

If (i = n) Return L
i = i + l
For(j=2 t o i l) {

S = 0
For (k = 1 to j - 1) S = S + LikLjk
L l , = (ai-, - S) / L j j

I
I

168 RANDOM VARIATE GENERATION

MVN Generator.

Return X = (X I , X 2 , . . . , X,)

Uniform Distribution on the n-Dimensional Sphere. If the components of
MVN(0, I) are treated as a direction vector in n-dimensional Euclidean space, all direc-
tions are equally likely. Rescaling the vector to unit length therefore gives a point uni-
formly distributed on the unit n-dimensional sphere.

Generator:

S = 0
F o r (i = 1 t o n) (

Zi = N (0 , I), S = S + Z:

I
s=
F o r (i = 1 t o n) {

xi = Z J S

1
Return X = (X I , X2, . . . , X,)

Order Statistics. The order statistics of a random sample X1, X2, . . . , Xn of size n
are just the individual variates arranged by value in ascending order:

This can be done by generating the sample and then reordering. The fastest sorting
routines are O(n ln n), and the sorting dominates once n is large.

If the X's can be generated by the inverse transform X = F-'(u), the sample can be
generated in order from the order statistics of a uniform sample

This uses the fact that (1) the largest uniform order statistic U(,) has an invertible dis-
tribution function, and (2) U(l), U(2), . . . , U(i) are the order statistics of a sample of
size i drawn from the uniform distribution U(0, U(i+ 1)).

Let U = R N (o , ~) , u~,, = u'/,
F o r (i = n - 1 d o w n t o l) {
Let U = R N (0 , l)

U i i , = U (i + 1) u l / i

I

An alternative way of generating (7) is given in (2):

5.6 STOCHASTIC PROCESSES 169

Let El = E X P (1) , S, = E,
F o r (i = 2 t o n + I){
Let Ei = EXP(l), S, = S,1 + E,
I

 or (i = 1 ton) Let u (~ , = s~/s,+I

Dirichlet

Density:

where

Generator: Use the fact that a set of gamma variates scaled by their sum, so that
they sum to unity, has the Dirichlet distribution:

Let Gi = G A M (1 , pi), Y = Y + Gi
1
F o r (i = l t o k + 1){
Let X, = G , / Y

I
Return (XI, X,, . . . , Xk+l)

Note: The XI, X2, . . . , Xk have the distribution given above. Including Xk+ I gives
the sum c;+~' Xi = 1. The distribution is therefore useful in representing random pro-
portions that have to sum to unity.

5.6 STOCHASTIC PROCESSES

5.6.1 Point Processes

A sequence of points to = 0, tl, t2, . . . in time is known as a point process. The times
between occurrences xi = ti - t i- 1 are usually random. Examples are where the t; are
arrival times of customers and the xi are interarrival times, or where the ti are moments
of breakdowns and the x, are lifetimes.

Poisson Process. When the x; are independent EXP(I/X) variables, the t , sequence
is known as a Poisson process with rate A. To generate the next time point, assuming
that t, - 1 has already been generated:

170 RANDOM VARIATE GENERATION

Let U = RN(O,1)
Return ti = ti-1 -h-' 1n U

Nonstationary Poisson Process. Suppose that the Poisson process has X = A(t);
that is, the rate varies with time. One way to generate such a nonstationary process is
via an analog of the inverse transform technique. Define the cumulative rate

and suppose this is invertible with inverse A-I(.).
To generate the next time point, assume that s;- 1 , the previous point of a unit rate

Poisson process, has already been generated. Then the next point of the nonstationary
process is given by

Let U = RN(0,1), si = si-1- U
Return ti = A-I (si)

An alternative is to use an analog of the acceptance-rejection method proposed by
Lewis and Shedler [21], called thinning. Suppose that AM = max, A(t). Then, assuming
that t; - I has already been generated, the next point of the nonstationary process is given
by

Markov Process. The simplest Markov process is the discrete-time Markov chain.
Here time is advanced one unit at a time: t = 0, 1, 2, At each time point the system
is assumed to be in one of n states: X = 1, 2, . . . , n, say. Given that X, = i, the next
state X,, I is selected according to the discrete probability distribution

Continuous-time Markov chains are best simulated slightly differently. Assume that the
system has just entered state i at time t k . Then the next change of state occurs at tk+ 1

= tk + EXP(l/X;). The state entered is j with probability p;j (j = 1, 2, . . . , n).

5.6.2 Time-Series Models and Gaussian Processes

A stochastic process X(t) all of whose joint distributions are multivariate normal (i.e.,
X,, , X,,, . . . , X,, is multivariate normal for any given set of times t l , t 2 , . . . , t,) is said
to be a Gaussian process.

Many time-series models use normal perturbations (usually called innovations) and
are Gaussian.

Moving Average. A moving-average process X, is defined by

REFERENCES 171

where the Z's are all independent N(O, u 2) normal variates and the p's are user-
prescribed coefficients. The X's can be generated directly from this definition.

Autoregressive Process. An autoregressive process X, is defined by

where the Z's are all independent N(0 , a 2) normal variates and the a ' s are user pre-
scribed coefficients. The X's can again be generated directly from this definition, but in
this case the initial values Xo, X-1, . . . , X I , need to be obtained. Now

where Z satisfies

with

Once 2 has been found from (8), (Xo, X-1, . . . , X I ,) can be generated using
MVN(0,X); see ref. 22. An alternative is to set Xo = X-1 = . . . = X I , = 0 and run
the sequence for a settling in period before collecting the results. For more complicated
Gaussian models, see ref. 2.

REFERENCES

1. Devroye, L. (1986). Non-uniform Random Variate Generation, Springer-Verlag. New York.

2. Ripley, B. D. (1987). Stochastic Simulation, Wiley, New York.

3. Law, A. M., and W. D. Kelton (1991). Simulation Modeling and Analysis, 2nd ed., McGraw-
Hill, New York.

4. Banks, J., J. S. Carson 11, and B. L. Nelson (1996). Discrete-Event Simulation, 2nd ed., Pren-
tice Hall, Upper Saddle River, N.J.

5. Fishman, G. S . (1996). Monte Carlo: Concepts, Algorithms, und Applications, Springer-
Verlag, New York.

6. Johnson, M. E. (1987). Multivariate Statistical Simulation, Wiley, New York.

7. Fishman, G. S. (1976). Sampling from the gamma distribution on a computer, Communicrr-
tions vf'thr ACM, Vol. 19, pp. 407409.

8. Ahrens, J. H., and U. Dieter (1974). Computer methods for sampling from gamma, beta,
Poisson and binomial distributions, Computing, Vol. 12. pp. 223-246.

9. Cheng, R. C. H. (1977). The generation of gamma variables with non-integral shape param-
eter, Applied Statistics, Vol. 26, pp. 71-75.

172 RANDOM VARIATE GENERATION

Box, G. E. P., and M. E. Muller (1958). A note on the generation of random normal deviates,
Annals of Mathematical Statistics, Vol. 29, pp. 610-61 1.
Cheng, R. C. H. (1978). Generating beta variables with nonintegral shape parameters, Com-
munications of the ACM, Vol. 21, pp. 3 17-322.
Johnk, M. D. (1964). Generation of beta distribution and gamma distribution random variates
(in German), Metrika, Vol. 8, pp. 5-15.
Michael, J. R., W. R. Schucany, and R. W. Haas (1976). Generating random variates using
transformations with multiple roots, The American Statistician, Vol. 30, pp. 88-90.

Stuart, A,, and J. K. Ord (1987). Kendull's Advanced Theory of Statistics, 5th ed., Vol. 1,
Griffin, London.
Abramowitz, M., and I. A. Stegun (1965). Handbook of Mathematical Functions, Dover,
New York.

Best, D. J., and N. I. Fisher (1979). Efficient simulation of the von Mises distribution, Applied
Statistics, Vol. 28, pp. 152-157.
Walker, A. J. (1977). An efficient method for generating discrete random variables with gen-
eral distributions, ACM Transactions on Mathematical Software, Vol. 3, pp. 253-256.

Moses, L. E., and R. V. Oakford (1963). Tables of Random Permutations, Stanford University
Press, Stanford, Calif.
Fishman, G. S. (1978). Principles of Discrete Event Simulafion, Wiley, New York.
Atkinson, A. C. (1979). The computer generation of Poisson random variables, Applied Statis-
tics, Vol. 28, pp. 29-35.
Lewis, P. A. W., and G. S. Shedler (1979). Simulation of non-homogeneous Poisson processes
by thinning, Naval Research Logistics Quarterly, Vol. 26, pp. 403413.

Gardner, G., A. C. Harvey, and G. D. A. Phillips (1979). Algorithm AS-154: an algorithm
for the exact maximum likelihood estimation of autoregressive-moving average models by
means of Kalman filtering, Applied Statistics, Vol. 29, pp. 3 11-322.

CHAPTER 6

Experimental Design for Sensitivity
Analysis, Optimization, and Validation
of Simulation Models

JACK P. C. KLElJNEN
Tilburg University

6.1 INTRODUCTION

In this chapter we survey design of experiments (DOE), which includes designs such as
2 k - p designs, applied to simulation. The related term experimental design may suggest
that this subdiscipline is still experimental, but it is not; see early publications such as
that of Plackett and Burman (1946). DOE is a subdiscipline within mathematical statis-
tics. This chapter is a tutorial that discusses not only methodology but also applications.
These applications come from the author's experience as a consultant and from pub-
lications by others in the United States and Europe. The reader is assumed to have a
basic knowledge of mathematical statistics and simulation.

In this section we address the questions of what DOE is and why DOE is needed.
These questions are illustrated using two case studies. The first case concerns an eco-
logical study that uses a deterministic simulation model (consisting of a set of nonlinear
difference equations) with 281 parameters. The ecological experts are interested in the
effects of these parameters on the response: namely, future carbon dioxide (C02) con-
centration, C 0 2 being the major cause of the greenhouse effect. The pilot phase of this
study aims at screening: which factors among the many potentially important factors
are really important. Details are given in Section 6.2.

The second case study concerns a decision support system (DDS) for production
planning in a Dutch steel tube factory. The DSS and the factory are modeled through
a stochastic, discrete-event simulation (stochastic or random simulations have a special
variable, the (pseudo)random number seed). The DSS to be optimized has 14 input or
decision variables and two response variables, productive hours and lead time. Simu-
lation of one combination of these 14 inputs takes 6 hours on the computer available

Handbook of Simulation, Edited by Jerry Banks.
ISBN 0-47 1-1 3403-1 O 1998 John Wiley & Sons, Inc.

174 EXPERIMENTAL DESIGN FOR SENSITIVITY ANALYSIS, OPTIMIZATION

at that time, so searching for the optimal combination must be performed with care.
Details are given in Section 6.5.

Decision making is an important use of simulation. In particular, factor screening
and optimization concern that topic. Note that closely related to optimization is goal
seeking: Given a target value for the response variable, find the corresponding input
values; the regression metamodel of this chapter can be used to find these desired input
values. Much of this chapter is about the use of simulation to improve decision mak-
ing. This will be demonstrated by several case studies; more case studies, especially in
manufacturing, are reviewed by Yu and Popplewell (1994).

It is convenient now to introduce some DOE terminology, defined in a simulation
context. A,factor is a parameter, an input variable, or a module of a simulation model
(or simulation computer program). Examples of parameters and input variables were in
the preceding discussion of two case studies. Other examples are provided by classic
queueing simulations: A parameter may be a customer arrival rate or a service rate, an
input variable may be thenumber of parallel servers, and a module may be the submodel
for the priority rules [first in, first out (FIFO), shortest processing time (SPT), etc.].

By definition, factors are changed during an experiment; they are not kept constant
during the entire experiment. Hence a factor takes at least two levels or values during the
experiment. The factor may be qualitative, as the priority rules exemplified. A detailed
discussion of qualitative factors and various measurement scales is given in Kleijnen
(1987, pp. 138-142).

The central problem in DOE is the astronomically great number of combinations of
factor levels. For example, in the ecological case study at least 2281 (>log4) combina-
tions may be distinguished; a queueing network also has many factors. DOE can be
defined as selecting the combinations of factor levels that will actually be simulated in
an experiment with the simulation model.

After this selection of factor combinations, the simulation program is executed or run
for these combinations. Next, DOE analyzes the resulting input-output (110) data of the
experiment, to derive conclusions about the importance of the factors. In simulation this
is also known as what-ifanalysis: What happens if the analysts change parameters, input
variables, or modules of the simulation model? This question is closely related to sensitiv-
ity analysis, optimization, and validation/verification, as we show in detail in this chapter.

Unfortunately, the vast literature on simulation does not provide a standard definition
of sensitivity analysis. In this chapter, sensitivity analysis is interpreted as the systematic
investigation of the reaction of the simulation responses to extreme values of the model's
input or to drastic changes in the model's structure. For example, what happens to the cus-
tomers' mean waiting time when their arrival rate doubles; what happens if the priority
rule changes from FIFO to SPT? So in this chapter we do not focus on marginal changes
or perturbations in the input values.

For this what-if analysis, DOE uses regression analysis, also known as analysis of vari-
ance (ANOVA). This analysis is based on a rnetamodel, which is defined as a model of the
underlying simulation model (Friedman, 1996; Kleijnen, 1975b). In other words, a meta-
model is an approximation of the simulation program's 1 /0 transformation; it is also called
a response surface. Typically, this regression metamodel belongs to one of the following
three classes: (1) a first-order polynomial, which consists of main effects only, besides an
overall or grand mean; (2) a first-order polynomial augmented with interactions between
pairs of factors (two-factor interactions); and (3) a second-order polynomial, which also
includes purely quadratic effects [see also equation (1) in Section 6.3.21.

Most simulation models have multiple outputs, also called responses or criteria. For

6.1 INTRODUCTION 175

example, outputs may be both customer's queueing time and server's idle time, or
both mean and 90% quantile of the waiting time. In practice, multiple outputs are han-
dled through the application of the techniques of this chapter per output type. [Ideally,
however, such simulations should be studied through multivariate regression analysis,
and the design should also account for the presence of multiple outputs (Khuri, 1996;
Kleijnen, 19871.1 Simultaneous inference may be taken care of through Bonferroni's
inequality (see Appendix 6.1). Optimization in the presence of multiple responses is
discussed in Section 6.5. Optimization accounting for both the mean and the variance
of the response is the focus of Taguchi's methods (Ramberg et al., 1991). Note that the
term multiple regression analysis refers not to the number of outputs but to the presence
of multiple inputs, or better, multiple independent variables [see also the definition of
z following equation (4)].

A metamodel treats the simulation model as a black box: the simulation model's
inputs and outputs are observed, and the factor effects in the metamodel are estimated.
This approach has the following udvuntuges and disudvuntuges. An advantage is that
DOE can be applied to all simulation models, either deterministic or stochastic. Further,
DOE gives better estimates of the factor effects than does the intuitive approach often
followed in practice, namely the one-factor-at-a-time approach, which is discussed in
Section 6.4.2.

A drawback is that DOE cannot take advantage of the specific structure of a given
simulation model, so it takes more simulation runs than do perturbation analysis and
modern importance sampling, also known as likelihood rutio or score function. These
alternative methods usually require a single run (by definition, a simulation run is a
single time path with fixed values for all its inputs and parameters). Such a run, how-
ever, may be much longer than a run in DOE. Moreover, these alternatives require
more mathematical sophistication, and they must satisfy more mathematical assump-
tions. Importance sampling as a variance reduction technique (not a what-if technique)
is discussed in Section 6.3.3 and Appendix 6.2. There is much literature on these alter-
native methods (see Chapter 9; Glynn and Iglehart, 1989; Ho and Cao, 1991; Kleijnen
and Rubinstein, 1996; Rubinstein and Shapiro, 1993).

DOE may be used not only for sensitivity analysis and optimization, but also for
vulidation. In this chapter we address only part of the validation and verification problem
(see Section 6.6). A detailed discussion of validation and verification is provided in
Chapter 10.

In summary, in this chapter we discuss DOE as a method for answering what-if ques-
tions in simulation. It is not surprising that DOE is important in simulation: By defini-
tion, simulation means that a model is used not for mathematical analysis or numerical
methods but for experimentation. But experimentation requires good design and good
analysis!

DOE with its concomitant regression analysis is a standard topic in statistics. How-
ever, the standard statistical techniques must be adapted such that they account for the
peculiurities of simulation:

1. There are a great many factors in many practical simulation models. Indeed, the
ecological case study (mentioned above) has 281 factors, whereas standard DOE
assumes only up to (say) 15 factors.

2. Stochastic simulation models use (pseudojrandom numbers, which means that
the analysts have much more control over the noise in their experiments than the

I

176 EXPERIMENTAL DESIGN FOR SENSITIVITY ANALYSIS. OPTIMIZATION

investigators have in standard statistical applications. For example, common and
antithetic seeds may be used (see Section 6.3.5 and Appendix 6.2).

3. Randomization is of major concern in DOE outside simulation: Assign the exper-
imental units (e.g., patients) to the treatments (say, types of medication) in a ran-
dom, nonsystematic way so as to avoid bias (healthy patients receive medication
of type 1 only). In simulation, however, this randomization problem disappears:
Pseudorandom number streams take over.

4. Outside simulation the application of blocking is an important technique to reduce
systematic differences among experimental units; for example, tire wear differs
among the four positions on the car: left front, . . . , right rear. In simulation,
however, complete control over the experiment eliminates the need for block-
ing. Yet the blocking concept may be used to assign common and antithetic
(pseudo)random numbers, applying the Schruben-Margolin approach (see Sec-
tion 6.3.5).

The main conclusions of this chapter will be:

1. Screening may use a novel technique, called sequential bifurcation, that is simple,
efficient, and effective.

2. Regression metamodeling generalizes the results of a simulation experiment with
a small number of factors, since a regression metamodel estimates the 1/0 trans-
formation specified by the underlying simulation model.

3. Statistical designs give good estimators of main (first-order) effects, interactions
between factors, and quadratic effects; these designs require fewer simulation runs
than intuitive designs do.

4. Optimization may use RSM, which combines regression analysis and statistical
designs with steepest ascent (see conclusions 2 and 3).

5. Validation may use regression analysis and statistical designs.

6. These statistical techniques have already been applied many times in practical
simulation studies in many domains; these techniques make simulation studies
give more general results in less time.

The remainder of this chapter is organized as follows. Section 6.2 covers the screen-
ing phase of a simulation study. After an introduction (Section 6.2.1), in Section (6.2.2)
we discuss a special screening technique, sequential bifurcation.

In Section 6.3 we discuss how to approximate the 1/0 transformation of simulation
models by regression analysis. First we discuss a graphical method, scatter plots (Sec-
tion 6.3.1). Next, in Section 6.3.2 we present regression analysis, which formalizes the
graphical approach, including generalized least squares (GLS). Then in Section 6.3.3 we
show how to estimate the variances of individual simulation responses, including means,
proportions, and quantiles, in either steady-state or transient-state simulations. These esti-
mates lead to estimated GLS (Section 6.3.4). Variance reduction techniques (VRTs), such
as common random numbers, complicate the regression analysis; VRTs are discussed in
Section 6.3.5. The estimated regression model may inadequately approximate the under-
lying simulation model: Section 6.3.6 covers several lack-of-fit tests. The section closes
with a numerical example in Section 6.3.7 and a case study in Section 6.3.8.

In Section 6.4 we discuss statistical designs. After an introduction (Section 6.4.1),

6.2 SCREENING 177

the focus is first on designs that assume only main effects (Section 6.4.2). Then follow
designs that give unbiased estimators for the main effects even if there are interactions
between factors (Section 6.4.3). Further, in this section we discuss designs that allow
estimation of interactions between pairs of factors (Section 6.4.4), interactions among
any subset of factors (Section 6.4.5), and quadratic effects (Section 6.4.6). All these
designs are based on certain assumptions; how to satisfy these assumptions is discussed
in Section 6.4.7. Optimal designs are discussed in Section 6.4.8. This section ends with
a case study in Section 6.4.9.

Section 6.5 covers optimization of simulated systems. RSM is discussed in Section
6.5.1. Two case studies are summarized in Sections 6.5.2 and 6.5.3. Section 6.6 pro-
ceeds with the role of sensitivity analysis in validation, emphasizing the effects of data
availability. In Section 6.7 we provide a summary and conclusions.

Three appendixes cover tactical issues in addition to the strategic issues addressed
by DOE. Appendix 6.1 summarizes confidence intervals for expected values, propor-
tions, and quantiles in terminating and steady-state simulations (see also Chapter 7). This
appendix makes the chapter self-sufficient. Appendix 6.2 gives more details on VRTs,
because VRTs are important when designing simulation experiments. This appendix
covers four VRTs: common (pseudo)random numbers, antithetic numbers, control vari-
ates or regression sampling, and importance sampling. Appendix 6.3 covers jackknifing,
which is a general method that may reduce bias of estimated simulation responses and
may give robust confidence intervals.

Nearly 100 references conclude the chapter. To reduce the number of references,
only the most recent references for a topic are given unless a specific older reference
is of great historical value.

6.2 SCREENING

6.2.1 Introduction

In the pilot phase of a simulation study there are usually a great many potentially impor-
tant factors; for example, the ecological case study has 281 parameters. It is the mission
of science to come up with a short list of the most important factors; this is sometimes
called the principle of parsimony or OccamS ruzor.

Obviously, a full factorial design requires an astronomically great number of factor
combinations: in the case study, at least 228' (>lon4). Even a design with only as many
combinations as there are factors (see Section 6.4.2) may require too much computer
time. Therefore, many practitioners often restrict their study to a few factors, usually
no more than 15. Those factors are selected through intuition, prior knowledge, and the
like. The factors that are ignored (kept constant), are (explicitly or implicitly) assumed
to be unimportant. For example, in queueing networks the analysts may assume equal
service rates for different servers. Of course, such an assumption severely restricts the
generality of the conclusions from the simulation study!

The statistics literature does include screening designs: random designs, supersatu-
rated designs, group screening designs, and so on (Kleijnen, 1987). Unfortunately, too
little attention is paid to screening designs in the statistics literature. The reason for
this neglect is that outside simulation, it is virtually impossible to control hundreds of
factors; (say) 15 is difficult enough.

In simulation, however, models may have hundreds of parameters, yet their con-
trol is simple: Specify which combinations of parameter values to simulate. Neverthe-

178 EXPERIMENTAL DESIGN FOR SENSITIVITY ANALYSIS, OPTIMIZATION

less, screening applications in simulation are still scarce, because most analysts are not
familiar with these designs. Recently, screening designs have been improved and new
variations have been developed; details are given in Bettonvil and Kleijnen (1997) and
Saltelli et al. (1995). In the next section we describe a promising screening technique,
sequential bifurcation.

6.2.2 Sequential Bifurcation

Sequential bifurcation is a group-screening technique; that is, it uses aggregation (which
is often applied in science when studying complicated systems). Hence at the start of
the simulation experiment, sequential bifurcation groups the individual factors into clus-
ters. A specific group is said to be at its high level (denoted as + or on) if each of its
components or individual factors is at a level that gives a higher or equal response (not
a lower response). Analogously, a group is at its low level (- or off) if each component
gives a lower or equal response. To know with certainty that individual factor effects
within a group do not cancel out, sequential bifurcation must assume that analysts know
whether a specific individual factor has a positive or negative effect on the simulation
response; that is, the factor effects have known signs. In practice this assumption may
not be too restrictive. For example, in specific queueing simulations it may be known
that increasing the service rates while keeping all other factors constant (ceteris paribus
assumption) decreases waiting time (but it is unknown how big this decrease is; there-
fore, the analysts use a simulation model). In the ecological case study the experts could
indeed specify in which direction a specific parameter affects the response (C 0 2 con-
centration). Moreover, if a few individual factors have unknown signs, these factors can
be investigated separately, outside sequential bifurcation!

Sequentialization means by definition that factor combinations to be simulated are
selected as the experimental results become available. So as simulation runs are exe-
cuted, insight into factor effects is accumulated and used to select the next run. It is
well known that in general, sequentialization requires fewer observations; the price is
more cumbersome analysis and data handling. Sequential bifurcation eliminates groups
of factors as the experiment proceeds because the procedure concludes that these clus-
ters contain no important factors.

Also, as the experiment proceeds, the groups become smaller. More specifically, each
group that seems to include one or more important factors is split into two subgroups of
the same size: bifurcation. At the end of bifurcation, individual factor effects are esti-
mated. As a numerical example, consider a simple academic exercise with 128 factors,
of which only three factors are important, factors 68, 113, and 120. Let the symbol y(h)

denote the simulation output when the factors 1, . . . , h are switched on and the remain-
ing factors (h + 1, . . . , k) are off. Consequently, the sequence { y (h) } is nondecreasing
in h. The main effect of factor h is denoted as Ph [see also (1) in Section 6.3.21. Let
the symbol Ph-hr denote the sum of individual effects Ph through Oh? with h' > h; for
example, denotes the sum of P I through P I 2 8 (Figure 6.1, line 1).

At the start (stage 0) of the procedure, sequential bifurcation always observes the
two "extreme" factor combinations: y(o) (no factor high) and y(k) (all factors high). The
presence of (three) important factors gives y(o, < Y(128). Hence sequential bifurcation
concludes that the sum of all individual main effects is important: PI-128 > 0. Sequential
bifurcation works such that any important sum of effects leads to a new observation that
splits that sum into two subsums (see the symbol d, in Figure 6.1). Because stage 0 gives
0 1 - 1 ~ ~ > 0, sequential bifurcation proceeds to the next stage.

6.2 SCREENING 179

Figure 6.1 Finding k = 3 important factors among K = 128 factors in Jacoby and Harrison's
(1962) example.

Stage 1 gives ~ (6 4 ~ . The analysis first compares y(64) with y(") and notices that these
two outputs are equal (remember that only factors 68, 113, and 120 are important).
Hence the procedure concludes that the first 64 individual factors are unimportant! So
after only three simulation runs and based on the comparison of two runs, sequential
bifurcation eliminates all factors in the first half of the total group of 128 factors. Next,
sequential bifurcation compares Y(64) with Y(128) and notices that these two outputs are
not equal. Hence the procedure concludes that the second subgroup of 64 factors is
important; that is, there is at least one important factor in the second half of the group
of 128 factors.

In stage 2 sequential bifurcation concentrates on the remaining factors (65 through
128). That subgroup is again bifurcated, and so on. At the end, sequential bifurca-
tion finds the three important factors (68, 113, and 120). In total, sequential bifurca-
tion requires only 16 observations. The procedure also determines the individual main
effects of the important factors (see the symbol '? in the last line of Figure 6.1).

It can be proven that if analysts assume that there are interactions between factors,
the number of runs required by sequential bifurcation is double the number required in

180 EXPERIMENTAL DESIGN FOR SENSITIVITY ANALYSIS, OPTIMIZATION

the main-effects-only case (see also the foldover principle in Section 6.4.3). In general,
it is wise to accept this doubling to obtain estimators of main effects that are not biased
by interactions between factors.

The ecological case study also uses the sequential bifurcation algorithm that was
indicated in Figure 6.1. It took 154 simulation runs to identify and estimate the 15 most
important factors among the original 281 factors. Some of these 15 factors surprised
the ecological experts, so sequential bifurcation turns out to be a powerful statistical
(black box) technique. Notice that on hindsight it turned out that there are no important
interactions between factors, so only 154/2 = 77 runs would have sufficed.

Another case study is the building thermal deterministic simulation in De Wit (1997).
In his simulation, sequential bifurcation gave the 16 most important inputs among the
82 factors after only 50 runs. He checked these results by applying a different screening
technique, the randomized one-factor-at-a time designs of Morris (1991), which took
328 runs.

These two case studies concern deterministic simulation models. In stochastic sim-
ulation the signal/noise ratio can be controlled by selecting an appropriate run length.
Then sequential bifurcation may be applied as in deterministic simulation. Bettonvil
(1990, pp. 49-142) has investigated further the use of sequential bifurcation in random
simulation. More research is needed to find out whether in practice this method performs
well in random simulations (Cheng, 1997).

6.3 REGRESSION METAMODELS

6.3.1 Introduction: Graphical Methods

Suppose that the number of factors to be investigated is small, for example, 15 (this
small number may be reached after a screening phase; see Section 6.2). Suppose further
that the simulation has been run for several combinations of factor levels. How should
these I/O data be analyzed?

Practitioners often make a scatter plot, which has on the x-axis the values of one
factor (e.g., traffic rate) and on the y-axis the simulation response (e.g., average waiting
time). This graph indicates the 1 / 0 transformation of the simulation model treated as a
black box! The plot shows whether this factor has a positive or negative effect on the
response and whether that effect remains constant over the domain (experimental area)
of the factor.

The practitioners may further analyze this scatter plot: They may fit a curve to these
(x,y) data: for example, a straight line (say) y = Do + Dlx. Of course, they may fit other
curves (such as a quadratic curve: second-degree polynomial), or they may use paper
with one or both scales logarithmic.

To study interactions between factors, the practitioners may combine several of these
scatter plots (each drawn per factor). For example, the scatter plot for different traffic
rates was drawn, given a certain priority rule (say, FIFO). Plots for different priority
rules can now be superimposed. Intuitively, the average waiting time curve for SPT lies
below the curve for FIFO (if not, either this intuition or the simulation model is wrong;
see the discussion on validation in Section 6.6). If the response curves are not parallel,
then by definition there is interaction between priority rule and traffic rate.

However, superimposing many plots is cumbersome. Moreover, their interpretation is
subjective: are the response curves really parallel and straight lines? These shortcomings

6.3 REGRESSION METAMODELS 181

are removed by regression analysis. (Kleijnen and Van Groenendaal, 1992; Kleijnen and
Sargent, 1997).

6.3.2 GLS, OLS, and WLS

A regression metamodel may be used to approximate the I/O transformation of the
simulation model that generates the data to which the regression analysis is applied. [A
different use of regression analysis is to obtain control variates, which are a specific
type of VRT; see (IS).] Draper (1994) provides a bibliography on applied regression
analysis, outside simulation. Consider the second-degree polynomial

where stochastic variables are shown as uppercase letters; the specific symbols are

Y, , j = simulation response of factor combination i, replication j

k = number of factors in the simulation experiment

Po = overall mean response or regression intercept

/3/, = main effect or first-order effect of factor h

x,h = value of standardized factor h in combination i [see (2) below]

/3h,h' = interaction between factors h and h' with h < h'
= quadratic effect of factor h

E,,, = fitting error of the regression model in combination i, replication j

n = number of simulated factor combinations

mi = number of replications for combination i

To interpret this equation, it is convenient first to ignore interactions and quadratic
effects. Then the relative importance of a factor is obtained by sorting the absolute val-
ues of the main effects Pl1, provided that the factors are standardized. Let the original
(nonstandardized) factor h be denoted by wh. In the simulation experiment wh ranges
between a lowest value l,, and an upper value uh; that is, the simulation model is not
valid outside that range (see the discussion on validation in Section 6.6) or in practice
that factor can range over that domain only (e.g., because of space limitations the num-
ber of servers can vary only between 1 and 5) . Measure the variation or spread of that
factor by the half-range ah = (uh -.lh)/2, and its location by the mean bh = (uh + lll)/2.
Now the following standardization is appropriate:

Notice that importance and significance are related but different concepts. Signi-
ficance is a statistical concept. An important factor may be declared nonsignificant if

182 EXPERIMENTAL DESIGN FOR SENSITIVITY ANALYSIS, OPTIMIZATION

the variance of the estimated effect is high (because the simulation response has high
variance a and the total sample size N = xY=, mi is small): this is called type II or P
error. Importance depends on the practical problem that is to be solved by simulation.
An unimportant factor may be declared significant if the variance of the estimated factor
effect is small (in simulation, large sample sizes do occur).

It is convenient to use the following notation: Denote the general linear regression
model by

Comparison of (1) and (3) gives the following identities: y 1 = Po, y2 = P I , . . . , y q =

Pk,k, and z;, 1 = 1, z;,2 = x;, I , . . . , z ; , ~ = x $, It is also convenient to use matrix notation
for equation (3):

where bold symbols denote matrices including vectors (vectors are matrices with a sin-
gle column; in linear algebra it is customary to denote matrices by uppercase letters
and vectors by lowercase letters, but in this chapter uppercase letters denote random
variables); the specific symbols are

N = total number of simulation responses, Z m ;
I = 1

Y = vector with N components the first ml elements are the ml replicated simulation
responses for input combination 1, . . . , the last m,, elements are the m,
replications for input combination n

y = vector of q regression, (y I , 72, . . . , yg , . . . , ~ q) '

z = N x q matrix of independent variables; the first m, rows are the same and denote
factor combination 1, . . . ; the last m, rows are the same and denote factor
combination n

E = vector with N fitting errors, (E l , 1, . . . , E ,,,,)

An alternative notation is

where a bar denotes the average per factor combination; each matrix (including vector)
now has only n (instead of N) rows. For example, the first element of the vector B is
-
Y I = x:', Yl,,/ml. Note: Nonlinear regression models and the concomitant DOE are
discussed in Ermakov and Melas (1995, pp. 167-187).

The generalized least squares (GLS) estimator of the parameter vector y , denoted
by CGLs = (Cl , C2. Cs, . . . , Cq)', is

6.3 REGRESSION METAMODELS 183

where a, denotes the N x N covariance matrix of Y, which is assumed to be nonsin-
gular, sothat its inverse a;' exists (in Section 6.3.5 this assumption is revisited for the
estimate I?,'); it is further assumed that z is such that z'u;'z is regular (further discus-
sion of z follows in Section 6.4); to simplify the notation, we sometimes denote C G ~ s
by C. It is not too difficult to derive an alternative expression for the GLS estimator
that uses the alternative notation in (5) (Kleijnen, 1987, p. 195; 1992).

GLS gives the best linear unbiased estimator (BLUE), where "best" means minimum
variance. The individual variances can be found on the main diagonal of the covariance
matrix for C:

a,. = (z ' u , ' ~) ' (7)

A 1 - a confidence interval per parameter follows from the well-known Student statistic.
The general formula for this statistic (used repeatedly below) is

where v denotes the number of degrees of freedom. Notice that a statistic is called
Studentized if the numerator is divided by its standard error or standard deviation. For
the GLS estimator, Y in (8) is replaced by C, (g = 1, . . . , q) and ST by the estimator of
the standard deviation of C,; this estimator will be discussed in Section 6.3.3. Software
for GLS estimation is abundant (Swain, 1996).

A special, classic case of GLS is ordinury least squares (OLS). OLS remains BLUE
if the simulation responses have white noise; that is, they are independent and have
constant variances; that is, a,. = 0 2 1 N x ~ , where l N x ~ denotes the N x N identity
matrix (usually denoted by I in linear algebra). Then the GLS estimator in (6) reduces
to

Even if the OLS assumptions do not hold, an alternative to GLS is the OLS point esti-
mator in (9), but with the correct covariance matrix

If the OLS assumptions (u,. = u 2 l N x N) do hold, equation (10) simplifies to a,.,,, =

(z'z)-'a2. The white noise'assumption may be used in deterministic simulation (see
Section 6.3.8).

In random simulation, however, it is realistic to assume that the response variances
vary with the input combinations: Var(Y;,,) = 0,'. (So Y;,, has a mean and a variance that
both depend on the input.) In other words, a? (the covariance matrix for the simulation
responses) becomes a diagonal matrix with the first tnl elements equal to a t , . . . , the
last m,, elements equal to a:. Then a special case of GLS applies, namely weighted
least squares (WLS): Substitute this diagonal matrix a? into GLS formulas (6) and (7).
The interpretation of the resulting formula is that WLS uses the standard deviations u ,

184 EXPERIMENTAL DESIGN FOR SENSITIVITY ANALYSIS, OPTIMIZATION

as weights. In case of variance heterogeneity, the WLS estimator is BLUE; both OLS
and WLS still give unbiased estimators.

6.3.3 Estimation of Response Variances

The preceding formulas feature a, (the covariance matrix of the simulation responses),
which unfortunately is unknown [as are the means E(Y,) = p ,] . The estimation of the
standard deviations ai is a classic tactical problem in simulation. To solve this problem,
the analysts should distinguish terminating and steady-state simulations (see Chapter
7), and expected values, proportions, and quantiles. In this section we consider four
cases: (1) mean response of terminating simulation, (2) mean response of steady-state
simulation, (3) proportions, and (4) quantiles.

Mean Response of Terminating Simulation. By definition, a terminating simula-
tion has an event that stops the simulation run; an example is a queueing simulation of
a bank that opens at 9 A.M. and closes at 4 P.M. In such a situation, the simulation runs
for one specific combination (say) i may give independently and identically distributed
(IID) responses Yi, for example, average waiting time per day. Then the estimator of
the variance of Yi, given a sample size of mi replications (e.g., mi days) with integer
m; 2 2, is

where the average of the mi replications is Yi = xy:, Yi,j/mi; each replication uses a
nonoverlapping sequence of (pseudo)random numbers.

Note that in the simulation literature on tactical issues it is classic to focus on 1 - a
confidence intervals. If a Gaussian distribution is assumed (N (p ; , (T?)), the confidence
interval should use the Student statistic in (8), now with v = rn; - 1 degrees of free-
dom. If, however, Yi has an asymmetric distribution, then Johnson's modified Student
statistic is a good alternative; this statistic includes an estimator for the skewness of
the distribution of Y ; ; see Appendix 6.1. One more alternative is a distribution-free or
nonparametric confidence interval such as the sign test or the signed rank test. Conover
(1971) gives an excellent discussion of distribution-free statistics. Kleijnen (1987) dis-
cusses the application in simulation. Other alternatives are jackknifing and bootstrapping
(see Section 6.3.4). Appendix 6.1 gives more details on 1 -a confidence intervals for the
response of an individual factor combination. (This appendix covers "per comparison"
intervals, not "familywise" or "experimentwise" intervals; see Bonferroni's inequality
at the end of Appendix 6.1, and Chapter 8.) In DOE, however, confidence intervals are
desired, not for the individual simulation responses, but for the individual factor effects.
For that purpose, variances of the simulation responses are needed.

Mean Response of Steady-State Simulation. Some practical problems require
steady-state simulations; examples are strategic decisions on production-facility layout,
assuming static environments and long-term reward systems. Suppose that the simula-
tionists execute a single long run (not several replicated runs) per factor combination.
Assume that a simulation run yields a time series that (possibly, after elimination of

6.3 REGRESSION METAMODELS 185

the startup phase) gives a stationary process in the wide sense. Then there are several
methods for the estimation of the variance a:: batching (or subruns), renewal (or regen-
erative) analysis, spectral analysis, standardized time series (see Chapter 7). Appendix
6.1 gives formulas for renewal analysis only.

Proportions. Let p, denote the probability of the response exceeding a given value
a; for example, the probability of waiting time exceeding 5 minutes in a simulation run.
This leads to a binomially distributed variable, and the estimation of its mean p, and
variance p , (1 - p,)/m. Actually, the subscript i must be added to the parameters p,
and m [see (1 1)].

When estimating an extremely small probability, importance sampling is needed: The
probability distribution of some input variable is changed such that the probability of
the event of interest increases; for example, the mean (say) I / X of the Poisson service
process is increased so that the probability of buffer overflow increases (see Appendix
6.2; also, Heidelberger, 1995; Heidelberger et al., 1996).

Quantiles. A response closely related to a proportion is a quantile: What is the value
not exceeded by (say) 80% of the waiting times? Quantile estimation requires sorting
the m observations y,, which yields the order statistics y(,); that is, y(l) is the smallest
observation, . . . , y(,, is the largest observation. Appendix 6.1 gives formulas. Notice
that the median is a good alternative for the mean when quantifying the location of a
random variable; the regression metamodel may explain how the various factors affect
the median simulation response.

6.3.4 Estimated GLS and WLS

Cases I through 4 in Section 6.3.3 show that there are different types of responses,
each requiring its own procedures for the estimation of the variances a,?. But whenever
the analysts use estimated response variances, WLS becomes estimuted WLS or EWLS.
This gives a nonlineur estimator for the factor effects y [see (6) with a , replaced by a
diagonal matrix S, with main-diagonal elements s,? defined in (1 I)] . But the properties
of nonlinear estimators are not well known: Is the estimator still unbiased; does it have
minimum variance; what is its variance'?

Jackknifing is a general computer-intensive technique that the analysts should con-
sider whenever they presume the estimator under consideration to be biased or when-
ever they do not know how to construct a valid confidence intervals. In the EWLS case,
juckkn(f'ed EWLS (JEWLS) may be defined as follows. Suppose that there are m repli-
cations of Y i . This yields (say) CEWLS, the EWLS estimator of the regression parameter
y . Next, for each factor combination eliminate one replication, say, replication j (with
j = I , . . . , m). Calculate the EWLS estimator from the remaining rn - 1 replications;
this gives m estimators CEWLS,-;. The pseudovalue (say) P; is defined as the following
linear combination of the original and the jth estimator:

The jackknifed estimator is defined as the average pseudovalue:

186 EXPERIMENTAL DESIGN FOR SENSITIVITY ANALYSIS, OPTIMIZATION

If the original estimator is biased, the jackknifed estimator may have less bias, albeit
at the expense of a higher variance. Moreover, jackknifing gives the following robust
confidence interval. Treat the m pseudovalues Pj as m IID variables [see the Student
statistic in (8) with Y replaced by P and v = m - 11.

Efron (1982) and Miller (1974) give classic reviews of jackknifing. Jackknifing of
EWLS is discussed further in Kleijnen et al. (1987). Jackknifed renewal analysis is dis-
cussed in Kleijnen and Van Groenendaal (1 992, pp. 202-203) (see also Appendix 6.3).
Jackknifing is related to bootstrapping, which samples from the set of m-observations
(Cheng, 1995; Efron, 1982; Efron and Tibshirani, 1993).

6.3.5 Variance Reduction Techniques

VRTs are supposed to decrease the variances of estimators such as the estimated mean
simulation response, the estimated differences among mean simulation responses, and
the estimated factor effects [which are linear combinations of simulation responses; see
the GLS estimator in (6)]. This section covers the following three VRTs that have rela-
tions with GLS: (1) common random numbers, (2) antithetics, and (3) control variates.

Common Random Numbers. Practitioners often use common (pseudo)random
numbers to simulate different factor combinations (see Appendix 6.2 for details). When
responses are statistically dependent, GLS gives BLUE. But in practice the covariances
between simulation responses of different factor combinations are unknown, so these
covariances must be estimated. Assume m independent replications per factor combi-
nation, so that Y j j and Yi>j are dependent but Yij and Yij> are not, when j Z j' and j' =
1, . . . , m. Then the classic covariance estimator is

Notice that this equation reduces to the classic variance estimator in (11) if i = i' and
Sf; is defined as s?. Dykstra (1970) proves that the estimated covariance matrix S , is
singular if m < n. Estimated GLS (EGLS) gives good results (Kleijnen, 1992). A detailed
example is given in Chapter 8.

The simulation literature has ignored the estimation of covariances in steady-state
simulations. If renewal analysis is used, the renewal cycles get out of step; for example,
when a factor combination uses a lower traffic rate, its cycles get shorter. However, if
subruns are used, the estimators are strictly analogous to (14).

Antithetic Random Numbers. Closely related to common (pseudo)random numbers
are antithetic (pseudo)random numbers: To realize negative correlation between pairs of
replications, use the (pseudo)random numbers r for one replication and the complements
or antithetics 1 - r for the other replication. Then m replications give m/2 independent

-
pairs (Y,, . . . , Ymp), where Y; = (Y2;- 1 + Y2;)/2. Hence to estimate the variance, use
(I 1) but replace m; by m/2 and Y, by Y,. with r = 1, . . . , m/2.

6.3 REGRESSION METAMODELS 187

Notice that these antithetic (pseudo)random numbers do create negative correlation
between two variables sampled from the same distribution if this sampling uses the
inverse trun.q%rrnufion technique: X = f(R), where ,f denotes the inverse (cumulative)
distribution function (which is monotonically increasing). An example is provided by
the exponential distribution: X = - In(R)/X, with 1 / X , = E(X). A counterexample is
provided by the sampling of two independent standard normal variables (say) VI and
V2 through the well-known Box-Muller transformation: V 1 = cos(2~R1)[-2 I ~ (R ~)] I / ~
and V2 = sin(2aRl)[-2 l n (~ ~)] I / ~ . But then the basic idea can still be applied: X I = E(X)
+ a , V I and X2 = 2E(X) - X I (V2 can be used for the next sample of the pair, X I and
X2). Appendix 6.2 gives some details on antithetic variates.

Since common and antithetic (pseudo)random numbers are so closely related, Kleij-
nen (197%) investigated their combination. Later Schruben and Margolin (1978) exam-
ined this combination in the case of a first-order polynomial metamodel. Their rule is:
Treat the selection of common and antithetic seeds as a separate factor -say, factor k- in
a two-level design. Associate one level of that factor with common seeds; that is, use
common seeds for the n/2 combinations that have factor k at its plus level. Associate the
other level with antithetic seeds; that is, use the same antithetic seeds for the remaining
n/2 combinations that have factor k at its minus level. Later, the Schruben-Margolin
strategy was investigated further for second-order metamodels (Donohue, 1995).

Control Variates. Regression models can be used not only as metamodels for what-if
questions, but also as a VRT: control variates or regression sampling. Whereas antithet-
ics makes the companion replication compensate "overshoot" [i.e., y > E(Y)], control
variates corrects the response of a given replication as follows.

A random variable (say) X can serve as a control variate if its mean E(X) is known
and it is strongly correlated with the response Y: Ip,,J 1 >> 0, where p,,,, denotes the
linear correlation coefficient between X and Y. As an example, consider the simulation
of an M/M/I queueing system. On first reading the subscript i may be ignored in the
following definitions and formulas; actually, a control variate estimator may be com-
puted for each factor combination i. Denote the average input 1 (say, average service
time) per replication in combination i by Xi, 1. Obviously, this input and the output Y;
(say, either the average or the 90% quantile of waiting time in combination i) are pos-
itively correlated: p(X;, I , y,) > 0. Hence in case of an overshoot, y should be corrected
downward:

where C;, 1 . 0 ~ ~ denotes the OLS estimator when output Y ; is regressed on XI, 1, which
denotes input 1 in combination i [this OLS estimator is computed from mi replications of
the pair (Y,,Xi, I)]; the input averaged over m, replicates is F, I = r' I X;, I , , . There-
fore, the technique of control variates is also called regression sampling. Notice that
in this equation the input is a random variable (uppercase X), whereas in the regres-
sion metamodel this input is fixed at its extreme values (lowercase x) [see (I) ; see also
Appendix 6.21.

The single control variate estimator in (1 5) can be extended to multiple control vari-
ates; for example, service time X I and arrival time (say) X2. This requires multiple
regression analysis. Actually, a better control variate may be traffic load, E(XI)/E(X2).
In general, the explanatory variables in this regression model may be selected such that

188 EXPERIMENTAL DESIGN FOR SENSITIVITY ANALYSIS, OPTIMIZATION

the well-known multiple correlation coefficient R' is maximized. R~ = I means perfect
fit. However, because R' increases as the number of independent variables increases,
the adjusted R2 is preferred as a criterion for the selection of control variates.

A complication is that the estimator Ci, 1 ~ 0 ~ s in (15) leads to a nonlinear estimator
(see the product Ci, I ,~LSX;, 1_21 which in general is biased. Moreover, the construction of
a confidence interval for E(Yi,,) becomes problematic. These problems can be solved
either assuming multivariate normality for (Yi, Xi, 1, Xi,2, . . .) or using the robust tech-
nique of jackknifing. Details of jackknifing the control variates are shown in Appendix
6.3.

Joint application of common, antithetic, and control variates is examined in Tew and
Wilson (1 994).

6.3.6 Lack of Fit of the Regression Metamodel

Once having specified a regression metamodel and having estimated its parameters (with
or without applying VRTs), it becomes necessary to check possible lack of fit of the
regression metamodel: Is the estimated regression model an adequate approximation of
the 1 /0 transformation of the specific simulation model, given a specific experimental
domain? In other words, the simulation model is supposed to be valid only within a
certain area of its parameters and input variables (see also Section 6.6). Similarly, the
metamodel is supposed to be valid only for those simulation 1 / 0 data that lead to its
estimated parameter values. Consequently, the metamodel is more reliable when used
for interpolation; it may be dangerous when used to extrapolate the simulated behavior
far outside the domain simulated in the DOE.

Notice that in practice, analysts often try to interpret individual effects before they
check whether the regression model as a whole makes sense. However, first the analysts
should check if the estimated regression model is a valid approximation of the simu-
lation model's 1 / 0 transformation. If the metamodel seems valid, its individual effects
are to be examined.

To test the adequacy of the metamodel, this model might be used to predict the
outcomes for new factor combinations of the simulation model. For example, in (1)
replace 0 by its estimate, and substitute new combinations of x (remember that there
are n old combinations). Compare the predictions with the simulation response y.

A refinement is cross-validation. The idea is as follows:

1. Eliminate one combination (say) i with i = 1, . . . , n, instead of adding new com-
binations, which require more computer time.

2. Reestimate the regression model from the remaining n - 1 combinations
3. Repeat this elimination for all values of i.

Notice that cross-validation resembles jackknifing.
The formulas are as follows. The predictor for the simulation response given C (the

estimator of the regression parameters or factor effects) and zi (the vector of independent
variables) is

The variance of this predictor is

6.3 REGRESSfON METAMODELS 189

The estimator of this variance follows from substitution of the estimator for uc. Hence,
for OLS the estimator of (17) follows immediately from (lo), (1 I), and (14). For GLS
the estimator of (17) might use (7), (]I), and (14); this gives an asymptotically valid
estimator.

After elimination of 110 combination i, the new vector of estimated effects is based
on the GLS formula in (6):

Substitution into (16) gives the predictor ki = y(C-;,z;). The Studentized cross-
validation statistic [see (8)] is

where Vir(Y;) = S? and v a r (k ;) follows from (17), replacing C by C-;, and so on.
The degrees of freedom v in (19) are unknown; Kleijnen (1992) uses v = m - I . When
this Studentized prediction error is significant, the analysts should revise the regression
metamodel they specified originally. When judging this significance, they may apply
Bonferroni's inequality, since there are multiple runs, namely n (see Appendix 6.1). In
their revision they may use transformations of the original inputs, such as logarithmic
transformations and cross-products or interactions.

An alternative to cross-validation is Rao's lack-ofjt test. To understand this test,
it is convenient first to consider the classic OLS case: normally distributed simulation
responses Y; with white noise. Then there are the following two estimators of the com-
mon response variance a 2 . The first estimator is based on replication: See the classic
variance estimator S: defined in (1 1). Because the true variance is constant, these esti-
mators are averaged or pooled: C:_, Sf/n; if m; is not constant, a weighted average
is used, wi:h the d e g r ~ e s of freedom m; - I as weights. Next consider the n estimated
residuals, E; = YI - Yi with i = 1, . . . , n. These residuals give the second variance
estimator, Cy7, ~ " / (n - q). The latter estimator is unbiased if and only if (iff) the
regression model is specified correctly; otherwise, this estimator overestimates the true
variance. Hence the two estimators are compared statistically through the well-known
F-statistic, namely F, - q, n(m - I) .

Rao (1959) extends this test from OLS to GLS:

where the n estimated GLS residuals are collected in the vector - ZC and where not
only response variances are estimated but also response covariances, collected in the
estimated covariance matrix SF = Sy/m [see also (14)l.

Kleijnen (1992) shows that Rao's test is better than cross-validation if the simula-
tion responses are distributed symmetrically, for example, normally or uniformly dis-

190 EXPERIMENTAL DESIGN FOR SENSITIVITY ANALYSIS, OPTIMIZATION

tributed. Lognormally distributed responses, however, are better analyzed through cross-
validation.

In deterministic simulation, studentizing the prediction errors as in (19) gives mis-
leading conclusions. In such simulations the constant error a 2 is estimated from the
residuals. Hence the worse the metamodel is, the bigger this estimate becomes. But
then the denominator in (19) increases [Vir(Y;) = 01, so the probability of rejecting this
false model decreases! Therefore, relative prediction errors j ; / y ; are of more interest
to practitioners. Examples are presented in the coal transport and FMS case studies in
Sections 6.3.8 and 6.4.9.

It is also interesting to observe how the estimated individual input effects change,
as combinations are deleted: see c h , ; . Obviously, if the specified regression model is a
good approximation, the estimates remain stable. Examples are given for the same coal
transport and FMS case studies. Notice that the q x n matrix Ci = (c h , ;) concerns the
use of the simulation model an$ its concomitant metamodel for explanation, whereas
the vector with the n elements Y;/Y; concerns the use for prediction purposes. Other
diagnostic statistics are PRESS, DEFITS, DFBETAS, and Cook's D (see the general
literature on regression analysis; also, Kleijnen and Van Groenendaal, 1992, p. 157).

6.3.7 Numerical Example: Multiple Server System

Kleijnen and Van Groenendaal (1 992, pp. 150-1 5 1, 159-162) consider the well-known
class of server systems with (say) s servers in parallel, and Markovian arrival and service
processes: exponential interarrival times with rate X and exponential service times with
rate p , which are IID. These systems are denoted as M/M/s.

Suppose that the response of interest is the steady-state mean queue length. Estimate
this mean by the run average (say) F. Start each run in the empty state. Stop each
run after 2000 customers. (Better solutions for these tactical problems are discussed in
Appendix 6.1 .) Simulate six intuitively selected combinations of X, p , and s. Replicate
each combination 20 times. This gives Table 6.1. (In Section 6.4 we show that much
better designs are possible.)

Specify a regression metamodel for the M/M/s simulation model, with both the
response and the inputs logarithmically transformed [see (1) with Y = In(Y), xl = In(X),
x2 = In(p), and x3 = In(s)]. Use of the SAS package for the regression analysis of this
problem gives Table 6.2, which shows N = 6 x 20 = 120 and q = 1 + 3 = 4, so 116
degrees of freedom remain to estimate the common response variance under the classical
OLS assumptions. Corrected least squares (CLS) denotes the OLS point estimates with
correct standard errors [see (lo)]. The classical OLS computations give wrong standard
errors for the estimated factor effects that are slightly smaller than the standard errors
that use the unbiased estimated response variances.

The point estimates for OLS and EWLS do not differ much in this example: The
standard errors are small, and both estimators have the same expectation. EWLS gives
only slightly smaller standard errors. The explanation is that the logarithmic transforma-
tion reduces variance heterogeneity: Estimated response variances range only between
0.17 and 0.26 (in Section 6.4 we return to transformations).

All values for the multiple correlation coefficient R', adjusted or not, are very high.
This numerical example does not formally test the goodness of fit. The individual input
effects have the same absolute values, roughly speaking. Their signs are as expected
intuitively. Kleijnen and Van Groenendaal (1992) also examine a simpler regression
metamodel that uses a single input, namely the traffic rate Alps.

6.3 REGRESSION METAMODELS 191

TABLE 6.1 Average Queue Length V of 2000 Customers in M/M/s Simulation Started
in Empty State

Replication

I 2 3 4 5 6 7 8 9 1 0
Combination X p s 1 1 12 13 14 15 16 17 18 19 20

6.3.8 Case Study: Coal Transport

In this section we summarize Kleijnen (1995d), which concerns the following real-life
system. A certain British coal mine has three coalfaces, each linked to its own bunker.
These bunkers have specific capacities. Each bunker receives coal from a single coal-
face and discharges this coal onto a conveyor belt that serves all three bunkers. The
belt transports the coal to the surface of the mine. Whenever a bunker is full, the cor-
responding coalface must stop; obviously, this congestion decreases the efficiency.

Wolstenholme (1990, p. 115) considers three inputs: total belt capacity, maximum
discharge rate per bunker, and bunker capacities (which are assumed to be equal). He
further presents three control rules for managing the discharge rate of the bunkers. For
example, under policy I the discharge rate of each bunker can only be either zero or
maximal (no intermediate values). The maximum is used as long as there is coal in the
bunker and room on the conveyor belt. For this chapter it suffices to understand that
policies I1 and 111 are more sophisticated than policy 1. Policy is a qualitative factor
with three levels.

Vital questions are: What are the efficiency effects of changing inputs; are there
interactions among inputs? So this case study is representative of many problems that
arise in real life, especially in physical distribution and production planning.

Wolstenholme (1990) develops a system dynamics model, which is a particular type
of simulation, i.e., deterministic nonlinear difference equations with feedback relations.
As software he uses STELLA, whereas Kleijnen (1 9 9 5 4 uses POWERSIM 1.1. Kleij-
nen (1995d) runs eight combinations of the three quantitative inputs (wl , w2, w3); the
output is the efficiency y (see Table 6.3; the selection of input combinations is discussed
in Section 6.4).

The problem is how to find a pattern in the I/O behavior of the simulation model.
To solve this problem, Wolstenholme (1990, pp. 116-121) uses intuition and common
sense, studying run after run. In this section, however. we use regression metamodeling.
Because qualitative factors are slightly more difficult to represent in a regression model,

192 EXPERIMENTAL DESIGN FOR SENSITIVITY ANALYSIS, OPTIMIZATION

Table 6.2 Regression Analysis of M/M/s Example Using Standard SAS Software

Linear regression: OLS
R-square 0.9078
ADJ R-SQ 0.9054

Parameter Estimates

Variable
Parameter Standard t for HO:

D.F. Estimate Error Parameter = 0 Prob > It(

INTERCEPT
LOGLABDA
LOGMU
LOGSERVERS

COVB

INTERCEPT
LOGLABDA
LOGMU
LOGSERVERS

1 2.82523873 0.1095 1557 25.798 0.0001
1 5.10760536 0.19460843 26.246 0.0001
1 -5.21545 0.19938765 -26.157 0.0001
I -5.90304 0.18832235 -3 1.345 0.0001

Covariance of Estimates

INTERCEPT LOGLABDA LOGMU LOGSERVERS

Linear regression: CLS
R-square 0.9491

Parameter
Standard
Errors t Statistic

0.11376
0.20000
0.2 1361
0.1 9607

COVB

Linear regression: EWLS
R-square 0.9477

ADJ R-SQ 0.9463

Parameter
Standard
Errors

--

t Statistic

0.11300
0.19873
0.21285
0.19492

COVB

6.3 REGRESSION METAMODELS 193

TABLE 6.3 Input-Output per Policy for Wolstenholme's (1990) Coal Transport Model

.v

Run M'I "2 " 3 Policy I Policy 11 Policy 111

the effects of the three quantitative factors are first examined per policy. Next, policy
is incorporated as a factor.

Assume a regression metamodel with main effects and two-factor interactions [see
(I) with k = 3 and no quadratic effects]. Hence q = 7 effects need to be estimated.
OLS is used because the simulation model is deterministic. To check the validity of
this metamodel, R~ and cross-validation are used. The first measure is computed by
all standard statistical software, whereas the second measure is supported by modern
software only. In cross-validation the regression model is estimated using only seven of
the eight combinations in Table 6.3. First combination I is deleted and the regression
parameters are estimated from the remaining seven combinations. This new estimator
(say) p-, is used to predict the simulation response through j l [see (18) and (16),
respectively]. The actual simulation response is already known: y l = 55.78 for policy I
(see Table 6.3). Hence prediction errors can be computed. In this case the eight relative
prediction errors ?; /y i vary between 0.77 and 1.19 for policy 1.

As combinations are deleted, estimated individual input effects change. But the esti-
mates remain stable if the regression model specified is a good approximation. Table
6.4 gives results for the metamodel with main effects only, still using the I/O data of
Table 6.3. The three estimated main effects have the correct positive signs: increasing
input capacities increase efficiency. Moreover, an intuitive analysis of the I/O data in
Table 6.3 suggests that input 3 has more effect than input I , which in turn exceeds the
effect of input 2; the formal analysis agrees with this intuitive analysis.

The I/O data in Table 6.3 are also analyzed through other regression metamodels.
Searching for a good regression model requires intuition, common sense, and knowledge
of the underlying system that generated the 1/0 data (the system dynamics model and
the real system). This search receives more attention in econometrics than in DOE [see
also the case study in Van Ciroenendaal and Kleijnen (1996)l. To save space, these
details are skipped. The final conclusion is that in this case study a regression model
with the three main effects seems best: Interactions turn out to be insignificant, whereas
deleting the main effect of input 2 (which is the smallest estimated main effect) increases
the relative prediction error.

Next individual estimated input effects arentested statistically, assuming white noise.
Then classic OLS yields the standard errors s(Ph). To test if Oh is zero (unimportant main
effect), OLS uses Student's t-statistic. The critical value of this statistic is determined
by the signiticance level a. A usual value is 0.10, but to reduce the probability of falsely

194 EXPERIMENTAL DESIGN FOR SENSITIVITY ANALYSIS, OPTIMIZATION

TABLE 6.4 Estimates of Main Effects &, upon Deleting a Combination, in Policy Ia

Combination
Deleted Po PI 02 0.1 RZ Adj. R2

1 70.900 10.823 5.995 11.358 0.9772 0.9543
2 72.858 9.520 4.038* 9.400 0.9316 0.8632
3 72.906 8.821 4.736* 9.351 0.9202 0.8404
4 73.466 10.129 5.300 8.791 0.9478 0.8955
5 74.053 7.675 2.843* 11.245 0.9730 0.946 1
6 72.320 8.983 4.575* 9.613 0.9194 0.8387
7 72.271 9.456 4.101 9.463 0.9310 0.8620
8 7 1.486 8.149 8.679 0.9026 0.8052
None 72.535 9.195 4.363 9.725 0.9314 0.8799

'A blank denotes a nonsignificant effect; *denotes an estimated effect significant at a = 0.20; all other estimated
effects are significant at a = 0.10.

eliminating important inputs, the value 0.20 is also used in this study. A higher a means
a smaller critical value. This yields the blanks and the symbol * in Table 6.4.

Next consider policy I1 (for which no table is displayed). The best metarnodel turns
out to have main effects only for inputs 2 and 3: ~ e l e t i ; ~ the nonsignificant main effect
of input 1 decreases the maximum relative prediction error; interactions are not signif-
icant.

For policy I11 a model with the three main effects gives a good approximation. Note
that such simple metamodels do not always hold: in the case study on a flexible manu-
facturing system (FMS), only a regression model with interactions, in addition to main
effects, gives valid predictions and sound explanations (see Section 6.4.9).

Finally, consider regression metamodels with policy as a qualitative factor. So now
there are three quantitative inputs, each simulated for only two values, and there is one
qualitative factor with three levels, denoted I, 11, and 111. ~ e c h n i c a l l ~ , regression analysis
handles this qualitative factor through two binary (0,l) variab!es (Kleijnen, 1987). Now
the best regression model includes the main effects of all four factors. Policy 111 is the
best policy; policy 11 is worse than policy I, even though policy I is the simplest policy.
These regression results agree with an intuitive analysis of the 1 /0 data in Table 6.3:
Calculate the efficiency per policy, averaged over all eight combinations of the three
other factors. These averages are 72.50, 70.75, 78.75.

6.4 DESIGN OF EXPERIMENTS

6.4.1 Introduction

In Section 6.3 we assumed that the matrix of independent variables z is such that the
corresponding inverse matrices are not singular when computing GLS, WLS, and OLS
point estimates and their estimated covariance matrices. An obvious condition seems
to be that the number of observations is not smaller than the number of regression
parameters. But does this mean that N 2 q or n 2 q (with N = C:=, m,)?

Consider a simple example, a second-order polynomial with a single factor: Y =

Po + PIXl + @ l , l x f [see (1) with k = 11. Obviously, simulating only two values of
XI-corresponding with n = 2-does not give a unique estimate of this regression

6.4 DESIGN OF EXPERIMENTS 195

model, whatever the number of replicates m is. Hence the condition is n t q, not N t q.
See also the alternative notation of the regression model in (5).

Which n combinations to simulate (provided that n t q) can be determined such that
the variances of the estimated factor effects are minimized. This is one of the main
goals of the statistical theory on DOE; other goals follow in Section 6.4.8.

In this section we first cover clussical DOE, which assumes white noise or a? =

a 2 l N X N and a correctly specified regression model or E(E,,,) = 0 in (3). This gives
well-known designs such as 2k-'' and central composite design (Sections 6.4.2 to 6.4.6).
Next, we present ways to design simulation experiments such that these assumptions
do hold (Section 6.4.7). Optimul DOE does account for heterogeneous variances and
correlated simulation responses (Section 6.4.8). Finally we present an FMS case study
in Section 6.4.9.

In this chapter we do not cover all types of designs. For example, we do not discuss
"mixture" designs, which imply that the factor values are fractions that sum up to the

k value 1: x,,_, x;,h = 1 (see Myers et al., 1989, p. 142). We do not cover Taguchi's
DOE (see Donohue, 1994). We assume further that the experimental area is a k-dimen-
sional hypercube in the standardized factors. In practice, however, certain corners of
this area may represent unfeasible combinations (Kleijnen, 1987, p. 319; Nachtsheim,
1987; Nachtsheim et al., 1996).

Classical designs are tabulated in many publications. Two authoritative textbooks are
Box and Draper (1 987) and Box et al. (1 978). Two textbooks by Kleijnen (1 975a, 1987)
focus on DOE in simulation. The analysts may also learn how to construct those designs;
see the preceding references. In the next section we show which types of designs are
available, but we only indicate how to construct these designs (see the generators in
Section 6.4.2).

Recently, software, including artificial intelligence and expert systems, has been
developed to help analysts specify these designs. Expert systems for DOE, however, are
still in the prototype phase (Nachtsheim et al., 1996). "Nonintelligent" software for DOE
outside the simulation domain is supported by several commercial software products,
such as CADEMO (ProGAMMA, 1997), ECHIP (Nachtsheim, 1987), and RS/I (BBN,
1989). The need for DOE software in simulation was articulated in a panel discussion
at the 1994 Winter Simulation Conference (Sanchez et al., 1994). DOE software for
simulation is investigated in 0ren (1 993), Ozdemirel et al. (1 996), and Tao and Nelson
(1997). Simulation applications of classical designs are referenced in Donohue (1994),
Kleijnen (1987, 1995c), and Kleijnen and Van Groenendaal (1992). A FMS case study
is presented in Section 6.4.9.

6.4.2 Main Effects Only: Resolution 3 Designs

According to Box and Hunter's (1961) definition, resolution 3 designs give unbiased
estimators of the parameters of a first-order polynomial regression model. These param-
eters are the k main effects, plus the overall mean; see the first two terms on the right-
hand side of (I). Sometimes these designs are called screening designs (Nachtsheim,
1987, p. 133). This chapter, however, reserves the term screening for designs with fewer
runs than factors: n < k (see Section 6.2).

In practice, analysts often simulate the base situation first and then change one fuctor
at a time. This approach implies that n = 1 + k. However, consider orthogonal designs,
that is, designs that satisfy

196 EXPERIMENTAL DESIGN FOR SENSITIVITY ANALYSIS, OPTIMIZATION

TABLE 6.5 Plackett-Burman Design with 12 Combinationsa

"+ denotes + I ; - denotes - 1 .

with design matrix d = (di i) and i = 1, . . . , n, j = 1, . . . , k, and n > k. Notice that
the matrix of independent "ariables z becomes (1,. 1 , d) , where 1,. 1 corresponds with
the dummy factor xi0 = 1, which has effect 0 0 . Box (1952) proves that an orthogonal
design minimizes the variances of the estimated regression parameters. Moreover, the
effect estimators become independent: Use (21) in the covariance matrix in (1 0) with a,
= a 21Nx N . Obviously, both orthogonal and one-factor-at-a-time designs give unbiased
estimators.

How do we obtain the desired orthogonal matrices? Plackett and Burman (1946)
derive orthogonal designs for k up to 99 and n equal to k + 1 rounded upward to a
multiple of 4. For example, k equal to 8, 9, 10 or 1 1 requires that n = 12. This design
is displayed in Table 6.5.

Another example is k equal to 4, 5, 6 or 7 , which requires that n = 8. Writing n =
27-4 symbolizes that a fraction 24 is not simulated; that is, only 2"ombinations are

simulated. This design is displayed in Table 6.6, where the symbol 4 = 1 2 means that
di,4 = di,]di,2, . . . ; the symbol 7 = 1 . 2 . 3 means that di,7 = di, l d i , ~d i , 3 with i = 1 ,
. . . , n. These symbols are called the generators of the design.

In general, 2 k - p designs with nonnegative integer p smaller than k are a subclass
of Plackett-Burman designs. These designs have p generators. These generators deter-
mine how effects are confounded with each other; that is, they fix the bias pattern among
factor effects. For example, 4 = 1 . 2 implies that the estimator of the main effect of
factor 4 is biased by the interaction between factors 1 and 2. Of course, if the ana-
lysts assume that only main effects are important, this bias is unimportant (Kleijnen,
1987).

The examples of Tables 6.5 and 6.6 give saturated designs when k is 1 1 or 7. Smaller
k values (i.e., 8, 9, 10 and 4, 5, 6, respectively) enable cross-validation, to check if the
first-order regression metamodel is adequate (see Section 6.3.6).

So resolution 3 designs are useful when a first-order polynomial seems an adequate
regression model a priori. This will be the case in the first stages of RSM used in opti-

6.4 DESIGN OF EXPERIMENTS 197

TABLE 6.6 27-4 Design with Generators 4 = 1 - 2, 5 = 1 . 3, 6 = 2 - 3,
7 = 1 - 2 - 3 '

"+ denotea + 1; - denotes - 1

mization (see Section 6.5). Moreover, these resolution 3 designs are useful as building
blocks for the next type of design, namely resolution 4 designs. An example of this
building block approach is given in the FMS case study of Section 6.4.9.

6.4.3 Main Effects Against Two-Factor Interactions: Resolution 4
Designs

According to Box and Hunter (1961), resolution 4 designs give unbiased estimators of
all k main effects, even if there are interactions between pairs of factors. Box and Wil-
son (1951, p. 35) prove that this design property can be achieved through the foldover
principle: To the original resolution 3 design with design matrix (say) d3, now add
the "mirror" or "negative" image of d3, namely d 3 . Obviously, the foldover princi-
ple implies doubling the number of simulated factor combinations; for example, k = 7
requires that n = 2 x 8 = 16. A subclass of resolution 4 designs are 2 k - p designs with
the proper choice of p. An example is the 28-4 design in Table 6.7. Notice that this
design implies that the estimator of the main effect of factor 4 is biased by the interac-
tion among the factors 1, 2, and 8, but not by any interactions between pairs of factors.
[The estimators of two-factor interactions are biased by each other; for example, the
estimated interaction between the factors 1 and 2 is biased by the interaction between
the factors 4 and 8 (Kleijnen, 1987).]

Another example of a resolution 4 design for a great many factors is given in Kleijnen
et al. (1992, p. 416): k = 62 factors requires p = 55 generators, which are specified in
that reference. Fiirbringer and Roulet (1995) give a simulation application with k = 24
and p = 16.

A different subclass are the nonorthogonul designs derived by Webb (1968). These
designs are specified only for k is 3, 5, 6, or 7 with n equal to 2k. Details are given in
Kleijnen (1987, pp. 303-309) and in the other references.

Obviously, resolution 4 designs leave degrees of freedom over since n > 1 + k.
Hence these designs can give an indication of the importance of two-factor interactions.
Actually, these designs give estimators of certain sums of two-factor interactions; for
example, P 1 , ~ + /34,8 + 63,~ + P5,6 (Kleijnen, 1987, pp. 304-305).

198 EXPERIMENTAL DESIGN FOR SENSITIVITY ANALYSIS, OPTIMIZATION

TABLE 6.7 28-4 Foldover Design with Generators 4 = 1 . 2 . 8 , s = 1 3 - 8 ,
6 = 2 . 3 . 8 , 7 = 1 . 2 . 3

Run 1 2 3 4 5 6 7 8

"+ denotes + I : - denotes - 1

6.4.4 Individual Two-Factor Interactions: Resolution 5 Designs

Resolution 5 designs give estimators of main effects and two-factor interactions that
are not biased by each other; they may be biased by interactions among three or more
factors. Obviously, there are k(k - 1)/2 such interactions [see Ph,h' in (I)].

One subclass is again 2k-p designs with a proper choice of the p generators. An
example is a 2X-2 design with the generators 7 = 1 . 2 - 3 . 4 and 8 = 1 . 2 . 5 .
6. In this design no two-factor interaction estimator is biased by another two-factor
interaction or main effect estimator; the estimator of the interaction between the factors
1 and 2, however, is biased by the interaction among the factors 3, 4, and 7, and among
the factors 5, 6, and 8 (Kleijnen, 1987).

Rechtschaffner (1967) gives saturated resolution 5 designs: n = 1 + k + k(k - 1)/2
(Kleijnen, 1987, pp. 309-3 11). In general, resolution 5 designs require many factor
combinations. Therefore, in practice, these designs are used only for small values of k
(see Section 6.4.5).

6.4.5 High-Order Interactions: Full Factorial Designs

If k is very small (say, k = 3), all 2k combinations can be simulated. Then all interac-
tions (not only two-factor interactions) can be estimated. In practice, these full factorial
designs are indeed sometimes used.

Although high-order interactions can be defined mathematically, they are hard to
interpret. Therefore, a better metamodel may be specified, using transformations. For
example, replace Y or x in a first-order polynomial by log Y or log x, so elasticity coef-
ficients and decreasing marginal responses may be represented. We presented a numeri-
cal example in Section 6.3.7, concerning an M/M/s simulation model. A recent appli-
cation is a simulation of Japanese production control systems known as Kanban sys-

6.4 DESIGN OF EXPERIMENTS 199

TABLE 6.8 Central Composite Designs for Two Factorsa

Run i 2 3 4 5 6 7 8 9

"+ denotes + 1: - denotes - I .

tems (Aytug et al., 1996). Transformations are further discussed in Cheng and Kleijnen
(accepted); (see also Section 6.4.7).

6.4.6 Quadratic Effects: Central Composite Designs

Obviously, if quadratic effects are to be estimated, at least k extra runs are needed [see
P h , h in (1) with h - I, . . . , k]. Moreover, each factor must be simulated for more than two
values. Designs that are popular in both statistics and simulation are centrul composite
designs. These designs combine resolution 5 designs (see Section 6.4.4) with one-factor-
at-a-time star designs; that is, each factor is simulated for two more values while the
other k I factors are kept at their base values. In symbols: Taking standardized values
for all factor values, each factor is simulated for the values c and -c with c not equal to 1
or zero, so these values are symmetrical relative to zero. The selection of an appropriate
value for c is surveyed in Myers et al. (1989). Besides the resolution 5 and the star
design, simulate the central point x h = 0 with h = 1, 2, . . . , k. In other words, each
factor is simulated for five values: the standardized values I , 1 , c , +c, 0. These
designs require relatively many runs: n >> q. An example is displayed in Table 6.8: k =

2 gives n = 9, whereas q = 6. These designs imply nonorthogonal columns for the k + 1
independent variables that correspond with the quadratic and the overall effects. Other
designs for second-order polynomials, including saturated and fractional 3k designs, are
summarized in Kleijnen (1987, pp. 3 14-316) and Myers et al. (1989, p. 140). A case
study that uses the design of Table 6.8 will follow in Section 6.6.5.

6.4.7 Satisfying the Classical DOE Assumptions

Classical DOE assumes white noise and a correctly specified regression model: a,. =

cr 21N, and E(Ei,,) = 0. In simulation, responses are independent if the (pseudo)ran&m
number streams do not overlap and if the (pseudo)random number generator is adequate
(see Chapter 4). Practitioners, however, often use common (pseudo)random numbers. In
that case the resulting correlations should be estimated and incorporated through either
EGLS (see Section 6.3.5) or OLS with corrected covariance matrix [see (lo)]. Orthog-
onal designs, however, no longer give independent estimators of the regression param-
eters [see (7) and (lo)]. Whether other "optimality" characteristics still hold requires
more research (see Section 6.4.8).

The classical DOE literature tries to realize constant variances through variance sta-
bilizing transformations (Box and Cox, 1964). A major problem is that such a trans-
formation may result in a regression metamodel that has lack of fit or that is hard to
interpret (Dagenais and Dufour, 1994). A counterexample is the successful M/M/s study
in Section 6.3.7.

In simulation, however, there is another way to realize constant variances, as sim-

200 EXPERIMENTAL DESIGN FOR SENSITIVITY ANALYSIS, OPTIMIZATION

ulation proceeds sequentially (apart from simulation on multiprocessors). So simulate
so many replications that the average response per factor combination has a constant
variance (say) co:

The variances in this equation can be estimated either sequentially or in a pilot phase;
Kleijnen and Van Groenendaal (1995) report good results for this heuristic. In steady-
state simulations this equation needs slight adjustment.

Whether the regression metamodel is specified correctly can be verified through lack-
& i t tests, which were discussed at length in Section 6.3.6. These tests assume that
degrees of freedom are left over after estimation of the factor effects (n > q). Saturated
designs violate this assumption. Many designs, however, are not saturated, as the pre-
ceding subsections demonstrated. If, however, a design is saturated, one or more extra
factor combinations may be simulated (Kleijnen and Sargent, 1997).

If the regression model shows significant lack of fit, a polynomial regression model
may be augmented with higher-order terms: See the high-order interactions in Section
6.4.5. Fortunately, many classical designs can be simulated stagewise. For example, a
resolution 3 design can easily be augmented to a resolution 4 design: See the foldover
principle in Section 6.4.3; and a resolution 5 design can easily be augmented to a central
composite design (see Section 6.4.6). An example is provided by the case study on FMS
in Section 6.4.9 (see also Kleijnen, 1987, pp. 329-333); Kleijnen and Sargent, 1997).
Lack of fit may also be reduced through transformations of the dependent or independent
regression variables (see Section 6.3.7).

6.4.8 Optimal DOE

There are several optimality criteria in DOE: See St. John and Draper (1975); many
more references are given in Kleijnen (1987, p. 357, footnote 65). Here only the fol-
lowing three related criteria are discussed.

1. A-Optimality or Trace of uc. An optimal design may minimize the average vari-
ance of the estimated regression parameters given the number of parameters q and the
number of factor combinations n. In other words, the trace of the covariance matrix uc
may be minimized.

2. D-Optimality or Determinant of uc. An error in the estimate for one parameter
may affect the error for another parameter, so the off-diagonal elements of the covari-
ance matrix uc may also be relevant. The determinant of uc gives a scalar criterion,
which may be minimized.

3. G-Optimality or Maximum Mean-Squared Error (MSE). The regression meta-
model specified may be wrong. Therefore, the design may minimize the maximum value
of the MSE between the true regression model and the fitted model (Box and Draper,
1987; Myers et al., 1989).

Kiefer and Wolfowitz (1959, p. 272) prove that under certain conditions a saturated
design (n = q) gives "optimal" results. They further started the investigation of which

6.4 DESIGN OF EXPERIMENTS 201

values of the independent variables to observe and how many replicates to take (Fedorov,
1972). Recently, Cheng and Kleijnen (accepted) extended Kiefer and Wolfowitz's results
to "nearly saturated" queueing simulations (traffic rates close to one), which have vari-
ance heterogeneity. Their main results are that the highest traffic rate actually simulated
should be much lower than the highest traffic rate that is of interest; and the highest traf-
fic rate simulated should be simulated for more customers than the lower traffic rates.
The latter result implies that the simulation budget should not be allocated equally to
the various traffic rates simulated.

Sacks et al. (1989) assume that fitting errors are positively correlated: The closer
two combinations are in k-dimensional space, the more the fitting errors are correlated.
This assumption is realistic if the response function is smooth. Technically speaking,
they assume a covariance stationary process, as an alternative to white noise (Welch et
al., 1992).

Optimal DOE gives designs that do not have the standard geometric patterns of clas-
sical designs. Optimal designs cannot be looked up in a table; they are generated by
means of a computer (Nachtsheim, 1987, pp. 146, 15 1). Additional research is needed to
facilitate more frequent application of these designs in simulation practice. An overview
of optimal DOE theory, including many references to the older literature, is Myers et
al. (1989, pp. 140-141). More recent literature is cited in Atkinson and Cook (1995)
and Ermakov and Melas (1995).

6.4.9 Case Study: FMS

A machine-mix problem for a particular FMS is studied in Kleijnen and Standridge
(1988) and summarized in Kleijnen and Van Groenendaal (1992, pp. 162-164). Ana-
lysts wish to determine the number of machines, per type of machine, such that a given
production volume is realized. There are four machine types, wl through w4. Only
type 4 is a flexible machine; the other types are dedicated to a particular operation. A
more complicated simulation model would allow for random service and arrival times,
and random machine breakdowns. Yet the deterministic simulation model actually used
demonstrates many main issues to be solved in DOE. Issues typical for random simula-
tion are run-length determination and estimation of the response covariance matrix a,.
These tactical issues are not addressed in this case study. (Yet this study was initiated at
a major supplier of discrete-event simulation software, previously Pritsker Corporation
now Symix.)

Because these inputs must be integers, there are only 24 feasible combinations in the
experimental domain. The actual values are given in Kleijnen and Standridge (1988), but
they are not relevant here. Initially, eight intuitively selected combinations are simulated
(Table 6.9). Then DOE is applied, initially assuming a first-order polynomial regression
metamodel for these four factors. A possible resolution 3 design is a 24- design with
3 = 1 . 2 4 (see Section 6.4.2). This design is not saturated, so lack of fit can be
examined. Because the simulation model is deterministic, OLS is used to estimate the
factor effects. Table 6.10 shows that the orthogonal design indeed gives more accurate
estimates.

In the remainder of this section we concentrate on the results of the more accurate
24- design. Cross-validation gives Table 6.1 1, which displays the estimated factor
effects that remain significantly different from zero when a = 0.30. Besides the sta-
bility of individual effects in cross-validation, the relative prediction errors Ti /y i are of
interest. These errors turn out to range between -38 and +33%. Altogether, these

202 EXPERIMENTAL DESIGN FOR SENSITIVITY ANALYSIS, OPTIMIZATION

TABLE 6.9 Intuitive Design for the Four Factors in the FMS
Simulation in Kleijnen and Standridge (1988)a

'+ denotes +I: - denotes - I

cross-validation results lead to rejection of this first-order polynomial regression meta-
model.

Table 6.1 1 does suggest that factors 1 and 3 are not important. Therefore, a meta-
model for the remaining factors 2 and 4 is formulated, but now including their inter-
action. Using the old 1/0 data, which resulted from the 24- ' design, gives Table 6.12.
This table shows that in this new metamodel all estimated effects remain significant
in cross-validation! Further, the relative prediction errors jli/yi become much smaller:
They now vary between 1 6 and +14%. So the conclusions of this case study are:

1. Machines of types 2 and 4 are bottlenecks, but not types 1 and 3: i 1 and i 3 are
not significant in Table 6.11.

2. There is a trade-off between machine of types 2 and 4, as there is a significant
negative interaction (see ,82,4 in Table 6.12).

3. The regression metamodel helps to understand how the FMS works.

6.5 OPTIMIZATION OF SIMULATED SYSTEMS: RSM

Whereas the previous designs were meant to gain understanding of the simulation model
through what-if analysis, DOE may also aim at optimizing the simulated system. There

TABLE 6.10 Estimated Variances of Estimated Effects
in First-Order Polynomial Regression Metarnodel for
FMS Simulation

Intuitive Formal
Effect Design Design

6.5 OPTIMIZATION OF SIMULATED SYSTEMS: RSM 203

TABLE 6.11 Cross-Validation and Estimated Factor Effects
Significantly Different from Zero When a = 0.30; First-Order
Polynomial Metamodel for Four Factors in FMS Simulation

Run
Deleted i I 02 6 3 i 4 i o

I
2
3
4
5
6
7
None

are many mathematical techniques for optimizing the decision variables of nonlinear
implicit functions; simulation models are indeed examples of such functions. These
functions may include stochastic noise, as is the case in random simulation. Exam-
ples of such optimization techniques are sequential simplex search (Nachtsheim, 1987),
genetic algorithms, simulated annealing, and tabu search (Nash, 1995). Software is given
in Chapter 25, for example, ProModel's SimRunner, Witness' Optimizer, and Micro-
Saint's OptQuest. There is virtually no software for optimization in the presence of
multiple responses (Khuri, 1996, pp. 240, 242). Software for the optimization of system
dynamics includes DYSMOD's pattern search (Dangerfield and Roberts, 1996). System
dynamics is a special kind of simulation, which may inspire developers of discrete-event
simulation software. We, however, concentrate on RSM.

Note that some authors outside the discrete-event simulation area speak of RSM but
mean what we call the what-if regression-metamodeling approach, not the sequential
optimization approach (see, e .g , Olivi, 1980). Further. RSM assumes that the decision
variables are quantitative. Systems that differ qualitatively are discussed in Chapter 8.

Classical RSM assumes a single type of response. However, the two case studies in

TABLE 6.12 Cross-Validation and Stability of (j2, (j4, (j2& and (jo in
Metamodel with Interaction for FMS

Run
Deleted i 2 P4 02.4 P o

1
2
3
4
5
6
7
8
None

204 EXPERIMENTAL DESIGN FOR SENSITIVITY ANALYSIS, OPTIMIZATION

Sections 6.5.2 and 6.5.3 have two response types. In these case studies one response is
to be maximized, whereas the other response must meet a side condition. In the case
study in Keijzer et al. (1981), however, three response types are considered: namely,
waiting time for each of three priority classes. A single overall criterion function is
formulated by quantifying trade-offs among the waiting times per job class.

In Section 6.5.1 we first give general characteristics of RSM, then some details on
RSM. Sections 6.5.2 and 6.5.3 give case studies.

6.5.1 Response Surface Methodology

RSM has the following four general characteristics:

1. RSM relies on first- and second-order polynomial regression metamodels or
response surfaces; the responses are assumed to have white noise (see Section
6.3).

2. RSM uses classical designs (see Section 6.4).

3. RSM adds to regression models and DOE the mathematical (not statistical) tech-
nique of steepest ascent; that is, the estimated gradient determines in which direc-
tion the decision variables are changed.

4. RSM uses the mathematical technique of canonical analysis to analyze the shape
of the optimal region: Does that region have a unique maximum, a saddle point,
or a ridge (stationary points)?

Now we consider some details. Suppose that the goal of the simulation project is to
maximize the response; minimization is strictly analogous.

RSM begins by selecting a starting point. Because RSM is a heuristic, success is
not guaranteed. Therefore, several starting points may be tried later, if time permits.

RSM explores the neighborhood of the starting point. The response surface is approx-
imated locally by a first-order polynomial in the decision variables, as the Taylor series
expansion suggests. This gives the regression metamodel in (1) but with all cross-prod-
ucts eliminated. Hence k main effects oh with h = 1, . . . , k are to be estimated. For that
purpose a resolution-3 design should be used; !his gives n = k + 1 (see Section 6.4.2).

If (say) the estimated effects are such that Dl >> PZ > 0, obviously the increase
of wl (decision variable 1) should be larger than that of wz; the symbol w refers to the
original, nonstandardized variables [see (2)]. The steepest ascent path means Awl/Aw2
= PI/&; in other words, steepest ascent uses the local gradient.

Unfortunately, the steepest ascent technique does not quantify the step size along
this path. Therefore, the analysts may try a specific value for the step size. If that value
yields a lower response, the step size should be reduced. Otherwise, one more step is
taken. Note that there are more sophisticated mathematical procedures for selecting step
sizes (Safizadeh and Signorile, 1994). Notice that special designs have been developed
to estimate the slope accurately; that is, these designs are alternatives to the classical
resolution 3 designs mentioned above (Myers et al., 1989, pp. 142-143).

Ultimately, the simulation response must decrease, since the first-order polynomial
is only a local approximation to the real 1/0 transformation of the simulation model.
In that case the procedure is repeated. So around the best point so far, the next n = k +
1 combinations of wl through wk are simulated. Note that the same resolution 3 design
may be used; only the locations and spreads of the original variables are adjusted [see

6.5 OPTIMIZATION OF SIMULATED SYSTEMS: RSM 205

(2)]. Next, the factor effects in the new local first-order polynomial are estimated; and
so RSM proceeds.

A first-order polynomial or hyperplane, however, cannot adequately represent a hill-
top. So in the neighborhood of the optimum, a first-order polynomial may show serious
lack of fit. To detect such specification error, the analysts might use cross-validation. in
RSM, however, simple diagnostic measures are more popular: R~ << 1, V$r(Ph) >> Ph
(see also Section 6.3.6).

So next a second-order polynomial is fitted (see Sections 6.3 and 6.4). Finally, the
optimul values of the decision variables wh are found by straightforward differentiation
of this polynomial. A more sophisticated evaluation uses canonical analysis (Myers et
al., 1989, p. 146).

Sojtware for RSM is available. Much software referenced in the section on DOE
(Section 6.4), also handles RSM. Nachtsheim (1 987) discusses special RSM software:
SIMPLEX-V and ULTRAMAX. This software provides designs such as central compos-
ite designs (see Section 6.4.6), and contour plots of the fitted surface, even for multiple
responses (Myers et al., 1989, pp. 145-146, 148).

RSM is discussed further in Fu (1994), Ho et al. (1992), Khuri and Cornell (1996),
and Sheriff and Boice (1994). Applications of RSM to simulated systems can be found
in Hood and Welch (1993), Kleijnen (1987), and Kleijnen and Van Groenendaal(1992).
Numerous applications outside the simulation field are surveyed in Myers et al. (1989,
pp. 147-151). In Section 6.5.2 we summarize a case study illustrating how RSM climbs
a hill; Section 6.5.3 gives a different case study illustrating how a hilltop can be explored
further when there are two response types.

6.5.2 Case Study: Production Planning DSS

Kleijnen (1993) studies a DSS for production planning in a specific Dutch steel tube
factory that has already been mentioned in Section 6.1. Both the DSS and the factory are
simulated; the DSS is to be optimized. This DSS has 14 decision variables; for example,
wl denotes "penalty for producing class 2 products on the next-best machine". There are
two response variables, the total number of productive hours and the 90% quantile of
lead time. Simulation of one input combination takes 6 hours on the computer available
at that time. Consequently, searching for the optimal combination must be performed
with care.

The original team of operations researchers planned to fit a local first-order polyno-
mial with 14 inputs. They decided to simulate the base case first. Next they planned to
change one factor at a time, once making each factor 20% higher than its base value,
and once, 20% lower. Obviously, this design implies n, number of simulated factor com-
binations, equal to 1 + 2 x 14 = 29. Kleijnen (1993), however, uses a 2 1 4 "' design,
so n = 16 > q = 15. The specific n = 16 combinations are specified by writing all 24
combinations of the first four factors and then using the generators 5 = 1 . 2, 6 = 1 . 3,
7 = 1 . 4 , 8 = 2 . 3 , 9 = 2 . 4 , 1 0 = 3 . 4 , 1 1 = 1 . 2 . 3 , 1 2 = 1 . 2 . 4 , 1 3 = 1 . 3 . 4 ,
and 14 = 2 . 3 . 4.

The resulting OLS estimates are not tested for significance, as a small parameter
value may become a big value in a next local area. Table 6.1 3 gives the local effects
on productive hours and on lead time, respectively. This table demonstrates that some
decision variables have a favorable local effect on both response types. For example,
raising wl by 1 unit increases production by PI = 0.52; at the same time, this rai2e
improves lead time by ? I = 0 . 0 5 4 . Lowering wd by 1 unit changes production by P4

206 EXPERIMENTAL DESIGN FOR SENSITIVITY ANALYSIS, OPTIMIZATION

TABLE 6.13 Estimated Local Effects oAn Productive Hours and Lead Time in Simulated
Production Planning DSS; Unit Effects Ph and Base Values wo,h

Effect on Productive Hours Effect on Lead Time

h j h P n w ~ , h ? h " I ~ o , h

= - 18.07 while decreasing lead time by +4 = 150.583. Because the decision variables
have different scales and ranges, this table gives not only the unit effects but also the
unit effects multiplied by the base values (say) wo, 1 through wo, 14.

The step size in RSM is determined heuristically. In this case the step size is selected
such that at least one of the decision variables is doubled. Table 6.14 shows that wl2
changes from 0.33 to 0.5936; the other 13 variables do not change much. These changes
result from a step size of 0.0005; that is, the base values wo,h become wo,h + 0.0005
oh. Further results are given in Kleijnen (1993).

6.5.3 Case Study: Coal Transport

In this section we return to the coal transport model already presented in Section 6.3.8,
but now we focus on optimization instead of sensitivity analysis. Wolstenholme (1990,
pp. 125-127) restricts the optimization to the best control rule, policy 111. Obviously,
efficiency denoted by (say) y('), cannot exceed 100%. Therefore, the goal is to minimize
total costs, denoted by y('), under the condition that the efficiency remains at its maxi-
mum of 100%. Wolstenholme assumes that one input is fixed: The maximum discharge
rate is fixed at an average of 1000 tons/hr. He wishes to optimize the two remaining
inputs, wl, total belt capacity, and w2, capacity per bunker. (The two symbols w2 and
w3 have different meanings in Section 6.3.8 and this section. The cost parameters are
£1000 per ton per hour for wl and £2000 per ton for w2. The total costs are a linear
function of the decision variables: y(2) = 1000wl + 2 0 0 0 ~ ~ . Efficiency, however, is a
complicated nonlinear function specified by the system dynamics model (see Section
6.3.8).

Kleijnen (1995d) develops the following heuristic, inspired by RSM. Classic RSM,
however, maximizes a single criterion, ignoring restrictions such as the one on effi-
ciency: namely, y(') = 1.

6.5 OPTIMIZATION OF SIMULATED SYSTEMS: RSM 207

TABLE 6.14 Values of Decision Variables in Base Run and After
a Step of 0.005 on Steepest Ascent Path

Value of Variable
Unit Effect,

h $A Base Run Steepest Ascent

Step I . Find an initial combination w = (w l , wz)' that yields a simulated efficiency
of 100%. Such a combination is already available; see the element in the last row and
column of Table 6.3, discussed in Section 6.3.8.

Step 2. Reduce each input by (say) 10%. Simulate the system dynamics model with
this input. Obtain the corresponding output.

Step 3. If the output of step 2 is still 100%, return to step 2; else, proceed to the
next step.

Step 4. Find the most recent input combination that satisfies the efficiency restriction
y(I' = 1 (see steps 1 and 2). Reduce the step size to (say) 5%. Simulate the model with
this new input combination, and obtain the corresponding output.

Step 5. Further explore the most recent local area that includes a combination with
y = 1 . In other words, simulate the model for the 4 input combinations that are specified
by the 2' design. In Figure 6.2 these 4 combinations form the rectangle with lower left
corner (2693, 923) and upper right corner (2835, 972).

Since this heuristic does not result in further progress, the optimum seems to be
close. Now a second-order polynomial is specified as an approximation to the production
function v (') (w l , ~ Z) . TO estimate the 6 parameters in this polynomial, the 2' design
is expanded to the central composite design of Table 6.8, discussed in Section 6.4.6.
Figure 6.2 shows the central point (2764, 948). The standardized axial value c is set at
0.75; if c > 1, then (0, c) and (c, 0) give too-high costs, and (0, -c) and (-c, 0) give
too-low efficiencies. Table 6.15 shows the standardized and original values of the two
decision variables, and the resulting costs and efficiencies. From the I/O data in the
table the second-order polynomial can be estimated. Because the simulation model is
deterministic, OLS is used. This gives

208 EXPERIMENTAL DESIGN FOR SENSITIVITY ANALYSIS, OPTIMIZATION

Estimated efficiency frontier

Figure 6.2 Central composite design, estimated efficiency frontier, and optimal isocost line;
* means y(l) = 1; O means < 1.

Although the quadratic and interaction coefficients look small, they should not be
ignored, since they are multiplied by w:, wZ2, and wlw2, which are large.

Step 6. Combine this second-order polynomial approximation with the cost restric-
tion y(2) = 1000wl + 2 0 0 0 ~ ~ ; that is, replace $(I) on the left-hand side of this poly-
nomial by the value 1. Mathematically, this results in an ellipsoid: Figure 6.2 shows
only a small part of that ellipsoid. In economic jargon, the ellipsoid gives the efJiciency

TABLE 6.15 Input Combinations in the Central Composite Design with
Corresponding Costs and Efficiencies for the Coal Transport System

Input Combination Input Combination Cost, Efficiency
Standard Variables, Original Variables, y (l)

(x1, x2) (w l , w2) (£1 (%I

6.6 VALIDATION AND VERIFICATION 209

frontier: Outside the ellipsoid, inputs are wasted; inside that ellipsoid the efficiency is
too low.

Minimizing the total cost y'2) = 1000wl + 2 0 0 0 ~ ~ under the efficiency restriction
y (') = 1 can be done through a Lagrangean multiplier. This yields the estimated optimal
input combination (k:k2*) = (2841.35, 968.17). Graphically, this is the point in which
the efficiency frontier is touched by an iso-cost line with the angle -1000/2000 = -;.

This optimum is based on an approximation: The estimated second-order polynomial
has a multiple correlation coefficient R~ of only 0.80. Therefore, this solution is checked:
Simulate the system dynamics model with the estimated optimal input combination.
This simulation indeed gives 100% efficiency. However, its cost is £4.78 million, which
exceeds the lowest cost in Table 6.15 that corresponds with a combination that also
gives 100% efficiency. In that table the combination (2835.00, 923.40) gives a cost
of £4.68 million, which is 2% lower than the estimated optimal cost. Compared with
Wolstenholme (1990, pp. 125-127), this final solution gives a substantial cost reduction,
namely £0.72 million, or 15%.

6.6 VALIDATION AND VERIFICATION

6.6.1 Overview

We limit our discussion of validation and verification (V&V) to the role of regression
analysis and DOE; V&V is discussed further in Chapter 10 (see also Kleijnen, 1995a).
Obviously, V&V is one of the first questions that must be answered in a simulation
study. For didactic reasons, however, we discuss V&V at the end of this chapter.

True validation requires that dutu on the real system be available. In practice, the
amount of such data varies greatly: Data on failures of nuclear installations are rare,
whereas electronically captured data on computer performance and on supermarket sales
are abundant.

If data are available, many statistical techniques can be applied. Assume that the sim-
ulation is fed with real-life input data: This is known as truce-driven simulation. Then
simulated and real responses (say) Y and X, respectively, might be compared through
the Student t-statistic for paired observations, assuming (say) rn normally and indepen-
dently distributed (NID) observations on X and Y [see (8) with Y replaced by Y - X
a n d v = m I].

A better test, however, uses regression analysis, as follows. Regress Y - X on Y +X;
that is, in the regression model (I), replace Y by Y - X and x by Y + X . Use a first-order
polynomial; that is, delete cross-products in (1). Next test the null hypothesis Ho: Po =

0 and pl = 0. This hypothesis implies equal means and equal variances of X and Y, as is
easily derived assuming bivariate normality for (X, Y). This hypothesis is tested using
the familiar F statistic. Whenever the simulation responses are nonnormal, a normalizing
transformation should be applied. Kleijnen et al. (1 998) give details, including numerical
examples for single-server queueing simulations. This reference also demonstrates that
a valid simulation model is rejected too often when simply regressing Y on X and testing
for zero intercept and unit slope.

If no dutu are available, DOE can be used in the following way. The simulationists
and their clients do have qualitative knowledge about certain parts of the simulated and
the corresponding real system; that is, they do know in which direction certain factors
affect the response of the corresponding module in the simulation model; see also the

210 EXPERIMENTAL DESIGN FOR SENSITIVITY ANALYSIS, OPTIMIZATION

discussion on known signs in sequential bifurcation in Section 6.2.2. I f the regression
metamodel discussed in Section 6.3 gives an estimated factor effect with the wrong sign,
this is a strong indication o f a wrong simulation model or a wrong computer program!

To obtain a valid simulation model, some inputs may need to be restricted to a certain
domain of factor combinations. This domain corresponds with the experimental frame
in Zeigler (1976), a seminal book on modeling and simulation.

The regression metamodel shows which factors are most important; that is, which
factors have highly significant regression estimates in the metamodel. I f possible, infor-
mation on these factors should be collected, for validation purposes. The importance o f
sensitivity analysis in V&V is also emphasized by Fossett et al. (1991, p. 719). They
invesigate three military case studies, but do not present any details.

One application of DOE and regression analysis in V&V is the ecological study in
Kleijnen et al. (1992, p. 415), which concerns the same greenhouse problem examined
in Bettonvil and Kleijnen (1997). The regression metamodel helped to detect a seri-
ous error in the simulation model: One o f the original modules should be split into
two modules. This application further shows that some factors are more important than
the ecological experts originally expected. This "surprise" gives more insight into the
simulation model. Another application is given in Section 6.6.2.

6.6.2 Case Study: Mine Hunting at Sea

Kleijnen (1995b) considers a simulation model for the study of the search for explo-
sive mines on the sea bottom by means o f sonar. This model was developed for the
Dutch navy, by TNO-FEL (Applied Scientific Research-Physics and Electronics Labo-
ratory); this is a major military research institute in the Netherlands. The model is called
HUNTOP (mine HUNTing Operation). Other countries have similar simulation models
for naval mine hunting; the corresponding literature is classified.

In this case study, V&V proceeds in two stages: in stage 1 individual modules are
validated; in stage 2 the entire simulation model is treated as one black box and is
validated. The latter stage, however, is not discussed here, but in Kleijnen (1995b).

Some modules within the model give intermediate output that is hard to observe in
practice, and hence hard to validate. Sensitivity analysis is applied to such modules to
check i f certain factor effects have signs or directions that agree with experts' prior
qualitative knowledge. For example, deeper water gives a wider sonar window (see P2
in the sonar window module below). Because o f time constraints, only the following
two modules are examined in the HUNTOP case study.

Sonar Window Module. The sonar rays hit the bottom under the grazing angle. This
angle is determined deterministically by three factors: wl, the sound velocity profile
(SVP), which maps sound velocity as a function o f depth; w2, the average water depth;
and w3, the tilt angle. SVP is treated as a qualitative factor.

The sonar window module has as response variables y (') , the minimum distance of
the area on the sea bottom that is insonified by the sonar beam, and y(2), the maximum
distance of that same area. Consider a second-degree polynomial in the two quantitative
factors w2 and w3, namely one such polynomial for each SVP type. Note that a first-
degree polynomial misses interactions and has constant marginal effects; a third-order
polynomial is more difficult to interpret and needs many more simulation runs. So a
second-order polynomial seems a good compromise.

To estimate the q = 6 regression parameters o f this polynomial, use the classical

6.7 CONCLUSIONS 211

central composite design with n = 9 input combinations, already displayed in Table
6.8. The fitted polynomial turns out to give an acceptable approximation: The multiple
correlation coefficient R2 ranges between 0.96 and 0.98 for the four SVPs simulated.

Expert knowledge suggests that certain factor effects have specific signs: /3? > 0,
p3 < 0, and P 2 , 3 < 0. Fortunately, the corresponding estimates turn out to have the
correct signs. So this module has the correct I/O transformation, and the validity of
this module need not be questioned. The quadratic effects are not significantly different
from zero. So on hindsight, simulation runs could have been saved, since a resolution
5 design instead of a central composite design would have sufficed.

For y(2), maximum distance, similar results hold. The exception is one SVP that
results in an R2 of only 0.68 and a nonsignificant (I 2 .

Visibility Module. An object (a mine, a garbage can, etc.) is visible if it is within the
sonar window and it is not concealed by the bottom profile. HUNTOP represents the
bottom profile through a simple geometric pattern: hills of fixed heights with constant
upward slopes and constant downward slopes. A fixed profile is used within a single
simulation run. Intuitively, the orientation of the hills relative to the ship's course and to
the direction of the sonar beam is important: Does the sonar look down a valley or is its
view blocked by a hill? The response variable of this module is the time that the object
is visible, expressed as a percentage of the time it would have been visible were the
bottom flat; obviously, a flat bottom does not conceal an object. Six inputs are varied:
water depth, tilt angle, hill height, upward hill slope, and object's position on the hill
slope (top, bottom, or in between).

A second-order polynomial regression metarnodel is also used for this module. To
estimate its 28 regression parameters, a central composite design is used. This design
has 77 input combinations. The simulation's 1/0 gives an R' of 0.86. Furthermore, the
upward hill slope has no significant effects at all: no main effect, no interactions with the
other factors, and no quadratic effect. These effects agree with the experts' qualitative
knowledge. So the validity of this module is not questioned either.

6.7 CONCLUSIONS

In Section 6.1 we raised the following questions:

1. What @ What happens if analysts change parameters, input variables, or modules
of a simulation model'? This question is ckosely related to sensitivity analysis and
optimization.

2. Validution: Is the simulation model an adequate representation of the correspond-
ing system in the real world?

These questions are answered in the remainder of this chapter.
In the initial phase of a simulation it is often necessary to perform screening: Which

factors among the multitude of potential factors are really important? The goal of screen-
ing is to reduce the number of factors to be explored further in the next phase. The
technique of sequential bifurcation is simple and efficient. This technique also seems
to be effective.

Once the important factors are identified, further study requires fewer assumptions;

212 EXPERIMENTAL DESIGN FOR SENSITIVITY ANALYSIS, OPTIMIZATION

no known signs are assumed. This study may use regression analysis. It generalizes the
results of the simulation experiment since it characterizes the 1 / 0 transformation of the
simulation model.

Design of experiments (DOE) gives better estimators of the main effects, interac-
tions, and quadratic effects in this regression metamodel. S o DOE improves the effec-
tiveness of simulation experimentation. DOE requires relatively few simulation runs,
which means improved efficiency. Once the factor effects are quantified through the
corresponding regression estimates, they can be used in V&V, especially if there are no
data on the I/O of the simulation model or its modules, and in optimization through
RSM, which augments regression analysis and DOE with the steepest-ascent hill-
climbing technique.

The goal of the statistical techniques of this chapter is to make simulation stud-
ies give more general results in less time. These techniques have already been applied
many times in practical simulation studies in many domains, as the various case stud-
ies demonstrated. We hope that this chapter will stimulate more analysts to apply these
techniques. In the meantime, research on statistical techniques adapted to simulation
should continue. We did mention several items that require further research.

APPENDIX 6.1 : CONFIDENCE INTERVALS FOR INDIVIDUAL
RESPONSES

The following formulas are taken from Kleijnen (1996).

A6.l.1 Mean of Terminating Simulation

A 1 - a one-sided confidence interval for E(Y) is

where t,,,- 1 denotes the 1 - a quantile of the Student statistic Tm- 1. This interval
assumes that the simulation response Y is normally, independently distributed (NID).
The Student statistic is known to be not very sensitive to nonnormality; the average Y
is asymptotically normally distributed (central limit theorem).

Johnson (1978) modifies the Student statistic in case Y has a distribution with asym-
metry coeficient p3 (Kleijnen, 1987, pp. 22-23):

where S3 denotes the asymmetry estimator:

APPENDIX 6.1: CONFIDENCE INTERVALS FOR INDIVIDUAL RESPONSES 213

j = l
s3 =

(m - l) (m- 2)

Kleijnen et al. (1986) discuss this statistic in detail.

A.6.1.2 Mean of Steady-State Simulation

For steady-state simulations the analysts may apply renewal analysis (see Chapter 7) .
Denote the length of the renewal cycle by L and the total cycle response (e.g., total
waiting time over the entire cycle) by W. Then the steady-state mean response is

- -
This analysis uses ratio estimators; see W / L in the next equation. Crane and Lemoine
(1977, pp. 39-46) derive the following asymptotic 1 - a confidence interval for the
mean:

where z , denotes the (1 - a) quantile of the standard normal variate N(0, I), m is now
the number of cycles (in terminating simulations m was the number of replications),
and S' is a shorthand notation:

where the (co)variances are estimated analogous to (14).
In a Markov system, any state can be selected as the renewal state. A practical prob-

lem, however, is that it may take a long time before the renewal state selected occurs
again; for example, if the traffic rate is high, it takes a long time for all servers to be idle
again. Also, if there are very many states (as may be the case in network systems), it
may take a long time before a specific state occurs again. In those cases nearly renewal
states may be used; for example, define "many servers busy" as the set of (say) two
states, "all servers busy" or "all minus one servers busy." This approximate renewal state
implies that the cycles are not exactly IID. However, for practical purposes they may
be nearly IID, which may be tested through the von Neumann statistic for successive
differences:

(W; - w ;
,(m - 1 ,sz,,

J = 2

214 EXPERIMENTAL DESIGN FOR SENSITIVITY ANALYSIS. OPTIMIZATION

This statistic is approximately normally distributed with mean 2 and variance 4(m -
2)/(m2 - l) , provided that the W, are NID. Since W is a sum, normality may apply.
However, when testing the mutual independence of the cycle lengths Lj and Lj - 1, a
complication is that L probably has an asymmetric distribution. Then the rank version
of the von Neumann statistic may be applied (Bartels, 1982). To ensure that the von
Neumann test has a reasonable chance of detecting dependence, at least 100 cycles are
needed: For m < 100 the test has low power (Kleijnen, 1987, p. 68).

The proposed approximate renewal analysis of simulation requires more research
(Gunther, 1975; Gunther and Wolff, 1980; Pinedo and Wolff, 1982). A different method
for accelerating the renewal process is proposed in Andrad6ttir et al. (1995).

A6.1.3 Proportions

A proportion (say) p, is estimated by comparing the simulation outputs y, (j = 1, . . . ,
m) with the prespecified constant a, which leads to the binomially distributed variable
(say) B = XE, Dj with Dj = 0 if Yj < a; else Dj = 1. This binomial variable has
variance pa (1 -p,)m. Obviously, B/m is an estimator of pa with variance pa(l -pa)/m.

A6.1.4 Quantiles

The following notation ignores the fact that pm, I , and u are not necessarily integers;
actually, these three real variables must be replaced by their integer parts. The pth quan-
tile zp (with 0 < p < 1) may be estimated by the order statistic y~,,,. The 1 -a confidence
interval is

where the lower limit is the lth-order statistic with

and the upper limit is the uth-order statistic that follows from equation (32) replacing
the minus sign in front of za/2 by a plus sign. Proportions and quantiles in terminating
and steady-state simulations are discussed further in Kleijnen (1987, pp. 3 6 4 0) and
Kleijnen and Van Groenendaal (1992, pp. 195-1 97).

A6.1.5 Multiple Responses

In the presence of multiple responses, each individual 1 - a confidence interval has
a coverage probability of 1 - a, but the simultaneously or joint coverage probability
is lower. If the intervals were independent and there were (say) two responses, this
probability would be (1 - a)2. Bonferroni's inequality implies that if the individual
confidence intervals use a , the probability that both intervals hold simultaneously is
at least 1 - 201. In general, this conservative procedure implies that the simultaneous
type I error rate (say) a~ is divided by the number of confidence intervals, in order to
guarantee a joint probability of a ~ .

APPENDIX 6.2: VARIANCE REDUCTION TECHNIQUES 21 5

APPENDIX 6.2: VARIANCE REDUCTION TECHNIQUES

VRTs are discussed in detail in Ermakov and Melas (1995), Fishman (1989), Kleijnen
(1974, pp. 105-285), Kleijnen and Van Groenendaal (1992, pp. 197-201), Tew and
Wilson (1 994), and in the references mentioned below.

A6.2.1 Common Random Numbers

In the what-if approach there is more interest in the differences than in the absolute mag-
nitudes of the simulation outputs. Intuitively, it seems appropriate to examine simulated
systems under equal conditions, that is, in the same environments. This implies the use
of the same stream of (pseudo)random numbers for two different factor combinations.
Then the two simulation responses (say) Y , and Y 2 become statistically dependent. A
general relationship is

So if the use of the same (pseudo)random numbers does result in positive correlation,
the variance of the difference decreases.

In complicated models, however, it may be difficult to realize a strong positive corre-
lation. Therefore, separate sequences of (pseudo)random numbers are used per process;
for example, in a queueing network a separate seed is used per server. One seed may
be sampled through the computer's internal clock. However, sampling the other seeds
in this way may cause overlap among the various streams, which makes times at dif-
ferent servers statistically dependent. For certain generators, there are tables with seeds
100,000 apart. For other generators such seeds may be generated in a separate computer
run; see Kleijnen and Van Groenendaal (1992, pp. 29-30), Chapter 4.

The advantage of a smaller variance comes at a price: The analysis of the simula-
tion results becomes more complicated, since the responses are not independent any-
more. Now the analysts should use either GLS or OLS with adjusted standard errors
for the estimated regression parameters; this implies that the analysts should estimate
the covariances between simulation responses. In practice this complication is often
overlooked.

A6.2.2 Antithetic Random Numbers

The intuitive idea behind antithetic (pseudo)random numbers (briefly, antithetics) is as
follows. When replication 1 samples many long service times, the average waiting time
y is higher than expected. So it is nice if replication 2 compensates this overshoot.
Statistically, this compensation means negative correlation between the responses of
replications 1 and 2. The variance of their average (say) Y, taking into account that
both replications have the same variance, follows from (33):

So the variance of the average Y decreases as the correlation p,., ,,.? becomes more neg-
ative.

To realize a strong negative correlation, use the (pseudo)random numbers r for repli-

216 EXPERIMENTAL DESIGN FOR SENSITIVITY ANALYSIS, OPTIMIZATION

cation 1 and the antithetics 1 - r for replication 2. Actually, the computer does not need
to calculate the complements 1 - r if it uses a multiplicative congruential generator.
Then it suffices to replace the seed ro by its complement e - ro, where e stands for the
generator's modulo; that is, r, = f r, - I mod e, where f denotes the generator's multiplier
(Kleijnen, 1974, pp. 254-256).

A6.2.3 Control Variates or Regression Sampling

Consider the following linear correction:

where Y, is called the linear control variate estimator. Obviously, this new estimator
remains unbiased. It is easy to derive that this control variate estimator has minimum
variance if the correction factor y 1 equals

In practice, however, the correlation py,,, is unknown, so it is estimated. Actually,
replacing the three factors on the right-hand side of equation (36) by their classic esti-
mators results in the OLS estimator (say) CI,OLS of the regression parameter y 1 in the
regression model

where U denotes the fitting error of this regression model, analogous to E in (1). Obvi-
ously, these two regression parameters (yo, y are estimated from the rn replications
that give rn IID pairs Yh) with h = I , . . . , m.

- The OLS estimator of y: defined in (36) gives a new control variate estimator. Let
Y denote the average over rn replications of the responses Y,, XI the average over rn
replications of X1 (average service time per run), and C 1 , o ~ s the OLS estimator of y I in
(37) or yl*in (36) based on the m pairs (Y,X1). Then the new control variate estimator is
given in (15). This estimator is easy to interpret, noticing that the estimated regression

- -
line goes through the point of gravity, (XI, Y).

A6.2.4 Importance Sampling

The preceding VRTs relied on the correlation between (1) the responses of systems with
comparable simulated environments realized through common seeds, (2) the responses
of antithetic runs, or (3) the output and inputs or control variates. In other words, the sim-
ulation model itself was not affected; the computer program might be adapted slightly
to increase the positive and negative correlations (seeds were changed or inputs were
monitored). Importance sampling, however, drastically changes the sampling process
of the simulation model. This technique is more sophisticated, but it is necessary when
simulating rare events; for example, buffer overflow may occur with a probability of
(say) 1 in a million replicated months, so 1 million replicated months must be simulated
to expect to see a single breakdown of the system!

APPENDIX 6.2: VARIANCE REDUCTION TECHNIQUES 21 7

The basic idea of importance sampling can be explained simply in the case of static,
nondynamic simulation, also known as Monte Carlo sampling. Consider the example
integral

" 1 I = - d x with A > 0, v > 0
v x

This can be estimated through crude Monte Carlo as follows:

1 . Sample x from the negative exponential distribution with parameter A; that is,
x - Ne(X).

2. Substitute the sampled value x into the response Y = g(X) with

g(x) = { ' i f x > v

0 otherwise

Obviously, g(X) is an unbiased estimator of I . Notice that the event "g(x) > v"
becomes a rare event as v ? m.

Importance sampling does not sample x from the original distribution f(x) [in the
example, Ne(h)], but from a different distribution (say) h(x). The resulting x is substi-
tuted into the response function g(x). However, g(x) is corrected by the likelihood ratio
,f (x)/h(x). This gives the corrected response

This estimator is an unbiased estimator of (:

It is quite easy to derive the optimal form of h(x), which results in minimum variance.
For dynamic systems (such as queueing systems) a sequence of inputs must be sam-

pled; for example, successive service times X I , , with r = 1, 2, If these inputs are
assumed to be IID and Ne(h)), their joint density function is given by

Suppose that crude Monte Carlo and importance sampling use the same type of input
distribution, namely, negative exponential but with different parameters A and Ao,
respectively. Then the likelihood ratio becomes

218 EXPERIMENTAL DESIGN FOR SENSITIVITY ANALYSIS, OPTIMIZATION

Obviously, this expression can be reformulated to make the computations more efficient.
In the simulation of dynamic systems it is much harder to obtain the optimal new

density. Yet in some applications, distributions were derived that did give drastic vari-
ance reductions [see Heidelberger (1995), Heidelberger et al. (1996), Rubinstein and
Shapiro (1993), and the literature mentioned at the beginning of this appendix].

APPENDIX 6.3: JACKKNIFING CONTROL VARIATES

Control variates are based on m IID pairs, say, (Y,,Xl,j) with j = 1, . . . , m; see
Appendix 6.2. Now eliminate pair j and calculate the following control variate estimator
[see (391:

where Y-j denotes the sample average of the responses after elimination of Y,: fur-
ther, X-j, l denotes the average service time after eliminating replication j, and C-j,oLs
denotes the OLS estimator - based on the remaining m - 1 pairs. Note that E(X-~, 1) =
E(XI) = 1/X. This Y-,,, gives the pseudovalue

where Y , is the control variate estimator based on all m pairs.

ACKNOWLEDGMENT

Jerry Banks (Georgia Tech, Atlanta), Bert Bettonvil and Giil Giirkan (both at Tilburg
University, Tilburg), Barry Nelson (Northwestern, Evanston), Moshe Pollatschek (Tech-
nion, Haifa), and one anonymous referee gave useful comments on preliminary versions
of this chapter.

REFERENCES

Andradbttir, S., J. M. Calvin, and P. W. Glynn (1995). Accelerated regeneration for Markov chain
simulations, Probability in the Engineering and Information Sciences, Vol. 9, pp. 497-523.

Atkinson, A. C., and R. D. Cook (1995). D-optimum designs for heteroscedastic linear models,
Journal of the American Statistical Association, Vol. 90, No. 429, pp. 204-212.

Aytug, H., C. A. Dogan, and G. Bezmez (1996). Determining the number of kanbans: a simulation
metamodeling approach, Simulation, Vol. 67, No. 1 , pp. 23-32.

Bartels, R. (1982). The rank version of von Neumann's ratio test for randomness, Journal of the
American Statistical Association, Vol. 77, No. 377, pp. 4046.

BBN (1989). RS/I Software: Data Analysis and Graphics Software, BBN, Cambridge, Mass.

REFERENCES 21 9

Bettonvil, B. (1990). Detection qf Important Factors by Sequential Bifurcation, Tilburg University
Press, Tilburg, The Netherlands.

Bettonvil, B., and J. P. C. Kleijnen (1997). Searching for important factors in simulation models
with many factors: sequential bifurcation, European Journal of Operational Research, Vol. 96,
No. I , pp. 180-194.

Box, G. E. P. (1952). Multi-factor designs of first order. Biometrika, Vol. 39, No. 1, pp. 49-57.

Box, G. E. P., and D. R. Cox (1964). An analysis of transformations, Journal of the Royal Stu-
tistical Socieg, Series B, Vol. 26, pp. 21 1-252.

Box, G. E. P., and N. R. Draper (1987). Empirical Model-Building with Response Sui$aces, Wiley,
New York.

Box, G. E. P., and J. S. Hunter (1961). The 2k P fractional factorial designs, Part 1, Technometrics,
Vol. 3, pp. 31 1-351.

Box, G. E. P., and K. B. Wilson (1951). On the experimental attainment of optimum conditions,
Journal of the Royal Statistical Society, Series B, Vol. 13, No. 1 , pp. 1-38.

Box, G. E. P., W. G. Hunter, and J. S. Hunter (1978). Stcltisticsfor Experimenters: An Introduction
to Design, Data Analysis and Model Building, Wiley, New York.

Cheng, R. C. H. (1995). Bootstrap methods in computer simulation experiments, Proceedings of
the 1995 Winter Simulation Conference, C. Alexopoulos, K. Kang, W. R. Lilegdon, and D.
Goldsman, eds., IEEE, Piscataway, N.J., pp. 171-177.

Cheng, R. C. H. (1997). Searching for Important Factors: Sequential Bfurcation Under Uncer-
tainty, Institute of Mathematics and Statistics, The University of Kent at Canterbury, Canter-
bury, Kent, England.

Cheng, R. C. H., and J. P. C. Kleijnen (accepted). Improved designs of queueing simulation exper-
iments with highly heteroscedastic responses, Operations Research.

Conover, W. J. (1971). Practical Non-parametric Statistics. Wiley, New York.

Crane, M. A., and A. J. Lemoine (1977). An Introduction to the Regenerative Method for Simu-
lation Analysis, Springer-Verlag, Berlin.

Dagenais, M. G., and J. M. Dufour (1994). Pitfalls of rescaling regression models with Box-Cox
transformations, Review of Economics and Statistics, Vol. 76, No. 3, pp. 571-575.

Dangerfield, B., and C. Roberts (1996). An overview of strategy and tactics in system dynamics
optimization, Journal of the Operational Research Socieg, Vol. 47, pp. 405423.

De Wit, M. S. (1997). Uncertainty analysis in building thermal modelling. Jo~lrnal of Stuiisticd
Computation and Simulation, Nos. 1 4 , pp. 305-320.

Donohue, J. M. (1994). Experimental designs for simulation, in Proceedings of the 1994 Winter
Simulation Conference, J . D. Tew, S. Manivannan, D. A. Sadowski, and A. F. Seila, eds., IEEE,
Piscataway, N.J.

Donohue, J. M. (1995). The use of variance reduction techniques in the estimation of simulation
metamodels, in Proceedings qf the 1995 Winter Simulation Conference, C. Alexopoulos, K.
Kang, W. R. Lilegdon, and D. Goldsman, eds., IEEE, Piscataway, N.J., pp. 195-199.

Draper, N. R. (1994). Applied regression analysis; bibliography update 1992-93, communication.^
in Statistics, Theory and Methods, Vol. 23, No. 9, pp. 2701-2731.

Dykstra, R. L. (1970). Establishing the positive definiteness of the sample covariance matrix,
Annals o f Muthernatical Statistics, Vol. 4 1, No. 6, pp. 2 153-2 154.

Efron, B. (1982). The Jackknife, the Bootstrup, and Other Resampling Plans, CBMS-NSF Series,
SIAM, Philadelphia, Pa.

Efron, B., and R. J. Tibshirani (1993). Introduction to the Bootstrap, Chapman & Hall, London.

Ermakov, S. M., and V. B. Melas (1995). Design and Analysis qfSimu1ution Experiments. Kluwer,
Dordrecht, The Netherlands.

Fedorov, V. V. (1972). Optimal Experimental Design, Wiley, New York.

220 EXPERIMENTAL DESIGN F O R SENSITIVITY ANALYSIS, OPTIMIZATION

Fishman, G. S. (1989). Focussed issue on variance reduction methods in simulation: introduction,
Management Science, Vol. 35, p. 1277.

Fossett, C. A., Harrison, D., Weintrob, H., and Gass, S. I. (1991). An assessment procedure for
simulation models: a case study, Operations Research, Vol. 39, pp. 710-723.

Friedman, L. W. (1996). The Simulation Metamodel, Kluwer, Dordrecht, The Netherlands.

Fu, M. C. (1994). Optimization via simulation: a review, Annals of Operations Research, Vol. 53,
pp. 199-247.

Fiirbringer, J.-M., and C. A. Roulet (1995). Comparison and combination of factorial and Monte-
Carlo design in sensitivity analysis, Building and Environment, Vol. 30, pp. 505-519.

Glynn, P. W., and D. L. Iglehart (1989). Importance sampling for stochastic simulation, Manage-
ment Science, Vol. 35, pp. 1367-1392.

Gunther, F. L. (1975). The almost regenerative method for stochastic system simulations, Research
Report 75-21, Operations Research Center, University of California, Berkeley, Calif.

Gunther, F. L., and R. W. Wolff (1980). The almost regenerative method for stochastic system
simulations, Operations Research, Vol. 28, No. 2, pp. 375-386.

Heidelberger, P. (1995). Fast simulation of rare events in queueing and reliability models, ACM
Transactions on Modeling and Computer Simulation, Vol. 5, No. 1, pp. 43-85.

Heidelberger, P., P. Shahabuddin, and V. Nicola (1996). Bounded relative error in estimating trans-
ient measures of highly dependable non-Markovian systems, in Reliability and Maintenance
of Complex Systems, NATO AS1 Series, Springer-Verlag, Berlin.

Ho, Y., and X. Cao (1991). Perturbation Analysis of Discrete Event Systems, Kluwer, Dordrecht,
The Netherlands.

Ho, Y. C., L. Shi, L. Dai, and W. Gong (1992). Optimizing discrete event dynamic systems via
the gradient surface method, Discrete Event Dynamic Systems: Theory and Applications, Vol.
2, pp. 99-120.

Hood, S. J., and P. D. Welch (1993). Response surface methodology and its application in sim-
ulation, in Proceedings of the 1993 Winter Simulation Conference, G. W. Evans, M. Mol-
laghasemi, E. C. Russell, and W. E. Biles, eds., IEEE, Piscataway, N.J.

Jacoby, J. E. and Harrison, S. (1962), "Multi-variable experimentation and simulation models,"
Naval Research Logistic Quarterly, vol. 9, pp. 121-136.

Johnson, N. J. (1978). Modified t tests and confidence intervals for asymmetric populations, Jour-
nal of the American Statistical Association, Vol. 73, pp. 536-544.

Keijzer, F., J. Kleijnen, E. Mullenders, and A. van Reeken (1981). Optimization of priority class
queues, with a computer center case study, American Journal of Mathematical and Manage-
ment Sciences, Vol. 1, No. 4, pp. 341-358. Reprinted in E. J. Dudewicz and Z. A. Karian,
Modern Design and Analysis of Discrete-Event Computer Simulations. IEEE Computer Soci-
ety Press, Washington, D.C., 1985, pp. 298-310.

Khuri, A. I. (1996). Analysis of multiresponse experiments: a review, in Statistical Design and
Analysis of Industrial Experiments, S. Ghosh, ed., Marcel Dekker, New York, pp. 231-246.

Khuri, A. I., and J. A. Cornell (1996). Response Surjaces: Designs and Analyses, 2nd ed., Marcel
Dekker, New York.

Kiefer, J., and J. Wolfowitz (1959). Optimum designs in regression problems, Annals of Mathe-
matical Statistics, Vol. 30, pp. 271-294.

Kleijnen, J. P. C. (1974). Statistical Techniques in Simulation, Part I, Marcel Dekker, New York.

Kleijnen, J. P. C. (1975a). Statistical Techniques in Simulation, Part 11, Marcel Dekker, New York.

Kleijnen, J. P. C. (197%). A comment on Blanning's metamodel for sensitivity analysis: the regres-
sion metamodel in simulation, Interfaces, Vol. 5, No. 3, pp. 21-23.

Kleijnen, J. P. C. (197%). Antithetic variates, common random numbers and optimum computer
time allocation, Management Science, Application Series, Vol. 2 1, No. 10, pp. 1176-1 185.

REFERENCES 221

Kleijnen, J. P. C. (1987). Statistical Toolsfor Simulation Practitioners, Marcel Dekker, New York.

Kleijnen, J. P. C. (1992). Regression metamodels for simulation with common random numbers:
comparison of validation tests and confidence intervals, Management Science, Vol. 38, No. 8,
pp. 1164-1 185.

Kleijnen, J. P. C. (1993). Simulation and optimization in production planning: a case study, Deci-
sion Support Systems, Vol. 9, pp. 269-280.

Kleijnen, J. P. C. (1995a). Verification and validation of simulation models, European Journal of
Operational Research, Vol. 82, pp. 145-162.

Kleijnen, J. P. C. (1995b). Case study: statistical validation of simulation models, European Jour-
nal of Oprrutional Research, Vol. 87, No. 1, pp. 21-34.

Kleijnen, J. P. C. (1995~). Sensitivity analysis and optimization in simulation: design of experi-
ments and case studies, Proceedings of the 1995 Winter Simulation Conference, C . Alexopou-
10s. K. Kang, W. R. Lilegdon, and D. Goldsman, eds., IEEE, Piscataway, N.J., pp. 133-140.

Kleijnen, J. P. C. (1995d). Sensitivity analysis and optimization of system dynamics models:
regression analysis and statistical design of experiments, System Dynamics Review, Vol. 1 1 ,
No. 4, pp. 275-288.

Kleijnen, J. P. C. (1996). Simulation: runlength selection and variance reduction techniques, in
Reliability and Maintenance of Complex Systems, S. Ozekici et al., eds., Springer-Verlag,
Berlin, pp. 41 1 4 2 8 .

Kleijnen, J. P. C., and R. Y. Rubinstein (1996). Optimization and sensitivity analysis of computer
simulation models by the score function method, European Journal of Operational Research,
Vol. 88, pp. 413427.

Kleijnen, J. P. C., and R. G. Sargent (1997). A Methodology for the Fitting and Validation of
Metamodels, Tilburg University, Tilburg, The Netherlands.

Kleijnen, J. P. C., and C. R. Standridge (1988). Experimental design and regression analysis in sim-
ulation: an FMS case study, European Journal ofOperationa1 Research, Vol. 33, pp. 257-261.

Kleijnen, J. P. C., and W. Van Groenendaal (1992). Simulation: A Statistical Perspective, Wiley,
Chichester, West Sussex, England.

Kleijnen, J. P. C., and W. Van Groenendaal (1995). Two-stage versus sequential sample-size deter-
mination in regression analysis of simulation experiments, American Journal of Mathematical
und Management Sciences, Vol. 15, No. 1-2, pp. 83-1 14.

Kleijnen, J. P. C., G. L. J. Kloppenburg, and F. L. Meeuwsen (1986). Testing the mean of an asym-
metric population: Johnson's modified t test revisited, Communication.s in Statistics, Simulation
and Computation, Vol. 15, No. 3, pp. 715-732.

Kleijnen, J. P. C., P. C. A. Karremans, W. K. Oortwijn, and W. J. H. Van Groenendaal (1987).
Jackknifing estimated weighted least squares: JEWLS, Communications in Statistics, Theory
and Methods, Vol. 16, No. 3, pp. 747-764.

Kleijnen, J. P. C., G. Van Ham, and J. Rotmans (1992). Techniques for sensitivity analysis of
simulation models: a case study of the CO2 greenhouse effect, Simulation, Vol. 58, pp. 410-
417.

Kleijnen, J. P. C., B. Bettonvil, and W. Van Groenendaal (1998). Validation of trace-driven sim-
ulation models: a novel regression test, Management Science, Vol. 44, No. 6.

Miller, R. G. (1974). The jackknife: a review, Biometrika, Vol. 61, pp. 1-1 5.

Morris, M. D. (1991). Factorial plans for preliminary computational experiments, Technometrics,
Vol. 33, No. 2, pp. 161-174.

Myers, R. H., A. I. Khuri, and W. H. Carter (1989). Response surface methodology: 1966-1988.
Technometrics, 31, No. 2, pp. 137-157.

Nachtsheim, C. J. (1987). Tools for computer-aided design of experiments, Journal qf Qualiry
Technology, Vol. 19, No. 3, pp. 132-160.

222 EXPERIMENTAL DESIGN FOR SENSITIVITY ANALYSIS, OPTIMIZATION

Nachtsheim, C. J., P. E. Johnson, K. D. Kotnour, R. K. Meyer, and I. A. Zualkernan (1996).
Expert systems for the design of experiments, in Statistical Design and Analysis of Industrial
Experiments, S. Ghosh, ed., Marcel Dekker, New York, pp. 109-131.

Nash, S. G. (1995). Software survey NLP, OR/MS Today, Vol. 22, pp. 60-71.
Olivi, L. (1980). Response surface methodology in risk analysis, in Synthesis and Analysis Meth-

ods for Safety and Reliability Studies, G. Apostolakis, S. Garibba, and G. Volta, eds., Plenum
Press, New York.

oren, T. I. (1993). Three simulation experimentation environments: SIMAD, SIMGEST, and
E/SLAM, in Proceedings ofthe 1993 European Simulation Symposium, Society for Computer
Simulation, La Jolla, Calif.

Ozdemirel, N. E., G. Y. Yurttas, and G. Koksal (1996). Computer aided planning and design of
manufacturing simulation experiments, Simulation, Vol. 67, No. 3, pp. 171-191.

Pinedo, M., and R. W. Wolff (1982). A comparison between tandem queues with dependent and
interdependent service times, Operations Research, Vol. 30, No. 3, pp. 464479.

Plackett, R. L., and J. P. Burman (1946). The design of optimum multifactorial experiments,
Biometrika, Vol. 33, pp. 305-325.

ProGAMMA (1997). CADEMO: Computer Aided Design of Experiments and Modeling,
ProGAMMA, Groningen, The Netherlands.

Ramberg, J. S., S. M. Sanchez, P. J. Sanchez, and L. J. Hollick (1991). Designing simulation
experiments: Taguchi methods and response surface metamodels, Proceedings of the 1991
Winter Simulation Conference, B. L. Nelson, W. D. Kelton, and G. M. Clark, eds., IEEE,
Piscataway, N.J., pp. 167-176.

Rao, C. R. (1 959). Some problems involving linear hypothesis in multivariate analysis, Biometrika,
Vol. 46, pp. 49-58.

Rechtschaffner, R. L. (1967). Saturated fractions of 2" and 3" factorial designs, Technometrics,
VO~. 9, pp. 569-575.

Rubinstein, R. Y., and A. Shapiro (1993). Discrete Event Systems: Sensitivity Analysis and
Stochastic Optimization via the Score Function Method, Wiley, New York.

Sacks, J., W. J. Welch, T. J. Mitchell, and H. P. Wynn (1989). Design and analysis of computer
experiments (includes comments and rejoinder), Statistical Science, Vol. 4, No. 4, pp. 409-
435.

Safizadeh, M. H., and R. Signorile (1994). Optimization of simulation via quasi-Newton methods,
ORSA Journal on Computing, Vol. 6, No. 4, pp. 398408.

Saltelli, A,, T. H. Andres, and T. Homma (1995). Sensitivity analysis of model output: performance
of the iterated fractional factorial design method, Computational Statistics and Data Analysis,
Vol. 20, pp. 387407.

Sanchez, P. J., F. Chance, K. Healy, J. Henriksen, W. D. Kelton, and S. Vincent (1994). Simulation
statistical software: an introspective appraisal, Proceedings of the 1994 Winter Simulation Con-
ference, J. D. Tew, S. Manivannan, D. A. Sadowski, and A. F. Seila, eds., IEEE, Piscataway,
N.J., pp. 1311-1315.

Schruben, L. W., and B. H. Margolin (1978). Pseudorandom number assignment in statistically
designed simulation and distribution sampling experiments, Journal of the American Statistical
Association, Vol. 73, No. 363, pp. 504-525.

Sheriff, Y. S., and B. A. Boice (1994). Optimization by pattern search, European Journal of Oper-
ational Research, Vol. 78, No. 3, pp. 277-303.

St. John, R. C., and N. R. Draper (1975). D-optimality for regression designs: a review, Techno-
metrics, Vol. 17, No. 1, pp. 15-23.

Swain, J. J. (1996). Number crunching: 1996 statistics survey, OR/MS Today, Vol. 23, No. 1, pp.
42-55.

REFERENCES 223

Tao, Y.-H., and B. L. Nelson (1997). Computer-assisted simulation analysis, IEE Transactions,
Vol. 29, No. 3, pp. 221-231.

Tew, J. D., and J. R. Wilson (1994). Estimating simulation metamodels using combined
correlation-based variance reduction techniques, IIE Transactions, Vol. 26, No. 3, pp. 2-16.

Van Groenendaal, W., and J. P. C. Kleijnen (1996). Regression metamodels and design of exper-
iments, Proceedings of the 1996 Winter Simulation Conference, J . M. Charnes, D. J. Morrice,
D. T. Brunner, and J. J. Swain, eds., IEEE, Piscataway, N.J., pp. 1433-1439.

Webb, S. (1968). Non-orthogonal designs of even resolution, Trchnometrics, Vol. 10, pp. 291-299.

Welch, W. J., R. J. Buck, J. Sacks, H. P. Wynn, et al. (1992). Screening, predicting, and computer
experiments, Technometrics, Vol. 34, No. I , pp. 15-25.

Wolstenholme, E. F. (1990). System Enquiry: A System Dynamics Approach, Wiley, Chichester,
West Sussex, England.

Yu, B., and K. Popplewell (1994). Metamodel in manufacturing: a review, Internarional Journal
of Production Resrarch, Vol. 32, No. 4, pp. 787-796.

Zeigler, B. (1976). Theory of Modelling and Simulation, Wiley-Interscience, New York.

CHAPTER 7

Output Data Analysis

CHRISTOS ALEXOPOULOS

Georgia Institute of Technology

ANDREW F. SElLA

University of Georgia

7.1 INTRODUCTION

The primary purpose of most simulation studies is the approximation of prescribed sys-
tem parameters with the objective of identifying parameter values that optimize some
system performance measures. If some of the input processes driving a simulation are
random, the output data are also random and runs of the simulation result in estimates of
performance measures. Unfortunately, a simulation run does not usually produce inde-
pendent, identically distributed observations; therefore, "classical" statistical techniques
are not directly applicable to the analysis of simulation output.

A simulation study consists of several steps, such as data collection, coding and ver-
ification, model validation, experimental design, output data analysis, and implemen-
tation. This chapter focuses on statistical methods for computing confidence intervals
for system performance measures from output data. Several aspects of output analysis,
such as comparison of systems, design of simulation experiments, and variance reduc-
tion methods, are not discussed. These subjects are treated in other chapters of this book
and in several texts, including Bratley et al. (1987), Fishman (1978b, 1996), Kleijnen
(1974, 1975), and Law and Kelton (1991).

The reader is assumed to be comfortable with probability theory and statistics at the
level of Hogg and Craig (1978), and stochastic processes at the level of Ross (1993).
A reader who is only interested in computational methods can skip the technical parts
of this chapter. In Sections 7.1.1 and 7.1.2 we review definitions and results that are
essential for the study of this chapter. In Section 7.2 we discuss methods for analyzing
output from finite-horizon simulations. Techniques for point and interval estimation of
steady-state parameters are presented in Sections 7.3 and 7.4.

Handbook o f Simulation, Edited by Jeny Banks.
ISBN 0-471- 13403-1 O 1998 John Wiley & Sons, Inc.

226 OUTPUT DATA ANALYSIS

7.1.1 Limit Theorems and Their Statistical Implications

In this section we review the tools needed to establish asymptotic (as the sample size
increases) properties of estimators and to obtain confidence intervals. Consider the fol-
lowing three forms of convergence for sequences of random variables on the same prob-
ability space: The first form is the strongest while the last form is the weakest (and
easiest to establish). For additional forms of convergence as well as the relationships
between the forms, see Karr (1993, Chap. 5).

Almost Sure Convergence The sequence X I , X2, . . . converges to the random variable

X almost surely (or with probability 1) (we write X, X) if P(X, -X as n -w)
= 1.

Convergence in Probability The sequence X I , X2, . . . converges to X in probability

(we write X, 5 X) if for every E > O),

Convergence in Distribution The sequence X I , X2, . . . converges to X in distribution
D

(we write X, ---, X) if

P(X, < x) - , P (X i x) asn-..

at all points x where the cumulative distribution function P(X 5 x) is continuous.

Now suppose that the random variables X I , Xz, . . . are from some distribution with
an unknown parameter 8 and the objective is to estimate a function g(8). For fixed n,
let 6, = 6,(X1,. . . , X,) be an estimator of g(8). If E(6,) = g(8), 6, is called an unbiased
estimator. Furthermore, 6, is said to be a consistent (respectively, strongly consistent)

a.s.
estimator of g(0) if 6, 5 g(0) [respectively, 6, - g(8)l. If 6, is unbiased for each n
and Var(6,) -, 0 as n -, -, then 6, is also consistent (Lehmann, 1991, pp. 331-333).

In the remainder of this section we illustrate the foregoing concepts with a few
classical results. Suppose that X I , XZ, . . . , X, are independent, identically distributed
(IID) random variables with finite mean p and variance a2. Let

be the sample mean of the Xi's. Since E(%) = p, X, is an unbiased estimator of p. Xn
is also a strongly consistent estimator of p by the strong law of large numbers:

(Karr, 1993, pp. 188-189).
If 0 < a 2 < w, the central limit theorem (Karr, 1993, p. 174) states that

7.1 INTRODUCTION 227

where N(0,I) denotes a normal random variable with mean 0 and variance 1 . In other
words,

where is the distribution function of the standard normal random variable.
The central limit theorem remains valid when the potentially unknown parameter a2

is replaced by its unbiased and consistent estimator

Therefore, for sufficiently large n,

where z l ,p denotes the 1 - a/2 quantile of N(0, l) .
Now suppose that the mean p is unknown. Solving the inequality on the left-hand

side of (2) for p, one has the well-known approximate (two-sided) 1 - a confidence
interval

The left-hand side of (2) is the probability that the confidence interval (3) contains the
true mean p . Denote this probability by p,,, and call it the coverage probability of (3) .
One interprets this confidence interval as follows: Suppose that a large number of inde-
pendent trials is performed; in each trail, n observations are collected and a confidence
interval for p is computed using (3). As the number of trials grows, the proportion of
confidence intervals that contain p approaches 1 - a.

The number of observations n required for p,, , = 1 - a depends on the symmetry of
the distribution of X i . The more skewed (asymmetric) the density/probability function
of X i , the larger n required. To reduce undercoverage problems (p,, , < 1 - a) for small
n, one may replace the normal quantile z 1 - ,/2 by the larger quantile t, - I , , ,/2 of the
t distribution with n - 1 degrees of freedom. This choice for degrees of freedom is due
to the fact that for IID normally distributed X i ,

228 OUTPUT DATA ANALYSIS

where the notation X - Y is used to indicate that the random variables X and Y have
the same distribution.

7.1.2 Stochastic Processes

Simulation output data are realizations (or sample paths) of stochastic processes. A
stochastic process is a probabilistic model of a system that evolves randomly. More
formally, a stochastic process is a collection X = {X(u) , u E T } of random variables
indexed by a parameter u taking values in the set T. The random variables X(u) take
values in a set S, called the state space of the process X. Throughout this chapter, u
will represent time, and we encounter the following two cases:

1. T = (0, 1 ,2, . . .), for which the notation X = (X i , i 2 0) will be used. For example,
Xi may represent the price of a stock at the end of day i or the time in queue of
the ith customer at a post office.

2. T = [O, m). In this case, the notation X = {X(t) , t 2 0) will be used. Some examples
of X(t) would be the number of failed machines in a shop at time t , the throughput
of a shop at time r , or the price of a stock at time t.

One way to describe a stochastic process is to specify the joint distribution of X (t l) ,
X(t2), . . . , X(t,) for each set of times tl < t2 < ... < t , and each n. This approach
is typically too complicated to be attempted in practice. An alternative, and simpler
approach, is to specify the first and second moment functions of the process. These
functions are the mean function p(t) = E[X(t)], the variance function a2(t) = Var[X(t)],
and the autocovariance function

Notice that C (t l , t2) = C(t2, t l) and C(t, t) = a2(t) . (For a discrete-time process, the
notation pt, a:, and Ct ,,,, will be used.)

To analyze a simulation output process, one must make some structural assumptions.
The following are the two most frequently used assumptions.

Strict Stationarity. The process X is called (strictly) stationary if the joint distribu-
tion of X(t l) , X(t2), . . . , X(t,) is the same as the joint distribution of X(tl + s),
X(t2 + s), . . . , X(t, + S) for all t l , t2, . . . , t,, and s. In simpler terms, shifting the
time origin from zero to any other value s, has no effect on the joint distributions. An
immediate result is that the joint distribution of X(t l) , X(t2), . . . , X(t,) depends only
on the intervals between t l , t2, . . . , t,.

Example 1 (The M / M / l queue) Consider an M/M/ l queueing system with IID
interarrival times Ai, i 2 1, from the exponential distribution with rate T and IID ser-
vice times Si, i 2 1, from the exponential distribution with rate w(7 < w). The ratio
v = T / W is called the traffic intensity or (long-run) server utilization. Suppose that the

7.1 INTRODUCTION 229

service discipline is first come, first served. Let D; be the delay time in queue of the
ith customer and assume that the system starts empty. The first of Lindley's recursive
equations (Lindley, 1952)

implies that E(DI) = 0, whereas P(D2 > 0) = P(S1 > A2) = T/(T + W) > 0 implies that
E(D2) > 0. Therefore, the delay process {D;, i 2 1 } is not stationary. Using queueing
theory (Ross, 1993, Chap. 8) one has

lim P(Di < x) = 1 - v + v(1 - ')') x 2 0
1 - = =

v(2 - v)
p = lim E(DJ = and a2 = l im Var(Di) =

; - m (1 - v)w I - - wZ(1 - v)2 (5)

Equation (5) suggests that the delay process becomes asymptotically stationary. Indeed,
if D l has the distribution on the right-hand side of (5), equations (4) imply (after some
work) that all D; have the same distribution and the delay process is stationary.

Weak Stationarity. In practice it is often necessary to consider a less restricted form
of stationarity. The process X is said to be weakly stationary if its mean and variance
functions are constant (equal to p and a2 , respectively) and its autocovariance function
satisfies

Cov[X(t), X(t + s)] = C(s) t 2 0, s 2 0

that is, it depends only on the lag s. In this case, the autocorrelation function is defined
by

C(s) s 2 0 p(s) = Corr[X(t), X (t + s)] = -
0

Example 2 (A Stationary M / M / I Queue) The autocorrelation function of the delay
process {D;] in a stationary M/M/l queueing system is given by (Blomqvist, 1967)

This function is monotone decreasing with a very long tail that increases as the server
utilization v increases (e.g., p200 = 0.30 when v = 0.9). This makes the M/M/I system
a good test bed for evaluating simulation methodologies.

230 OUTPUT DATA ANALYSIS

Example 3 (Moving-Average Process) A well-studied example of a discrete-time
weakly stationary process is the moving-average process of order q [often abbreviated
to MA(q)]:

where the coefficients pi are constants and {Z;, i = 0,+1,+2,. . .) are IID random vari-
ables with mean zero and finite variance a2. MA processes have applications in several
areas, particularly econometrics (Chatfield, 1989).

Clearly,

while some algebra yields the autocovariance function

which "cuts off" at lag q. If, in addition, the Zj's are normally distributed, the MA(q)
process is stationary.

Now suppose that one observes the portion X I , . . . , X, of a discrete-time weakly
stationary process for the purpose of estimating the mean p. Clearly, X, is an unbiased
estimator of p, while some algebra yields

In order for X, to be a consistent estimator of p, we require that lim,, ,var(X,) = 0.
The last condition holds if limn, , n ~ a r (E) < m or, equivalently,

lim y , < 00
n-00

For (7) to hold, limj, ,C, = 0 is necessary but not sufficient. A necessary and suf-
ficient condition is

In simple terms, the covariance between Xi and Xi+, must dissipate sufficiently fast so
that the summation in (8) remains bounded.

7.1 INTRODUCTION 231

"0 20 40 60 80 100 120 140 160 180 200

Figure 7.1 Sample path of the stationary AR(1) process X i = 2 + 0 . 8 (X i I - 2) + Z , .

Example 4 (First-Order Autoregressive Process) Another well-known stationary pro-
cess is the autoregressive process of order 1, denoted by AR(I), and often called the
Markov process in the time-series literature,

where Ipl < 1 , Xo - N (p , I), and the Z,'s are IID N (0 , 1 - p2) (see Figure 7.1).
The autocorrelation function of this process

is monotone decreasing if p > 0 with a tail that becomes longer as p increases, and
exhibits damped harmonic behavior around the zero axis if p < 0.

Applying equation (6), one has

Hence is a consistent estimator of the mean p = E(X,). The limit (1 + p)/(l - p) is
often called the time-average process variance.

232 OUTPUT DATA ANALYSIS

Brownian Motion and Brownian Bridge. A continuous-time stochastic process
with frequent use in simulation output analysis (see Section 7.3.4) is the standard
Brownian motion { W(r), t 2 0). This process has the following properties:

1. W(0) = 0.

2. W has independent increments, that is, for 0 I to I t l I . . . I t , ,

n

P[W(tj) - W(t,- 4 w,, 1 6 j I n] = n P[W(,) - W($- 5 w,]
j = 1

3. For 0 I s < t , the increment W(t) - W(s) has the N(0, t - s) distribution.

A well-known function of the Brownian motion is the (standard) Brownian bridge
process defined by

Figures 7.2 and 7.3 depict sample paths of W(t) and B(t) in the interval [0,1]. Notice
that B(0) = B(l) = 0.

7.1.3 Types of Simulations

There are two types of simulations with regard to output analysis:

Figure 7.2 Sample path of a standard Brownian motion in [0,1].

7.2 FINITE-HORIZON SIMULATIONS 233

Figure 7.3 Respective Brownian bridge for the Brownian motion in Figure 7.2.

1. Finite-Horizon Simulations. In this case the simulation starts in a specific state,
such as the empty and idle state, and is run until some terminating event occurs. The
output process is not expected to achieve any steady-state behavior and any parameter
estimated from the output data will be transient in the sense that its value will depend
on the initial conditions. An example is the simulation of a computer network, starting
empty, until n jobs are completed. One might wish to estimate the mean time to complete
n jobs, or the mean of the average waiting time for the n jobs.

2. Steady-State Simulations. The purpose of a steady-state simulation is the study of
the long-run behavior of the system of interest. A performance measure of a system is
called a steady-state parameter if it is a characteristic of the equilibrium distribution of
an output stochastic process (Law and Kelton, 1991). An example is the simulation of
a continuously operating communication system where the objective is the computation
of the mean delay of a data packet.

7.2 FINITE-HORIZON SIMULATIONS

Suppose that one starts in a specific state and simulates a system until n output data
XI , X 2 , X n are collected with the objective of estimating f (X 1 , . . . , X n) , where f
is a "nicen* function of the data. For example, X , may be the transit time of unit i

*Formally, f must be a measurable function. In practice, all functions encountered in simulation output analysis
are measurable.

234 OUTPUT DATA ANALYSIS

through a network of queues or the total time station i is busy during the ith hour and
f (XI , . . . , X,) = X, = (I ln) C?=, Xi is the average transit time for the n jobs.

7.2.1 Estimation of the Mean via Independent Replications

In this section we focus on the estimation of p = E(%). By definition, 57, is an unbiased
estimator for p . Unfortunately, the Xi's are generally dependent random variables, which
makes the estimation of the variance var(x,) a nontrivial problem. In many queueing
systems the Xi's are positively correlated. When this is the case, the familiar estimator

is a highly biased estimator of var(Xn).

Example 5 Consider a stationary M/M/l queueing system (see Examples 1 and 2)
with service rate o = 1 and server utilization v = 0.9. Using the formulas for pj , one
can show that

where a2 = Var(D;) = 99. As a result, the 1 - oc confidence interval Dlof
t g , I - a r p ~ l O (~) / f i for the mean delay p = 0.9/(1-0.9) = 9 computed from 10 consec-
utive delay observations from a single replication will probably be unacceptably narrow.

To overcome this problem, one can run k independent replications of the system
simulation. Each replication starts in the same state and uses a portion of the random
number stream that is different from the portions used to run the other replications.
Assume that replication i produces the output data Xil, Xi2, . . . , Xi% Then the sample
means

are IID random variables,

is also an unbiased estimator of p, and the sample variance of the Yi's

7.2 FINITE-HORIZON SIMULATIONS 235

is an unbiased estimator of ~ar (X,) . If, in addition, n and k are sufficiently large, an
approximate 1 - a confidence interval for p is

Denote the half-width of the interval (9) by 6(k ,a) = tk- I , , a 1 2 ~ L (~) / & .

7.2.2 Sequential Estimation

A fundamental problem is the estimation of p within a tolerance k d , where d is user
specified. More formally, one would like to make k runs, so that

where a E (0,l). The sequential procedure of Chow and Robbins (1 965) (see also Nadas,
1969) is to run one replication at a time and stop at run k* such that

The stopping rule (1 I) is based on the limiting result

Equation (12) indicates that as the tolerance d decreases, the probability that the interval -
Yk* + d contains p converges to 1 - a . Notice that as k increases, the right-hand side
of the last inequality in (1 1) approaches d .

Now suppose that Y I , . . . , Yk are normally distributed. Starr (1966) showed that the
stopping rule

k* = min[k : k 2 3, k odd, 6(k, a) 5 d]

yields

The last inequalities indicate little loss in the confidence level for arbitrary d . Based on
Starr's result and (1 2), Fishman (197%) recommended the simpler and more intuitive
stopping rule

236 OUTPUT DATA ANALYSIS

An alternative two-stage approach for computing a confidence interval for p with
half-width at most d works as follows: The first stage uses ko replications to compute
a variance estimate s:,(Y) and a confidence interval with half-width 6(ko,a). Assume
that the estimate s:,(Y) does not change significantly as ko increases. If 6(ko, a) I d ,
the procedure terminates. Otherwise, an estimate of the total number of replications
required to obtain a half-width of at most d is computed from

The efficacy of this method depends on t h ~ closeness of s~ , (Y) to the unknown Var(Yi).
If s:,(Y) underestimates Var(Yi), then k will be smaller than actually needed. Con-
versely, if s ; , (~) overestimates Var(Yi), unnecessary replications will have to be made.

Example 6 Table 7.1 summarizes the results of experiments that were run to estimate
the mean number of customers that complete service during the first hour in an M/M/1
queueing system with arrival rate 0.9 per hour, service rate 1, and empty initial state.
The sequential procedure was implemented with the stopping rule

and initial sample sizes ko = 2, 3, 4, 5. The two-stage procedure used initial samples of
size 4, 5, and 10. For each experiment, 100 independent replications were run.

Based on Table 7.1, the sequential procedure with an initial sample of at least
five replications appears to outperform the two-stage procedure. The advantages of the
sequential procedure are (1) the resulting confidence interval half-width is always less
than or equal to the target value; and (2) the variation in the final sample sizes and
confidence interval half-widths is substantially smaller.

An alternative problem is the computation of an estimate for p with relative error
IFk - pI / Ip I I C , where c is a positive constant. Formally, one requests that

TABLE 7.1 Comparisons Between Sequential and Two-Stage Confidence
Interval Procedures

Final Sample Size Interval Half-width

Initial Standard Standard
Procedure Sample Size Mean Deviation Mean Deviation

Sequential 2 91.7 35.0 0.945 0.198
3 94.7 26.5 0.98 1 0.077
4 99.0 16.8 0.996 0.005
5 97.2 19.6 0.995 0.006

Two-stage 4 88.0 83.9 1.362 0.685
5 92.1 57.7 1.200 0.425

10 101.9 48.5 1.060 0.226

7.2 FINITE-HORIZON SIMULATIONS 237

Using some algebra, one can show that

where c' = c/(l + c). Based on these observations, one can use the following stopping
rule:

Law et al. (1981) showed that when c is close to 0, the coverage of the confidence
interval ykf 6 (k , a) can be arbitrarily close to 1 a . They recommend that (13) be used
with c 20 .15 and ko L 10.

7.2.3 Quantile Estimation

The method of replications can also be used to implement nonparametric methods for
estimating performance measures other than means. For example, suppose that we want
to estimate the p-quantile (0 < p < I), say [,, of the maximum queue size Y in a
single-server queueing system during a fixed time window. Let F(y) = P(Y < y) be the
cumulative distribution function of Y . Then l, is defined as

If the distribution F of Y is monotone increasing, [, is the unique solution to the equa-
tion P(Y y) = p. Let Y 1 , . . . , Y k be a random sample from F obtained by performing
k independent replications, and let Y (,) < < . . . < Y(k) be the order statistics corre-
sponding to the Y,'s. Then a point estimator for [, is

if kp is integer { + otherwise

where Lxl is the greatest integer that is less than or equal to x.
Now the event Y (;) < [, < Y(,, has the binomial probability

238 OUTPUT DATA ANALYSIS

where the normal approximation is recommended for kp 2 5 (see Hogg and Craig, 1978,
pp. 196198). To compute a 1 - a confidence interval for &,, one identifies indices i < j
such that P(Y(;) < EP < YG)) 2 1 - a. Then (Y(;), Y(j)) is the required interval. Notice
that several index pairs can satisfy the last inequality. Normally, one would choose a
symmetric range of indices. In this case, the indices would be

and

It should be noted that quantile estimation is more difficult than estimation of the
mean because point estimates for quantiles are biased, and significantly larger sample
sizes are required to obtain reasonably tight confidence intervals. These problems are
much more severe for more extreme quantiles (i.e., for p closer to 1). An introduction
to nonparametric interval estimation methods is given in Hogg and Craig (1978, pp.
304-3 11).

7.3 STEADY-STATE ANALYSIS

Several methods have been developed for the estimation of steady-state system param-
eters. In this section we review these methods and provide the interested reader with
an extensive list of references. We consider primarily the estimation of the steady-state
mean p of a discrete-time output process {Xi, i 2 1) . Analogous methods for analyzing
continuous-time output data are described in a variety of texts (Bratley et al., 1987;
Fishman, 1978b; Law and Kelton, 1991).

7.3.1 Removal of Initialization Bias

One of the hardest problems in steady-state simulations is the removal of the initial-
ization bias. Let I be the set of initial conditions for the simulation model and assume
that as n - m, P(X, I xl I) + P(X I x), where X is the corresponding steady-state ran-
dom variable. The steady-state mean of the process {Xi] is p = lim,,,E(X,II). The
problem with the use of the estimator for a finite n is that E(X, [I) f p [and thus
E(X,II) f PI.

The most commonly used method for reducing the bias of 57, involves identifying
an index 1, 1 5 1 I n - 1, and truncating the observations XI , . . . , XI. Then the estimator

-

Xn.1 = --
n - l

i=l+l

is generally less biased than X, because the initial conditions primarily affect data at the
beginning of a run. Several procedures have been proposed for the detection of a cutoff
index l (see Fishman, 1972; Gafarian et al., 1978; Kelton and Law, 1983; Schruben,
1982; Schruben et al., 1983; Wilson and Pritsker, 1978a,b). The procedure of Kelton
(1989) uses a pilot run to estimate the steady-state distribution and starts a production
run by sampling from the estimated distribution. More sophisticated truncation rules and
initialization bias tests have recently been proposed by Chance and Schruben (1992),
Goldsman et al. (1994), and Ockerman (1995).

The graphical procedure of Welch (1981, 1983) is popular due to its generality
and ease of implementation. Another graphical method has been proposed by Fishman
(1978a,b) in conjunction with the batch means method (see Remark 1 in Section 7.3.4).
Welch's method uses k independent replications with the ith replication producing obser-
vations Xi,, Xi2 , . . . , Xin and computes the averages:

Then for a given time window w, the procedure plots the moving averages

against j. For example, when w = 2,

If the plot is reasonably smooth, l is chosen to be the value of j beyond which the
sequence of moving averages converges. Otherwise, a different time window is chosen
and a new plot is drawn. The choice of w is similar to the choice of an interval width
for a histogram. Since the truncation index is selected visually, the user will generally
have to try several window sizes.

240 OUTPUT DATA ANALYSIS

1 4 0 0

Figure 7.4 Average delay times Dj for the first 5000 customers in an M/M/1 queue from 50
independent replications.

Example 7 (The M/M/Z Queue Revisited) Consider an M/M/I queueing system with
interarrival rate T = 0.09 and service rate w = 0.1. The limiting mean customer delay
is p = 90. Assume that the system starts empty. 50 independent replications of the first
5000 delays were run by using equation (4). Figure 7.4 depicts the plot of the averages
-
Dj, 1 1 j 15000, computed as in (14).

Figures 7.5 and 7.6 show the plots of the moving averages Dj(w), 1 I w I 5000- w,
for window sizes w = 100 and 500. The transient period is long as the plots of Dj(w)
first exceed p for j = 250. Notice that a large window is required to get a reasonably
smooth moving-average plot for this system. In the absence of the horizontal line p =
90, one would hesitate to choose a truncation index 1 2 2000 as all Dj(500), j 2 2500,
are smaller than &000(500), giving the impression that the actual mean is less than 90.
Similarly, the plot of Dj(lOO) is asymmetric with respect to p with more observations
smaller than 90. It should be noted that the method of Welch may be difficult to apply
in congested systems with output time series having autocorrelation functions with very
long tails.

7.3.2 Replication-Deletion Approach

This approach runs k independent replications, each of length n observations, and uses
the method of Welch (1981, 1983) or some other method to discard the first I observa-
tions from each run. One then uses the IID sample means

7.3 STEADY-STATE ANALYSIS 241

Figure 7.5 Moving averages with window w = 100

to compute point and interval estimators for the steady-state mean p (see Section 7.2).
The method is characterized by its simplicity and generality. The following list contains
important observations about 1, n, and k .

1. As 1 increases for fixed n, the "systematic" error in each Y , due to the initial con-
ditions decreases. However, the sampling error increases because of the smaller
number of observations [the variance of Y, is proportional to I/(n - l)] .

2. As n increases for fixed 1, the systematic and sampling errors in Y, decrease.
3. The systematic error in the sample means Y , cannot be reduced by increasing the

number of replications k.

Overall, one must be aware that the replication-deletion approach can require a sub-
stantial amount of effort to find a "good" truncation index 1 (as evidenced by Example
7) as well as a large sample size n and a large number of replications to obtain a confi-
dence interval with the required coverage. This approach is also potentially wasteful of
data as the truncated portion is removed from each replication. The regenerative method
(Section 7.3.3) and the batch means method (Section 7.3.4) seek to overcome these dis-

242 OUTPUT DATA ANALYSIS

Figure 7.6 Moving averages with window w = 500.

advantages. The graph of the batch means (see Remark 1) provides an easy means to
assess the effect of the initial conditions at a small incremental cost.

7.3.3 Regenerative Method

This method assumes the identification of time indices at which the process { X i } prob-
abilistically starts over and uses these regeneration epochs for obtaining IID random
variables that can be used to compute point and interval estimates for the mean p. As
a result, it eliminates the need to detect the length of the initial transient period. The
method was proposed by Crane and Iglehart (1974a,b, 1975, 1978) and Fishman (1973,
1974). [For a complete treatment, see Crane and Lemoine (1977).]

More precisely, assume that there are (random) time indices 1 I T I < T2 < . . . such
that the portion { X r , + i , j 2 0) has the same distribution for each i and is independent
of the portion prior to time Ti . The portion of the process between two successive
regeneration epochs is called a cycle. Let Y; = xjT",I - X, and 2; = Ti+ 1 - Ti for i =
1, 2, . . . and assume that E(Z;) < m. Then the mean p is given by

In addition, the long-run fraction of time the process spends in a set of states E is equal
to

7.3 STEADY-STATE ANALYSIS 243

E(tota1 time the processX spends in E during a cycle)
lim P (X , E E) =

n-oQ W 1)

Example 8 [An (s, S) Inventory System] The demand for an item on day i at a store
is a nonnegative integer random variable L, with positive mean. The store uses the
following inventory management policy: If the inventory at the end of the day (after
the demand is met) is at least s (s < O), the store takes no action. If, however, the
inventory is less than s, the store orders enough to bring the inventory at the beginning
of the next day to level S (S > s).

Assume that the inventory is replenished instantaneously (overnight) and let X, be
the level of inventory at the start of day i (before demands occur but after inventory
replenishment). Then {XI,; 2 I] is a regenerative process with return state S. If T, is
the day of the ith return to state S (TI = I) , the steady-state probability of stockout can
be computed by

E(tota1 time stockout occurs during a cycle)
lim P(Xn < 0)=

n-oQ E(Z1

Estimation of the Mean. Suppose that one simulates the process {X,} over k cycles
and collects the observations Y I , . . . , Y k and Z 1 , . . . , Z k . Then

is a strongly consistent, although typically biased for finite k, estimator of p.
Confidence intervals for p can be constructed by using the random variables Vi =

Yi - pZ;, i = 1 , . . . , k, and the central limit theorem. Indeed, E(V,) = 0 and

By the central limit theorem V k / m asymptotically has the standard normal dis-
tribution and for large k

The classical, and most commonly used, approach estimates a2 by

244 OUTPUT DATA ANALYSIS

where

is the sample covariance of Yi and Zi, to produce the approximate 1 - a confidence
interval

For a small sample size k , Iglehart (1975) showed that the approximate confidence
interval

where

is a jackknife estimator of p (with smaller bias than b) and

often provides better coverage than the classical regenerative confidence interval. How-
ever, its evaluation requires substantial bookkeeping in addition to 0 (n 2) operations,
making its use costly for large sample sizes. The jackknife method also generally
increases the width of the confidence interval. A comprehensive review of the jack-
knife method is given by Efron (1982).

For small sample sizes and bounded Y ; and Z; , one can also compute the confidence
interval in Alexopoulos (1993), which provides superior coverage over confidence inter-
vals based on the central limit theorem at the expense of increased width.

The regenerative method is difficult to apply in practice in simulations that have
either no regenerative points or very long cycle lengths. Two classes of systems the
regenerative method has been applied to successfully are inventory systems and highly
reliable communications systems with repairs.

7.3 STEADY-STATE ANALYSIS 245

Quantile Estimation. Iglehart (1976), Moore (1980), and Seila (1982a,b) have pro-
posed methods for computing confidence intervals for quantiles when the output pro-
cess is regenerative. Seila's method will be presented because it is somewhat simpler
to apply than the other methods and has been shown to produce intervals that are as
reliable. The method is illustrated by describing the estimation of the p-quantile, say
e, of the steady-state customer delay distribution in an M/M/I queueing system that
starts empty. In this case, the regeneration epochs are the times the system returns to
the empty state.

The method begins by simulating a total of r . m cycles and then partitions the data
into r contiguous "batches" with m cycles per batch. For example, the ith batch contains
the delay times from the cycles (i - l)m + 1, . . . , im. Denote the delay times in this
cycle by D i l , . . . , DiM, and notice that Mi is generally a random variable. Now

ij = {Dl. (Mipi if Mip is integer
Di, (L M , ~ + J) otherwise

is the quantile estimator for this batch and the overall estimator for q is

To reduce the bias of the estimators t i , one can use the jackknife method by forming
the estimators

where ij') (respectively, ij2)) is the sample quantile computed from the first (respec-
tively, second) half of the m cycles in the ith batch. Then the overall jackknife estimator
for E is

and for large m and r,

where s$(EJ) is the sample variance of the sample quantiles EJ,;. The resulting approx-
imate 1 - a confidence interval for 6 is

246 OUTPUT DATA ANALYSIS

Experiments in Seila (1982a,b) indicate that the confidence interval (15) has better cov-
erage than the confidence interval resulting from the estimator [.

The selection of rn and r is an open research problem. Based on practical experience,
m should be large enough so that E(Mi) 2 100 and that r 2 10. The mean E(Mi) can
be estimated by the sample mean 2, of the Mi's.

7.3.4 Batch Means Method

The method of batch means is frequently used to estimate the steady-state mean p or the
V a r (z) and owes its popularity to its simplicity and effectiveness. Original accounts
on the method were given by Conway (1963), Fishman (1978a,b), and Law and Carson
(1979).

The classical approach divides the output X I , . . . , Xn of a long simulation run into
a number of contiguous batches and uses the sample means of these batches (or batch
means) to produce point and interval estimators.

To motivate the method, assume temporarily that the process {Xi} is weakly station-
ary with limn, ,nVar(X,) < - and split the data into k batches, each consisting of b
observations. (Assume that n = kb.) The ith batch consists of the observations

for i = 1, 2, . . . , k and the ith batch mean is given by

For fixed m, let a$ = ~ a r (L) . Since the batch means process {Yi(b)) is also weakly
stationary, some algebra yields

Since n 2 b, (no; - baz)/na; - 0 as first n -- and then b +m. As a result, oi /k
approximates a: with error that diminishes as b and n approach infinity. Equivalently,
the correlation among the batch means diminishes as b and n approach infinity.

To use the last limiting property, one forms the grand batch mean

7.3 STEADY-STATE ANALYSIS 247

estimates the a; by

and computes the approximate 1 - a confidence interval for p:

The main problem with the application of the batch means method in practice is
the choice of the batch size b. If b is small, the batch means Yi(b) can be highly cor-
related and the resulting confidence interval will frequently have coverage below the
user-specified nominal coverage 1 a . Alternatively, a large batch size can result in very
few batches and potential problems with the application of the central limit theorem to
obtain (17).

The method of Fishman (1978a,b) selects the smallest batch size from the set { 1 ,
2, 4, . . . , n/8] that passes the test of independence based on von Neumann's statistic
(see "Test for Correlation," below). A variant of this method was proposed by Schriber
and Andrews (1979). Mechanic and McKay (1966) choose a batch size from the set
{ 16b1, 64b1, 256bl , . . . , n/25) (usually b l = 1) and select the batch size that passes an
alternative test for independence. The procedure of Law and Carson (1979) starts with
400 batches of size 2. Then it considers sample sizes that double every two iterations
until an estimate for lag-1 correlation among 400 batch means becomes smaller than 0.4
and larger than the estimated lag-l correlation among 200 batch means. The procedure
stops when the confidence interval (17) computed with 40 batches satisfies a relative
width criterion. Schmeiser (1982) reviews the foregoing procedures and concludes that
selecting between 10 and 30 batches should suffice for most simulation experiments.
The major drawback of these methods is their inability to yield a consistent variance
estimator.

Remark 1 For fixed sample size, a plot of the batch means is a very useful tool for
checking the effects of initial conditions, nonnormality of batch means, and existence of
correlation between hatch means. For example, consider the M/M/I queueing system
in Example 7. A sample of 100,000 customer delays was generated by means of (4),
starting with an empty system. Figure 7.7 shows the plot of the batch means Y1(2000),
. . . , Yso(2000) for batch size b = 2000. The first batch mean is small but not the smallest,
relaxing one's worries about the effect of the initial transient period. This also hints that
1 = 2000 is a reasonable truncation index for Welch's method. Had the first batch mean
been smaller than the other batch means, one can assess the effect of the initial con-
ditions by removing the first batch and comparing the new grand batch mean with the
old. Although the plot does not indicate the presence of serious autocorrelation among

248 OUTPUT DATA ANALYSIS

I
1

0 5 10 15 20 25 30 35 40 45 50
batch number

Figure 7.7 Batch means for delay times in an M/M/l queue.

the batch means, the asymmetric dispersion of the means about the actual mean should
make the experimenter concerned about the coverage of the confidence interval (17).

Example 9 shows how an asymptotically optimal batch size can be obtained in spe-
cial cases.

Example 9 For the AR(1) process in Example 4, Carlstein (1986) showed that

~ i a s [+ ~ (n , k)] = -

and

Var[VB(n, k)] =

where o(h) is a function such that limb, "o(h)/h = 0. Then the batch size that min-
imizesnthe asymptotic A(as n + w and k + w) mean-squared error MSE[VB(n, k)] =
~ i a s ~ [~ B (n , k)] + Var[VB(n, k)] is

7.3 STEADY-STATE ANALYSIS 249

Clearly, the optimal batch size increases with the absolute value of the correlation p
between successive observations.

The reader should keep in mind that the optimal batch size may differ substantially
from (19) for a finite sample size (e.g., Song and Schmeiser, 1995), and the model
generally does not apply to the analysis of data from queueing systems. Furthermore,
it is not evident that this strategy for batch size selection allows the space and time
complexities achievable by the LBATCH and ABATCH strategies described below for
generating an assessment of the stability of the variance of the sample mean.

Consistent Estimation Batch Means Methods. Consistent estimation batch
means methods assume the existence of a parameter a: (the time-average variance of
the process {Xi]) such that a central limit theorem holds:

and aim at constructing a consistent estimator for a: and an asymptotically valid con-
fidence interval for p. [Notice that the Xi's in (20) need not be IID]. Consistent estima-
tion methods are often preferable to methods that "cancel" a: (see Glynn and Iglehart,
1990) because (1) the expectation and variance of the half-width of the confidence inter-
val resulting from (20) is asymptotically smaller for consistent estimation methods; and
(2) under reasonable assumptions n ~ a r (&) + a: as n + m.

Example 10 The delay process {D; } of a stationary M/M/1 system has

(Blomqvist, 1967) whereas a stationary AR(1) process has a: = (1 + p)/(l - p).

Chien et al. (1997) considered stationary processes and, under quite general moment
and sample p:th conditions, showed that nas both b + m and k + m, E[bVB(n, k)] - a:, kVar[VB(n, k)] -, 2a:, and MSE[bVB(n, k)] - 0. Notice that the last limiting

property of hcB(n, k) differs from consistency.
The limiting result (20) is implied under the following two assumptions.

Assumption of Weak Approximation (AWA) There exist finite constants p and a, >
0 such that

Assumption of Strong Approximation (ASA) There exist finite constants p, a, > 0,
A t (0, $1, and a finite random variable C such that, with probability I ,

250 OUTPUT DATA ANALYSIS

Both AWA and ASA state that the process {n(E - p)/a,} is close to a standard
Brownian motion. However, the stronger ASA addresses the convergence rate of (20).

The ASA is not restrictive, as it holds under relatively weak assumptions for a variety
of stochastic processes, including Markov chains, regenerative processes, and certain
queueing systems (see Damerdji, 1994a, for details). The constant X is closer to for
processes having little autocorrelation, while it is closer to zero for processes with high
autocorrelation. In the former case the "distance" between the processes {n (K -p)/a,}
and (W(n)} "does not grow" as n increases.

Batching Rules. Fishman (1996, Chap. 6) and Fishman and Yarberry (1997) present
a thorough discussion of batching rules. Our account in this section and below in "Imple-
menting the ABATCH Strategy" parallels their development. Both references contain
detailed instructions for obtaining FORTRAN, C, and SIMSCRIPT 11.5 implementations
for various platforms via anonymous ftp from the site f t p . or. unc . edu.

The discussion prior to the derivation of (17) suggests that fixing the number of
batches and letting the batch size grow as n -, m ensures that ai/k - a:. This motivates
the following rule.

Fixed Number of Batches (FNB) Rule Fix the number of batches at k. For sample
size n, use batch size b, = Ln/kJ.

The FNB rule along with AWA lead to the following result.

Theorem 1 (Glynn and Iglehart (1990) If {Xi} satisfies AWA, then as n + m,
-
X, 5 p and (20) holds. Furthermore, if k is constant and {b,, n 2 1 } is a sequence
of batch sizes such that b, -, m as n + m, then

The primary implication of Theorem 1 is that (17) is an asymptotically valid con-
fidence interval for p . Unfortunately, the FNB rule has two major limitations: (1)
b,VB(n, k) is not a consistent estimator of a & [therefore, the confidence interval (17)
tends to be wider than the interval a consistent estimation method would produce], and
(2) after some algebra (see Fishman, 1996, Chap. 6) one has

a / 1
lim - = - -

1
-

1
, A m ~ a r (x ,) 2(k - 1) 8(k - 16(k -

so that statistical fluctuations in the half-width of the confidence interval (17) do not
diminish relative to statistical fluctuation in the sample mean.

The following theorem proposes batching assumptions which along with ASA yield
a strongly consistent estimator for a:.

a s .
Theorem 2 (Damerdji, 1994a) If {Xi} satisfies ASA, then --, p as n + m.

Furthermore, suppose that {(b,, k,), n 2 1 } is a batching sequence satisfying

7.3 STEADY-STATE ANALYSIS 251

(A . 1) b, -, M and k, + M monotonically as n + M.

(A .2) b;'nl-'"n n -0 as n--.

(A.3) There exists a finite positive integer m such that

Then, as n - -,

and

Equation (22) implies that

is an asymptotically valid 1 - a confidence interval for p.
Theorem 2 motivates the consideration of batch sizes of the form b, = h e] , 0 < 0 <

1. In this case one can show that the conditions (A . l) to (A .3) are met if 0 E (1 - 2A, 1) .
In particular, the assignment 0 = $ and the SQRT rule below are valid if < A <
$. Notice that the last inequality is violated by processes having high autocorrelation
(A = 0).

Square Root (SQRT) Rule For sample size n, use batch size b, = L&I and number
of batches k, = L 4 I .

Under some additional moment conditions, Chien (1989) showed that the conver-
gence of Zk , to the N (0 , l) distribution is fastest if b, and k, grow proportionally to &.
Unfortunately, in practice the SQRT rule tends to seriously underestimate the ~ a r (x ,)
for fixed n.

Example 11 (The M/M/l Queue Revisited) Consider an M/M/I queueing system
with interarrival rate T = 0.9 and service rate w = 1, and assume that the system starts
empty. Table 7.2 contains performance statistics for 0.95 confidence intervals for the
steady-state mean customer delay p = 0.9/[1 x (1 - 0.9)] = 9. The confidence intervals
resulted from 500 independent replications. Within each replication, the delays were
generated by means of (4). The FNB rule used 16 batches and batch sizes 2m, m 2
0. The SQRT rule started with batch size b l = 1 and number of batches k l = 8, and
computed confidence intervals with batch sizes

252 OUTPUT DATA ANALYSIS

TABLE 7.2 Performance Statistics for the FNB and SQRT Rules on
0.95 Confidence Intervals for the Mean Customer Delay in an M/M/l
Queue with Utilization v = 0.9

- - - -

FNB Rule SQRT Rule

Average Average
log2 ,I Coverage Half-wldth Coverage Half-width

f b~ if 1 is odd

and numbers of batches

I k l if 1 is odd

The resulting sample sizes nl = k,bl are roughly powers of 2 (see the section below,
"Implementing the ABATCH Strategy" for details).

The second and fourth columns contain the estimated coverage probabilities of the
confidence intervals produced by the FNB rule and the SQRT rule, respectively. The
third and fifth columns display the respective average interval half-widths. Specifically,
for sample size n = 2'' = 131,072, roughly 94% of the confidence intervals resulting
from the FNB rule contained p, whereas only 78% of the confidence intervals resulting
from the SQRT rule contained p. However, the latter intervals were 43% narrower.
Experiments by Fishman and Yarberry showed that the disparity in coverage between
the two rules grows with increasing traffic intensity v = T / W .

With the contrasts between the FNB and SQRT rules in mind, Fishman and Yarberry
proposed two strategies that dynamically shift between the two rules. Both strategies
perform "interim reviews" and compute confidence intervals at times nl = n12'- I , 1 =
1,2 ,

7.3 STEADY-STATE ANALYSIS 253

LBATCH Strategy At time nl, if an hypothesis test detects autocorrelation between
the batch means, the batching for the next review is determined by the FNB rule. If the
test fails to detect correlation, all future reviews omit the test and employ the SQRT
rule.

ABATCH Strategy If at time nr the hypothesis test detects correlation between the
batch means, the next review employs the FNB rule. If the test fails to detect correlation,
the next review employs the SQRT rule.

Both strategies LBATCH and ABATCH yield random sequences of batch sizes.
Under relatively mild assumptions, these sequences imply convergence results anal-
ogous to (21) and (22) (see Fishman, 1996; Fishman and Yarberry, 1997).

Test for Correlation. We review a test for the hypothesis

Ho : the batch means Yl (b), . . . , Yk(b) are uncorrelated

The test is due to von Neumann (1941) and is very effective when the number of batches
k is small.

Assume that the process {Xi] is weakly stationary and let

be the autocorrelation function of the batch means process. The von Neumann test statis-
tic for Ho is

where

is an estimator for the lag- 1 autocorrelation p 1 (b). The rightmost ratio in equation (23)
carries more weight when k is small, but it approaches zero as k + -.

Suppose that Ho is true. If the batch means are IID normal, the distribution of I?, is
very close to N(0, 1) for as few as k = 8 batches (von Neumann, 1941 ; Young, 1941,
Table 1). On the other hand, if the batch means are IID but nonnormal, the first four
cumulants of I?, converge to the respective cumulants of the N(0, 1) distribution as
k + m. This discussion suggests the approximation

for large b (the batch means become approximately normal) or large k (by the central
limit theorem).

254 OUTPUT DATA ANALYSIS

If {Xi) has a monotone-decreasing autocorrelation function (e.g., the delay pro-
cess for an M/M/l queueing system), the batch means process also has a monotone-
decreasing autocorrelation function. As a result, one rejects Ho at level P if

Alternatively, if {Xi] has an autocorrelation function with damped harmonic behavior
around the zero axis [e.g., the AR(1) process with p < 01, the test can lead to erro-
neous conclusions. In this case, repeated testing under the ABATCH strategy reduces
this possibility.

The p-value of the test, 1 - @(rk) , is the largest value of the type I error = P(reject
HolHo is true) for which Ho is rejected given the observed value of rk. Equivalently,
Ho is accepted if the p-value is larger than 0. Hence, a p-value close to zero implies
low credibility for Ho. The plot of the p-value versus the batch size is a useful graphical
device.

Implementing the ABATCH Strategy. Next we present a pseudocode for imple-
menting the ABATCH strategy. Implementation of the LBATCH strategy is discussed
in short after the pseudocode.

To understand the role of the hypothesis test in the LBATCH and ABATCH algo-
rithms, define the random variables

1 if Ho is rejected on review 1
Ri = (0 otherwise

and

- R1 +. . .+ R1
R1 =

1
= fraction of rejected tests for Ho on reviews 1,. . . , I

A sufficient condition for strong consistency [equation (21)] and asymptotic - normal-
ity [equation (22)] is Po > 1 - 4h [or X > (1 - Po)/4] , where Po = l h , ,Rl is the
long-run fraction of rejections. In practice, Po differs from but is expected to be close
to the type I error P. Clearly, X > 1 uarantees (21) and (22) regardless of Po. However, ~g Po plays a role when X I i. Specifically, for Po equal to 0.05 or 0.10, the lower bound
(1 - Po)/4 becomes 0.2375 or 0.2225, respectively, a small reduction from 4.

On review I, the ABATCH strategy induces batch size

where

7.3 STEADY-STATE ANALYSIS 255

and number of batches

r k l
if (1 - 1)(1 - R I - 1) is even

where G I = L 4 k 1 + 0.51.
The resulting sample sizes are

2 ' - ' k lb l i f (/ - I) (l + R l ~) i s e v e n
nl = klbl = { 2"kl bl otherwise

and the definitions for bl and k l guarantee that if Ho is never rejected, then both bl and
kl grow approximately as with 1 (i.e., they follow the SQRT rule).

Suppose that L + I reviews are performed. The final implementation issue for the
ABATCH strategy is the relative difference between the potential terminal sample sizes

Th!s quantity is minimized (i.e., the final sample size is deterministic) when 2 k l b l =

k l b l . Pairs (b l , kl) , with small b l , satisfying t_he_last equality are (1, 3), (1,6), (2, 3), and
(2, 6). Unfortunately, the condition 2k lb l = k l b l excludes several practical choices for
bl and k l , such as b l = 1 (to test the original sample for independence) and 8 I k l 5 10'.
Overall, A(bl, k l) remains small for numerous choices of b l and k l . For example, b l =

I and 8 1 k l 5 32 ensure that A(bl, k l) 10.078.

Algorithm ABATCH
Source: Fishman (1996, Chap. 6) and Fishman and Yarberry (1997). Minor notational
changes have been made.

Input: Minimal number of batches k l , minimal batch size b l , desired sample size n =
2Lklbl (L is a positive integer), and confidence level 1 - a.

Output: Sequences of point estimates and confidence intervals for sample sizes N 5 n.

Method:

1. b + b l and k + k l .

2. If b l = 1, bI + i; otherwise, bl +L&bl + 0.51.

3. kl + L A k l +0.51.

256 OUTPUT DATA ANALYSIS

-
4. - b l l b ~ and f + k11k1
5. i - 0 .
6. i i+2L-1k lb l .

Until N = n or N = h:

7. N + kb.
8. Randomly generate Xi+ 1, . . . , X N .

Compute:

The batch means Y l (b) , . . . , Yk(b) .
& as a point estimate of p.

The sample variance cB of the batch means.
The half-width 6 = t k 1 , l -.pa of the confidence interval (17).

Print N, k , b , XN, - 6 , + 6. PB.
i-N.
Test Ho : Y l (b) , . . . , Yk (b) are uncorrelated. Print the p-value of this test.
If Ho is rejected, b - 2b. (FNB rule)

If Ho is accepted:

17. If b = 1, b + 2. (FNB rule)

Otherwise: (SQRT rule)

18. b-bgandk-kf
19. If g 7 & / b l , g+2bl/61 and f + 2k l l k l ; otherwise, g+ bl/bl and

f + k ~ / k ~ .

Remark 2 Algorithm ABATCH requires O(n) time and O(log2 n) space. For details,
see Yarberry (1993, Chap. 5) .

Remark 3 The implementation of strategy LBATCH is simpler. Once Ho is accepted
in step 15, steps 17 to 19 are ignored for the remainder of the execution.

Tests for the Batching Rules. The experiments in Examples 12 to 14 compare
the FNB rule and the LBATCH and ABATCH strategies by means of three queueing
systems with traffic intensity v = 0.9. Each system starts empty and has a first come, first
served discipline. Each experiment computed 0.95 confidence intervals for the long-run
mean customer delay from 500 independent replications. The FNB rule relied on 16
batches, whereas the LBATCH and ABATCH strategies started with k l = 8 batches of
size bl = 1 and used type I error /3 = 0.1 for Ho.

Example 12 (Example 11 Continued) The entries of Tables 7.2 and 7.3 indicate that
the ABATCH strategy comes closer to the FNB rule's superior coverage with shorter
confidence intervals.

7.3 STEADY-STATE ANALYSIS 257

TABLE 7.3 Performance Statistics for the LBATCH and ABATCH Strategies
on 0.95 Confidence Intervals for the Mean Customer Delay in an
M/M/l Queue with Utilization v = 0.9

LBATCH Strategy ABATCH Strategy

Average Rejection Average
log2 n Coverage Half-width Proportion Coverage Half-width

Example I3 (An M / G / l Queue) Consider an M/G/I queueing system with IID inter-
arrival times from the exponential distribution with parameter T = 0.9 and IID service
times S, from the hyperexponential distribution with density function

This distribution applies when customers are classified into two types, 1 and 2, with
respective probabilities 0.9 and 0.1; type 1 customers have exponential service times
with mean 0.5, and type 2 customers have exponential service times with mean 5.5.
The service times have mean E(S) = 0.9(0.5) + 0.1(5.5) = 1, second moment E(s*) =
0.9 x 2(0S2) + 0.1 x 2(5S2) = 6.5, and coefficient of variation

which is larger than 1, the coefficient of variation of the exponential distribution. Then
the traffic intensity is v = TE(S) = 0.9.

The long-run mean delay time in queue is given by the Pollaczek-Khintchine formula
(Ross, 1993, Chap. 8)

T E (S ~)
p = l im E(Di) = - = 29.25

I - m 2(1 - V)

Notice that the M/M/I system in Example 11 with the same arrival rate and traffic
intensity has a much smaller long-run mean delay time.

Table 7.4 displays the results of this experiment. As n increases, the conservative

258 OUTPUT DATA ANALYSIS

TABLE 7.4 Performance Statistics for the FNB, LBATCH, and ABATCH Algorithms
on 0.95 Confidence Intervals for the Mean Customer Delay in an M/G/l Queue with
Hyperexponential Service Times and Utilization v = 0.9

FNB Rule LBATCH Strategy ABATCH Strategy

Average Average Rejection Average
log2 n Coverage Half-width Coverage Half-width Proportion Coverage Half-width

ABATCH strategy produces 0.95 confidence intervals for p that are roughly 50 to 100%
wider than the respective confidence intervals produced by the LBATCH strategy but
have coverage rates that are acceptably close to 0.95 for substantially smaller sample
sizes (as small as 217 = 13 1,072).

Example 14 (An MIDI1 Queue) Consider an M/G/1 queueing system with IID inter-
arrival times from the exponential distribution with parameter T = 0.9 and fixed unit
service times. Then, by (24), the long-run mean delay time in queue is p = 4.5.

The results of this experiment are contained in Table 7.5. As in Examples 12 and 13,
the performance of the ABATCH strategy makes it an attractive compromise between
the "extreme" FNB and SQRT rules.

TABLE 7.5 Performance Statistics for the FNB, LBATCH, and ABATCH Algorithms on
0.95 Confidence Intervals for the Mean Customer Delay in an M/D/1 Queue with Unit
Service Times and Utilization v = 0.9

FNB Rule LBATCH Strategy ABATCH Strategy

Average Average Rejection Average
log2 n Coverage Half-width Coverage Half-width Proportion Coverage Half-width

7.3 STEADY-STATE ANALYSIS 259

TABLE 7.6 Performance Statistics for the FNB, LBATCH, and ABATCH Algorithms on
0.95 Confidence Intervals for the Mean Customer p = 0 of the Stationary AR(1) Process
Xi = -0.9Xi 1 + Zi

FNB Rule LBATCH Strategy ABATCH Strategy

Average Average Rejection Average
log:, n Coverage Half-width Coverage Half-width Proportion Coverage Half-width

Example 15 tests the FNB, LBATCH, and ABATCH methods by means of an AR(1)
process.

Example 15 [The AR(1) Process Revisited] Consider the stationary AR(1) process
X, = -0.9Xi- I + Z , with mean 0 (see Example 4). The autocorrelation function pj
= (-0.9)'~ j 2 0, of this process oscillates around the zero axis and the time-average
process variance is a t = (I - 0.9)/(1 + 0.9) = 0.053.

The entries of Table 7.6 were obtained from 500 independent replications. The FNB
rule used 16 batches and the type I error for Ho was P = 0.1. The 0.95 confidence inter-
vals for p produced by the three methods have roughly equal half-widths and coverages.
In fact, almost all coverage est imate~~are greater than the nominal coverage 0.95. This
behavior is due to the fact that bVar(VB(n, k)) tends to overestimate a: [the coefficient
of I/b in equation (18) is 2.624 > 01.

From equation (19), the batch size that minimizes M S E (? ~ (~ , k)) is bo = 113.71. Five
hundred independent replications with 144 batches of size 114 (sample size 16,416)
produced 0.95 confidence intervals with estimated coverage 0.958 and average half-
width 0.0016-not a substantial improvement over the statistics in the last row of Table
7.6 (for sample size roughly equal to 214 = 16,384).

Based on Examples 12 to 14 (Tables 7.3 to 7.5), the ABATCH strategy appears to
provide approximately 10% reduction in confidence interval width over the FNB rule
for sample sizes large enough to achieve the nominal coverage probability.

Overlapping Batch Means. An interesting variation of the traditional batch means
method is the method of overlapping batch means (OBM) proposed by Meketon and
Schmeiser (1984). For given batch size b, this method uses all n - b + 1 overlapping
batches to estimate p and Var(X,). The first batch consists of observations X I , . . . , Xh,
the second batch consists of X2, . . . , X b + 1 . and so on. The OBM estimator of p is

260 OUTPUT DATA ANALYSIS

where

are the respective batch means, and has sample variance

1 , - 1 7 + ' vo = -
n - b

C [YiCb) - Tol2
i = 1

The following list contains properties of the estimators Yo and c o :

1. The OBM estimator is a weighted average of nonoverlapping batch means esti-
mators.

2. Asymptotically (as n, b + - and b/n - 0), the OBM variance estimator co and
the nonoverlapping batch means variance estimator VB = VB(n, k) have the same
expectation. Furthermore,

In words, the asympto$c ratio of the mean-squared error of var(co) to the mean-
squared error of Var(VB) is equal to 5 (Meketon and Schmeiser, 1984).

3. The behavior of var(Co) appears to be less sensitive to the choice of the batch
size than the behavior of Var(VB) (Song and Schmeiser, 1995, Table 1).

4. If {Xi) satisfies ASA and ((b,, k,), n 2 1) is a sequence that satisfies the assump-
tions (A.l)-(A.3) in Theorem 2 and

then (Damerdji, 1994a)

Song and Schmeiser (1995) considered weakly stationary processes with ym = x,"=-, jmCj < - for rn = 0, 1 and studied batch means variance estimators with

7.3 STEADY-STATE ANALYSIS 261

and

The constants cb and c, depend on the amount of overlappi~g between the batches. In
particular, the estimator VB has cb = 1 and c, = 2, while Vo has cb = 1 :nd c, = $.
Then the asymptotic batch size that minimizes MSE(V) = ~ i a s ' (~) + Var(V) is

Pedrosa and Schmeiser (1994) and Song (1996) developed methods for estimating
the ratio (y l/yo)2 for a variety of processes, including moving average processes and
autoregressive processes. Then one can obtain an estimator for b* by plugging the ratio
estimator into equation (25). Sherman (1995) proposed a method that does not rely on
the estimation of (y l/yo)2.

Welch (1 987) noted that both traditional batch means and overlapping batch means
are special cases of spectral estimation (see Section 7.3.6) at frequency 0 and, more
important, suggested that overlapping batch means yield near-optimal variance reduction
when one forms subbatches within each batch and applies the method to the subbatches.
For example, a batch of size 64 is split into four sub-batches, and the first (overlapping)
batch consists of observations X I , . . . , X64, the second consists of observations X17,
. . . , Xxo, and so on.

7.3.5 Standardized Time Series Method

This method was proposed by Schruben (1983). The standardized time series is defined

by

and under some mild assumptions (e.g., stationarity and +mixing),

where {B(t) : t 1 0) is the Brownian bridge process (see Billingsley, 1968). Informally,
{Xi) is +mixing if Xi and Xi,, are approximately independent for large j. Figure 7.8
shows the standardized time series for the AR(1) sample path in Figure 7.1.

262 OUTPUT DATA ANALYSIS

Figure 7.8 Standardized time series for the AR(1) sample path in Figure 7.1.

I If A = lo a,B(t) d t is the area under B, the identity

implies that 02 can be estimated by multiplying an estimator of E(A*) by 12. Suppose
that the data XI , . . . , X , are divided into k (contiguous) batches, each of size b. Then
for sufficiently large n the random variables

become approximately IID normal and an estimator of E (A ~) is

Hence an (approximate) 1 - a confidence interval for p is

7.3 STEADY-STATE ANALYSIS 263

where

The standardized time-series method is easy to implement and has asymptotic advan-
tages over the batch means method (see Goldsman and Schruben, 1984). However, in
practice it can require prohibitively long runs as noted by Sargent et al. (1992). Some
useful theoretical foundations of the method are given in Glynn and Iglehart (1990).
Additional developments on the method, as well as other standardized time-series esti-
mators, are contained in Goldsman et al. (1990) and Goldsman and Schruben (1984,
1990). Finally, Damerdji (1994a,b) shows that under the assumption of strong approx-
imation in Section 7.3.4, hatching sequences satisfying assumptions (A.l)-(A.3) yield
consistent estimators for the process variance 02.

7.3.6 Spectral Estimation Method

This method also assumes that the process {Xi] is weakly stationary. Under this assump-
tion, the variance of is given by (6). The name of the method is due to the fact that
if xT=__ IC, I < -, then n ~ a r (x) -, 27rg(O) as n --, -, where g(X) is the spectrum of
the process at frequency X and is defined by

where i = 6. Therefore, for large n the estimation of ~ a r (K) can be viewed as that
of estimating g(0). Estimators of this variance have the form

where Q and the weights w, are chosen to improve the properties of the variance esti-
mator V s . The selection of these parameters is discussed in Fishman (1978b) and Law
and Kelton (1984). Further discussions of spectral methods are given in Heidelberger
and Welch (1981a,b, 1983) and Damerdji (199 I) .

7.3.7 Quantile Estimation from Stationary Output Data

Heidelberger and Lewis (1984) proposed three methods for computing confidence inter-
vals for quantiles when the output process is stationary but not regenerative. Only the
average group quantile method will be presented because it is simpler to implement
than the competitors and has performed as well or better than the others in terms of the

264 OUTPUT DATA ANALYSIS

width of confidence intervals and the coverage probabilities. This method makes use of
the maximum transform.

Maximum Transform. The purpose of the maximum transform is to convert the prob-
lem of computing an extreme quantile to one of computing a quantile close to the
median. The transform works as follows: Let XI , X2, . . . , Xu be IID random variables
with p-quantile equal to C;, and let Y = max{XI ,X2, . . . , X, 1. Then

Thus the p'-quantile of Y is the pu-quantile of X. The idea is to choose u such that pu =
0.5, since estimators for the median will generally have smaller bias and variance than
estimators for more extreme quantiles. For example, if p = 0.99, then u = ln(.5)/ ln(0.99)
= 6.58. So choosing u = 7 gives p' = 0 .99~ = 0.48. Notice that by choosing groups of
seven observations and applying the maximum transform, the amount of data that must
be processed is reduced by a factor of 7.

Applying the maximum transform generally results in inflation of the variance by a
factor of approximately 1.4 (see Heidelberger and Lewis, 1984). It is also possible to
use other schemes, such as the next to maximum. The maximum transform is clearly
applicable to quantile estimation by means of independent replications (see "Quantile
Estimation" in Section 7.3.3). For processes that are stationary but not IID, Heidelberger
and Lewis apply the maximum transform to observations at least m positions apart,
where m = n/u, n is the sample size of the output, and u is an integer such that pu = 0.5.

Average Group Quantile Method. This method works as follows: First, determine
a u so that pu = 0.5; that is, u = Lln(0.5)/ ~ n (~) l . Then form k contiguous batches of m .
u observations each. Within each batch, form m sub-batches of u observations. The first
sub-batch consists of observations 1, m + 1, 2m + 1, . . . , (u - 1)m + 1, the second of
observations 2, m + 2, 2m + 2, . . . , (u - 1)m + 2, and so on. All of the observations in
each sub-batch are m positions apart. The maximum transform is applied within each
sub-batch, producing m maximum transformed observations within the sub-batch. The
p'-quantile is then computed from these observatipns, producing a quantile from each
batch. Denote these batch quantiles by t2, . . . , &. Then the overall quantile estimate
is the sample mean of these batch qupti\es, and an approximate 1 - a confidence in-
terval for C; is computed by treating , $ ' I , F2, . . . , F k as a set of IID observations and
applying the usual confidence interval estimator for the mean

Heidelberger and Lewis compared this estimator to two competitors, one based on
estimation of the spectral density of a binary process and another based on nested group
quantiles. The average group quantile method performed well relative to the other meth-
ods, was not dominated by any of the other methods, and has the advantage that it is the
easiest method to implement. The performance of the method depends on the choice of
the quantities m and k. While Heidelberger and Lewis do not provide a specific method
or specific guidelines for choosing these parameters, they do recommend making m as

7.4 MULTIVARIATE ESTIMATION 265

large as possible to assure that the observations used in the maximum transform have
a maximum distance between them and make the spaced observations approximately
independent.

7.4 MULTIVARIATE ESTIMATION

Frequently, the output from a single simulation run is used to estimate several system
parameters. The estimators of these parameters are typically correlated. As an example,
one might wish to estimate simultaneously the average delays for customers at three
stations in a queueing network.

Let 0 = (01, $2, . . . , O h) be a vector of h parameters that will be estimated using
simulation output data. Two types of multivariate interval estimation procedures are
generally ~sed:~sii+taneous conjidence intervals and conjidence regions. The set of
intervals { I i = (0,!, 0;,, i = 1,2, . . . , h } is said to be a set of l a simultaneous confidence
intervals for 0 if

A region 0 c K~ is said to be a 1 - a confidence region for 0 if P(O E 0) = 1 - a .
Note that simultaneous confidence intervals form a rectangular region in Rh. In general,
a confidence region will not be rectangular but will have smaller volume.

There are many articles in the literature concerning multivariate estimation in gen-
eral and multivariate methods for simulation in particular. For a general introduction to
multivariate statistical methods, see Anderson (1984). Charnes (1989, 1995) and Seila
(1984) survey multivariate methods for simulation, primarily methods for estimating
the mean, and provide extensive lists of references.

7.4.1 Bonferroni Intervals

Bonferroni's inequality provides a means for computing a lower bound on the simulta-
neous confidence coefficient for any set of confidence intervals. Let E l , E2, . . . , Eh be
any set of events. Bonferroni's inequality states that

To apply this inequality to a set of confidence intervals, let I; be a 1 - 9 confidence
interval for O,, j = 1, 2, . . . , h, and let E, represent the event Oj E I;. Then P(E,) = 1
- a;. By Bonferroni's inequality, the simultaneous confidence coefficient is

266 OUTPUT DATA ANALYSIS

Bonferroni's inequality applies in very general circumstances. No conditions or
restrictions are placed on the population, the parameters, or the methods of comput-
ing the intervals 11, 12, . . . , Ih. Normally, to apply this approach one would compute
a 1 - a / h confidence interval for each parameter 0;. Then by (26) the simultaneous
confidence coefficient is at least 1 - a . The correctness of this simultaneous confidence
coefficient depends on the correctness of the individual confidence coefficients for the
individual intervals, however. See the last paragraph in Section 7.4.2.

7.4.2 Multivariate Inference for the Mean Using Independent
Replications

Suppose that the simulation run consists of n identical, independent replications, and
that replication i produces output data vector Xi = (Xil, Xi2, . . . , Xih), where Xij is an
observation that will be used to estimate 0,. Thus the output of the entire simulation
experiment consists of n IID vectors of observations X I , X2, . . . , X,. Let p = E(X;) be
the vector of population means, and C = E[(Xi - p)(Xi - p)'] be the variance-covariance
matrix for each Xi with components xjk = Cov(Xij,Xik). The point estimator for p is
the multivariate sample mean

with components

and the estimator of C is

Here and C are the basic sample statistics that are used for multivariate inference
for the mean p. If X I , X2, . . . , Xn have a multivariate normal distribution, then a 1 - a
confidence region for p is given by all vectors x for which

(n - l)h
X) 2 ------ F h , n - h , l a

n - h

where Fh, ,, - h, 1 - a is the 1 - a quantile of the F distribution with h and n - h degrees
of freedom in the numerator and denominator, respectively. More generally, if ml, . . . ,
a d are h-dimensional nonnull vectors of constants, then a 1 - a confidence region for
(91, . . . , +d) with

j= 1

is given by all vectors x E lRd such that

7.4 MULTIVARIATE ESTIMATION 267

(n - 1)r
n($ - x)'[.rr'~n]-l($- x) 5 ------ F , n - , I -0

n - r

where = is the estimator for 4,. If the data X I , XZ, . . . , Xn are not multivariate
normal but are approximately multivariate normal, the regions above may be used as
approximate 1 - a! confidence regions for p.. This would be the case, for example, if
X i were the sample mean for a sequence of observations and conditions for a central
limit theorem were met.

Two methods are available for computing simultaneous confidence intervals for the
mean. The approach using Bonferroni's inequality has already been discussed. A second
method, originally proposed by Roy and Bose (1 953) and Scheffi (1 953), computes the
intervals

where T h , n - h , 1 - n / 2 is the 1 - 4 2 quantile of Hotelling's T' distribution with h and
n- h degrees of freedom in the numerator and denominator, respectively (see Anderson,
1984, Chap. 5, or Hotelling, 1931).

Bonferroni's inequality is rather tight; Scheffi intervals are very conservative. There-
fore, Bonferroni intervals will normally be shorter than Scheffk intervals. However, if
the true confidence coefficients of the individual intervals are less than the nominal val-
ues, Scheffi intervals may be preferred to protect against an unacceptably small simul-
taneous confidence coefficient. For example, suppose that h = 5 parameters are to be
estimated using simultaneous confidence intervals with simultaneous confidence coeffi-
cient 1 -a = 0.95. To use Bonferroni's inequality, one would compute a 0.99 confidence
interval for each parameter. If, in fact, the parameter estimators were independent, the
true simultaneous confidence coefficient would be 0 . 9 9 ~ = 0.951. However, if the true
coverage probability for each confidence interval were actually 0.98 instead of 0.99, the
simultaneous confidence coefficient would be only 0 . 9 8 ~ = 0.904, considerably below
the desired value of 0.95.

7.4.3 Multivariate Inference for the Mean Using Stationary Data

Methods for computing simultaneous confidence intervals and confidence regions for
the mean have been developed when output data are stationary. As in the case with
univariate inference, the initial transient portion must be identified and removed, leav-
ing observations that are approximately stationary. One option is to run a series of n
independent replications, compute the mean from each replication and use the methods
of Section 7.4.2 to compute either approximate simultaneous confidence intervals or an
approximate confidence region for p . Like the replication-deletion approach for uni-
variate inference described in Section 7.3.2, this approch is wasteful of data and will
result in a biased point estimator if the initial transient portion is judged too short. Bias
in the point estimator of the mean or variance will reduce the coverage probability of
the interval or regions.

Multivariate Batch Means. An alternative to independent replications is to apply a
generalization of the univariate batch means method. As in the univariate batch means
procedure, this method divides a long run into batches of multivariate observations.

268 OUTPUT DATA ANALYSIS

These vectors could be produced because the output process is naturally in the form
of a vector. Such a process would result, for example, in a queueing network if an
observation is produced each time a customer leaves the system, and Xi, is the time
required by customer i to travel path j in the network. Vector observations could also
be produced by sampling continuous-time processes. More generally, if only means for
continuous-time processes are to be estimated, batches could be formed using contin-
uous data accumulated every t time units.

It should be noted that for certain combinations of parameters, one can encounter
synchronization problems. Suppose, for example, that a queueing system has two classes
of customers, A and B, and suppose that 90% of the customers are of class A while
the remaining 10% are of class B. The objective is to estimate the mean waiting times
simultaneously for each class, say PA and p ~ . Then, if the batch size is set to 100, for
example, the amount of simulation time required to collect a batch of 100 observations
for class B customers will be approximately nine times that for class A customers. One
can easily see that the batches for class A customers will be completed long before
those for class B customers, and the relationship between batches for classes A and
B customers will change over time. In the following, the observation processes are
assumed to be synchronous, in the sense that for any batch size the statistical relationship
among batch means does not change.

The multivariate batch means method is applied analogously to the univariate batch
means procedure. Suppose that a stationary multivariate - output process is divided into
k batches of b vectors each, and let TI, . . . , Yk be the sequence of batch means. If

-
then the vectors TI, . . . , Yk are asymptotically uncorrelated and their sample mean vector
is a consistent estimator of the steady-state mean vector p. The multivariate batch means

-
method then treats TI, . . . , Yk as a sequence of IID random vectors and applies the meth-
ods of Section 7.4.2 to compute a confidence region or simultaneous confidence inter-
vals. One is left with the problem of determining the appropriate batch size and number
of batches. This problem is complicated by the fact since the batch means are vectors, the
autocorrelation function will be a sequence of correlation matrices. Chen and Seila (1 987)
developed a procedure that is based on fitting a first-order autoregressive process to the
sequence of batch means to test for autocorrelation and determine the batch size. This pro-
cedure has been shown to work well in a variety of systems.

ACKNOWLEDGMENTS

The authors would like to thank George Fishman and David Goldsman for their many
fruitful discussions. The research of the first author was partially supported by the Air
Force Office of Scientific Research under Contract 93-0043.

REFERENCES

Alexopoulos, C. (1993). Distribution-free confidence intervals for conditional probabilities and
ratios of expectations, Management Science, Vol. 40, No. 12, pp. 1748-1763.

REFERENCES 269

Anderson, T. W. (1984). An Introduction to Multivariate Statistical Analysis, Wiley, New York.

Billingsley, P. (1968). Convergence of Probability Measures, Wiley, New York.

Blomqvist, N. (1967). The covariance function of the M/G/ I queueing system, Skandinavisk Aktu-
arietidskrifr, Vol. 50, pp. 157-174.

Bratley, P., B. L. Fox, and L. E. Schrage (1987). A Guide to Simulation, 2nd ed., Springer-Verlag,
New York.

Carlstein, E. (1986). The use of subseries for estimating the variance of a general statistic from
a stationary sequence, Annals of Mathematical Statistics. Vol. 14, pp. 1171-1179.

Chance, F., and L. W. Schruben (1992). Establishing a truncation point in simulation output, Tech-
nical Report, School of Operations Research and Industrial Engineering, Cornell University,
Ithaca, N.Y.

Charnes, J. M. (1989). Statistical analysis of multivariate discrete-event simulation output, Ph.D.
thesis, Department of Operations and Management Science, University of Minnesota, Min-
neapolis, Minn.

Charnes, J. M. (1995). Analyzing multivariate output, in Proceedings of the 1995 Winter Simu-
lation Conference, C. Alexopoulos, K . Kang, W. R. Lilegdon, and D. Goldsman, eds., IEEE,
Piscataway, N.J., pp. 201-208.

Chatfield, C. (1989). The Analysis of Rme Series: An Introduction, 4th ed., Chapman & Hall,
New York.

Chen, R. D., and A. F. Seila (1987). Multivariate inference in stationary simulation using batch
means, in Proceedings of the 1987 Winter Simulation Conference, A. Thesen, H. Grant, and
W. D. Kelton, eds., IEEE, Piscataway, N.J., pp. 302-304.

Chien, C.-H. (1989). Small sample theory for steady state confidence intervals, Technical Report
37, Department of Operations Research, Stanford University, Palo Alto, Calif.

Chien, C., D. Goldsman, and B. Melamed (1997). Large-sample results for batch means, Man-
agement Science, Vol. 43, pp. 1288-1295.

Chow, Y. S., and H. Robbins (1965). On the asymptotic theory of fixed-width sequential confidence
intervals for the mean, Annals of Mathematical Statistics, Vol. 36, pp. 457-462.

Conway, R. W. (1963). Some tactical problems in digital simulation, Management Science, Vol.
10, pp. 47-6 1.

Crane, M. A,, and D. L. Iglehart (1974a). Simulating stable stochastic systems, I: General multi-
server queues, Journal of the ACM, Vol. 2 1, pp. 103-1 13.

Crane, M. A,, and D. L. Iglehart (1974b). Simulating stable stochastic systems, 11: Markov chains,
Journal of the ACM, Vol. 21, pp. 114-123.

Crane, M. A., and D. L. Iglehart (1975). Simulating stable stochastic systems, 111: Regenerative
processes and discrete-event simulations, Operations Research, Vol. 23, pp. 3 3 4 5 .

Crane, M. A., and A. J. Lemoine (1977). An Introduction to the Regenerative Methodfor Simu-
lation Analysis, Springer-Verlag, New York.

Damerdji, H. (1991). Strong consistency and other properties of the spectral variance estimator,
Management Science, Vol. 37, pp. 1424-1440.

Damerdji, H. (1994a). Strong consistency of the variance estimator in steady-state simulation out-
put analysis, Mathematics of Operations Research, Vol. 19, pp. 494-512.

Damerdji, H. (1994b). On the batch means and area variance estimators, in Proceedings of the
1994 Winter Simulation Conference, S. Manivannan, J. D. Tew, D. A. Sadowski, and A. F.
Seila, eds., IEEE, Piscataway, N.J., pp. 340-344.

Efron, B. (1982). The Jackknife, the Bootstrap and Other Resampling Plans, SIAM, Philadelphia,
Pa.

Fishman, G. S. (1972). Bias considerations in simulation experiments, Operations Research, Vol.
20, pp. 785-790.

270 OUTPUT DATA ANALYSIS

Fishman, G. S. (1973). Statistical analysis for queueing simulations, Management Science, Vol.
20, pp. 363-369.

Fishman, G. S. (1974). Estimation of multiserver queueing simulations, Operations Research, Vol.
22, pp. 72-78.

Fishman, G. S. (1978a). Grouping observations in digital simulation, Management Science, Vol.
24, pp. 510-521.

Fishman, G. S. (1978b). Principles of Discrete Event Simulation, Wiley, New York.
Fishman, G. S. (1996). Monte Carlo: Concepts, Algorithms and Applications, Chapman & Hall,

New York.
Fishman, G. S., and L. S. Yarbeny, (1997). An implementation of the batch means method,

INFORMS Journal on Computing, Vol. 9, pp. 296-310.
Gafarian, A. V., C. J. Ancker, and F. Morisaku (1978). Evaluation of commonly used rules for

detecting steady-state in computer simulation, Naval Research Logistics Quarterly, Vol. 25,
pp. 5 11-529.

Glynn, P. W., and D. L. Iglehart (1990). Simulation analysis using standardized time series, Math-
ematics of Operations Research, Vol. 15, pp. 1-16.

Goldsman, D., and L. W. Schruben (1984). Asymptotic properties of some confidence interval
estimators for simulation output, Management Science, Vol. 30, pp. 1217-1225.

Goldman, D., and L. W. Schruben (1990). New confidence interval estimators using standardized
time series, Management Science, Vol. 36, pp. 393-397.

Goldsman, D., M. Meketon, and L. W. Schruben (1990). Properties of standardized time series
weighted area variance estimators, Management Science, Vol. 36, pp. 602-612.

Goldsman, D., L. W. Schruben, and J. J. Swain (1994). Tests for transient means in simulated
time series, Naval Research Logistics Quarterly, Vol. 41, pp. 171-187.

Heidelberger, P., and P. A. W. Lewis (1984). Quantile estimation in dependent sequences, Oper-
ations Research, Vol. 32, pp. 185-209.

Heidelberger, P., and P. D. Welch (1981a). A spectral method for confidence interval generation
and run length control in simulations, Communications of the ACM, Vol. 24, pp. 233-245.

Heidelberger, P., and P. D. Welch (1981b). Adaptive spectral methods for simulation output anal-
ysis, IBM Journal of Research and Development, Vol. 25, pp. 860-876.

Heidelberger, P., and P. D. Welch (1983). Simulation run length control in the presence of an
initial transient, Operations Research, Vol. 31, pp. 1109-1144.

Hogg, R. V., and A. T. Craig (1978). Introduction to Mathematical Statistics, 4th ed., Macmillan,
New York.

Hotelling, H. (193 1). The generalization of Student's ratio, Annals of Mathematical Statistics, Vol.
2, pp. 360-378.

Iglehart, D. L. (1975). Simulating stable stochastic systems, V: Comparison of ratio estimators,
Naval Research Logistics Quarterly, Vol. 22, pp. 553-565.

Iglehart, D. L. (1976). Simulating stable stochastic systems, VI: Quantile estimation, Journal of
the ACM, Vol. 23, pp. 347-360.

Iglehart, D. L. (1978). The regenerative method for simulation analysis, in Current Trends in
Programming Methodology, Vol. 111, K. M. Chandy and K. M. Yeh, eds., Prentice-Hall, Upper
Saddle River, N.J., pp. 52-71.

Kan; A. F. (1993). Probability, Springer-Verlag, New York.
Kelton, W. D. (1989). Random initialization methods in simulation, IIE Transactions, Vol. 21, pp.

355-367.
Kelton, W. D., and A. M. Law (1983). A new approach for dealing with the startup problem in

discrete event simulation, Naval Research Logistics Quarterly, Vol. 30, pp. 641458.
Kleijnen, J. P. C. (1974). Statistical Techniques in Simulation, Part I , Marcel Dekker, New York.

REFERENCES 271

Kleijnen, J. P. C. (1975). Statistical Techniques in Simulation, Part I I , Marcel Dekker, New York.
Law, A. M., and J. S. Carson (1979). A sequential procedure for determining the length of a

steady-state simulation, Operations Research, Vol. 27, pp. 1011-1025.

Law, A. M., and W. D. Kelton (1984). Confidence intervals of steady-state simulations, I: A survey
of fixed sample size procedures, Operations Research, Vol. 32, pp. 1221-1239.

Law, A. M., and W. D. Kelton (1991). Simulation Modeling and Analysis, 2nd ed., McGraw-Hill,
New York.

Law, A. M., W. D. Kelton, and L. W. Koenig (198 1). Relative width sequential confidence intervals
for the mean, Communications in Statistics B, Vol. 10, pp. 29-39.

Lehmann, E. L. (1991). Theory of Point Estimation, 2nd ed., Wadsworth, Belmont, Calif.

Lindley, D. V. (1 952). The theory of queues with a single server, Proceedings of the Cambridge
Philosophical Society, Vol. 48, pp. 277-289.

Mechanic, H., and W. McKay (1966). Confidence intervals for averages of dependent data
in simulations 11, Technical Report ASDD 17-202, IBM Corporation, Yorktown Heights,
N.Y.

Meketon, M. S., and B. W. Schmeiser (1984). Overlapping batch means: something for nothing?
in Proceedings of the 1984 Winter Simulation Conference, S. Sheppard, U. W. Pooch, and
C. D. Pegden, eds., IEEE, Piscataway, N.J., pp. 227-230.

Moore, L. W. (1980). Quantile estimation in regenerative processes, Ph.D. thesis, Curriculum in
Operations Research and Systems Analysis, University of North Carolina, Chapel Hill, N.C.

Nadas, A. (1969). An extension of the theorem of Chow and Robbins on sequential confidence
intervals for the mean, Annals of Mathematical Statistics, Vol. 40, pp. 667-671.

Ockerman, D. H. (1995). Initialization bias tests for stationary stochastic processes based upon
standardized time series techniques, Ph.D. thesis, School of Industrial and Systems Engineer-
ing, Georgia Institute of Technology, Atlanta, Ga.

Pedrosa, A. C., and B. W. Schmeiser (1994). Estimating the variance of the sample mean: Optimal
batch size estimation and 1-2-1 overlapping batch means, Technical Report SMS94-3, School
of Industrial Engineering, Purdue University, West Lafayette, In.

Ross, S. M. (1993). Introduction to Probability Models, 5th ed., Academic Press, San Diego,
Calif.

Roy, S. N., and R. C. Bose (1953). Simultaneous confidence interval estimation, Annals of Math-
ematical Statistics, Vol. 24, pp. 5 13-536.

Sargent, R. G., K. Kang, and D. Goldsman (1992). An investigation of finite-sample behavior of
confidence interval estimators, Operations Research, Vol. 40, pp. 898-9 13.

Scheffi, H. (1953). A method of judging all contrasts in analysis of variance, Biometrica, Vol.
40, pp. 87-104.

Schmeiser, B. W. (1982). Batch size effects in the analysis of simulation output, Operutions
Research, Vol. 30, pp. 556-568.

Schriber, T. J., and R. W. Andrews (1979). Interactive analysis of simulation output by the method
of batch means, in Proceedings of the 1979 Winter Simulation Confelence, M. G. Spiegel,
N. R. Nielsen, and H. J. Highland, eds., IEEE, Piscataway, N.J., pp. 513-525.

Schruben, L. W. (1982). Detecting initialization bias in simulation output, Operations Research,
Vol. 30, pp. 569-590.

Schruben, L. W. (1983). Confidence interval estimation using standardized time series, Operations
Research, Vol. 3 1, pp. 1090-1 108.

Schruben, L. W., H. Singh, and L. Tiemey. (1983). Optimal tests for initialization bias in simu-
lation output, Operations Research, Vol. 3 1, pp. 1167-1 178.

Seila, A. F. (1982a). A batching approach to quantile estimation in regenerative simulations, Man-
agement Science, Vol. 28, pp. 573-58 1.

272 OUTPUT DATA ANALYSIS

Seila, A. F. (1982b). Percentile estimation in discrete event simulation, Simulation, Vol. 39, pp.
193-200.

Seila, A. F. (1984). Multivariate simulation output analysis, American Journal of Mathematical
and Management Sciences, Vol. 4, pp. 313-334.

Sherman, M. (1995). On batch means in the simulation and statistical communities, in Proceedings
of the I995 Winter Simulation Conference, C. Alexopouios, K. Kang, W. R. Lilegdon, and
D. Goldsman, eds., IEEE, Piscataway, N.J., pp. 297-302.

Song, W.-M. T. (1996). On the estimation of optimal batch sizes in the analysis of simulation
output analysis, European Journal of Operations Research, Vol. 88, pp. 304-309.

Song, W.-M. T., and B. W. Schmeiser (1995). Optimal mean-squared-error batch sizes, Manage-
ment Science, Vol. 41, pp. 110-123.

Stan; N. (1966). The performance of a statistical procedure for the fixed-width interval estimation
for the mean, Annals of Mathematical Statistics, Vol. 37, No. 1, pp. 36-50.

von Neumann, J. (1941). Distribution of the ratio of the mean square successive difference and
the variance, Annals of Mathematical Statistics, Vol. 12, pp. 367-395.

Welch, P. D. (1981). On the problem of the initial transient in steady state simulations, Technical
Report, IBM Watson Research Center, Yorktown Heights, N.Y.

Welch, P. D. (1983). The statistical analysis of simulation results, in The Computer Performance
Modeling Handbook, S. Lavenberg, ed., Academic Press, San Diego, Calif., pp. 268-328.

Welch, P. D. (1987). On the relationship between batch means, overlapping batch means and
spectral estimation, in Proceedings of the 1987 Winter Simulation Conference, A. Thesen,
H. Grant, and W. D. Kelton, IEEE, Piscataway, N.J., pp. 32G323.

Wilson, J. R., and A. A. B. Pritsker (1978a). A survey of research on the simulation startup
problem, Simulation, Vol. 3 1, pp. 55-58.

Wilson, J. R., and A. A. B. Pritsker (1978b). Evaluation of startup policies in simulation experi-
ments, Simulation, Vol. 3 1, pp. 79-89.

Yarberry, L. S. (1993). Incorporating a dynamic batch size selection mechanism in a fixed-sample-
size batch means procedure, Ph.D. thesis, Department of Operations Research, University of
North Carolina, Chapel Hill, N.C.

Young, L. C. (1941). Randomness in ordered sequences, Annals of Mathematical Statistics, Vol.
12, pp. 293-300.

CHAPTER 8

Comparing Systems via Simulation

DAVID GOLDSMAN

Georgia Institute of Technology

BARRY L. NELSON

Northwestern University

8.1 INTRODUCTION

Simulation experiments are typically performed to compare, in some fashion, two or
more system designs. The statistical methods of ranking and selection and multiple
comparisons are applicable when comparisons among a finite and typically small num-
ber of systems (say, 2 to 20) are required. The particular method that is appropriate
depends on the type of comparison desired and properties of the simulation output data.
In this chapter we describe methods for five classes of problems: screening a substantial
number of system designs, selecting the best system. comparing all systems to a stan-
dard, comparing alternatives to a default and comparing systems that are functionally
related. For optimization with respect to a (conceptually) infinite number of systems,
see Chapter 9.

Ranking and selection procedures (R&S) are statistical methods specifically developed
to select the best system, or a subset of systems that includes the best system, from among
a collection of competing alternatives. Provided that certain assumptions are met, these
methods guarantee that the probability of a correct selection will be at least some user-
specified value. Multiple-comparison procedures (MCPs) treat the comparison problem as
an inference problem on the performance measures of interest. MCPs account for the error
that arises when simultaneously estimating the differences in performance among sev-
eral systems. Both types of procedures are relevant in the context of computer simulation
because the assumptions behind the procedures can frequently be (approximately) satis-
fied: (1) the assumption of normally distributed data can often be secured by batching large
numbers of outputs (see Section 8.2.4), (2) independence can be obtained by controlling
random-number assignments (see Section 8.2.3), and (3) multiple-stage sampling-which
is required by some methods-is feasible in computer simulation because a subsequent
stage can be initialized simply by retaining the final random number seeds from the pre-

Handbook of Simulation, Edited by Jerry Banks.
ISBN 0-471 - 13403- 1 0 1998 John Wiley & Sons, Inc.

274 COMPARING SYSTEMS VIA SIMULATION

ceding stage, or by regenerating the entire sample. The procedures presented in this chapter
include R&S, MCPs, and combinations of the two.

Most readers should begin by scanning Section 8.2 for unfamiliar material, since
knowledge of these basic topics is essential for the remainder of the chapter. The core com-
parison methods are contained in Section 8.3, which is organized according to five types
of comparison problems. The material on each problem type is self-contained so that the
reader can proceed directly from Section 8.2 to the material that is relevant for the problem
at hand.

Section 8.3.1-Screening Problems: relevant when the goal is to compare a sub-
stantial number of system designs in order to group those with similar performance
and eliminate clearly inferior performers.

Section 8.3.2-Selecting the Best: relevant when the goal is to find the system with
the largest or smallest performance measure.

Section 8.3.3-Comparisons with a Standard: relevant when the goal is to find the
best system, provided that its performance exceeds a known, fixed performance .
standard.

Section 8.3.4-Comparisons with a Default: relevant when the goal is to compare
alternative systems to the current system (not necessarily a fixed, numerical per-
formance standard as in Section 8.3.3).
Section 8.3.5-Estimating Functional Relationships: relevant when the goal is to
represent the difference between systems in terms of the parameters of a linear
model.

Each of these subsections contains procedures, tables of key critical constants, and
numerical examples. A detailed case study is included in Section 8.4. This case illus-
trates selecting the best system, but the approach applies to all types of comparison
problems and should be useful to all readers.

8.2 BACKGROUND

In this section we introduce notation and provide background material on simulation
output processes, random number assignment, batching, and comparing two systems.

8.2.1 Notation

The goal is to compare k different systems via simulation. For compatibility with statis-
tics textbooks, sometimes the k simulated systems are called design points.

Let Y be a random variable that represents the output (sample performance) of a sim-
ulation generically. For example, Y might be the cost to operate an inventory system for a
month, the average flow time of parts in a manufacturing system, or the time a customer
has to wait to be seated in a restaurant. Let Yij represent the jth simulation output from sys-
tem design i, for i = 1 , 2, . . . , k alternatives and j = 1, 2, For fixed i it will always be
assumed that the outputs from system i, Y i l , Yi2, . . . , are identically distributed (have the
same probability distribution, and therefore the same mean, variance, etc.). This assump-
tion is plausible if Yil , Yi2, . . . are outputs across independent replications of system i, or if
they are outputs from within a single replication of a steady-state simulation after account-
ing for initialization effects (see Chapter 7 and Section 8.2.2).

8.2 BACKGROUND 275

Let p; = E[Yi j] denote the expected value of an output from the ith system, and let

p; = Pr(Yij > max Y,;]
I # i

be the probability that Yij is the largest of the jth outputs across all systems. The pro-
cedures described in this chapter provide comparisons based on either p ; , the long-run
or expected performance of system i , or pi, the probability that system i will actually
be the best performer (if bigger is better).

In some contexts it is useful to think of the k systems as functionally related. Let

be a k x 1 vector of outputs across all k design points on the jth replication. The rela-
tionship among the k design points can sometimes be approximated by a general linear
model:

where X is a k x p fixed design matrix, P is a p x 1 vector of unknown constants, and E

is a k x I vector of random errors with expectation 0. The differences between systems
(design points) is captured in the parameter P. In this chapter we discuss estimation of,
and inference about, p. For that portion of classical experiment design that addresses
the specification of X, see Chapter 6.

8.2.2 Simulation Output Processes

There are two broad (not necessarily exhaustive) classes of system performance param-
eters of interest: those defined with respect to prespecified initial and final conditions
for the system of interest, and those defined over a (conceptually) infinite time hori-
zon. Simulation experiments that estimate the former are called terminating simulation
experiments, while the latter are called steady-state simulation experiments. Examples
of terminating simulations include simulation of a store that is open each day from
9 A.M. to 9 P.M., and simulation of an inventory policy that begins with the current
inventory position and has a planning horizon of 1 month. Examples of steady-state
simulations include the simulation of a computer system under sustained peak load,
and simulation of an inventory policy over an infinite planning horizon.

The experiment design for terminating simulations always calls for multiple repli-
cations, and the length of each replication is determined by the prespecified initial and
final conditions. Therefore, for a terminating simulation of system i, the Y l l , Y I 2 , . . .
represent observed system performance across different replications of the system and
are thus independent.

The experiment design for steady-state simulation may call for one or more replica-
tions, and the length of each replication is a design decision. Therefore, for a steady-
state simulation of system i, the Y i l , Y i2 , . . . may represent outputs from within a single

276 COMPARING SYSTEMS VIA SIMULATION

replication-utputs that are typically dependent-or they may represent summary out-
puts from across multiple replications. The decision between single or multiple repli-
cations typically depends on the severity of the initial-condition bias (see Chapter 7).

For the purposes of this chapter, experiment design includes the following:

Specifying the number of replications for each system or design point

Specifying the length of each replication for each system or design point when it
is a steady-state simulation

Assigning the pseudorandom numbers to each system or design point

8.2.3 Controlling Randomness

Uncertainty (randomness) in a simulation experiment is derived from the pseudorandom
numbers, typically numbers in the interval (0,l) that are difficult to distinguish from
independent and identically distributed (IID) uniform random numbers. A useful way
to think about the random numbers is as a large, ordered table, where the number of
entries in the table is often around 23' = 2 x lo9. Given a starting point in the table, a
simulation uses the pseudorandom numbers in order until the experiment is completed.
If the end of the table is encountered, numbers starting from the beginning of the table
are used. Simulation languages do not actually store the pseudorandom numbers in a
table (they are generated by a recursive function as needed), but the table of random
numbers is a good conceptual representation of how the simulation language works.

Although the (conceptual) table of pseudorandom numbers is ordered, the order does
not matter. As long as the numbers are used without replacement, they can be taken in
any manner or starting from any position in the table and still appear to be a sample of
IID random numbers. An important feature of most simulation languages is that they
permit control of the pseudorandom numbers through seeds or streams. The seeds or
streams are nothing more than different starting points in the table, typically spaced far
apart. For example, stream 2 might correspond to entering the table at the 131,072nd
random number.

The assignment of random number seeds or streams is part of the design of a sim-
ulation experiment. All subsequences within the (conceptual) table appear to be IID
random numbers, so assigning a different seed or stream to different systems guaran-
tees that the outputs from different systems will be statistically independent. Similarly,
assigning the same seed or stream to different systems induces dependence among the
corresponding outputs, since they all have the same source of randomness. Controlling
the dependence between systems is the primary reason for the existence of seeds or
streams.

CAUTION. Assigning different seeds or streams to different systems does not guaran-
tee independence if, say, stream 1 is assigned to system 1, but the simulation of system
1 uses so many random numbers that values from stream 2-which is assigned to sys-
tem 2-are also used. Remember that the streams are just starting points in an ordered
table. If independence is critical, it is worthwhile to know the spacing between seeds
or streams in a simulation language and to make a rough estimate of the number of
pseudorandom numbers needed at each design point.

On the other hand, to obtain independent replications it is typically not necessary
to assign different seeds or streams to different replications for a single system. Sim-

8.2 BACKGROUND 277

ulation languages generally begin subsequent replications using random numbers from
where the previous replication finished, implying that different replications use different
random numbers and are therefore independent.

Although many statistical procedures call for independence across systems or design
points, in comparison problems it is often useful to assign the same random number
seeds or streams to all of the design points; this technique is called common random
numbers (CRNs). The discussion that follows is in terms of a multiple-replication exper-
iment, but the ideas apply to a single-replication experiment when batch means (see
Section 8.2.4) play the role of replications.

The intuition behind CRN is that a fairer comparison among systems is achieved if
all of the systems are subjected to the same experimental conditions, specifically the
same source of randomness. CRN can ensure this.

-
The mathematical justification for CRN is as follows: Suppose that the sample mean,

Yi = cy_, Yij/n, is used to estimate the unknown expected performance, pi, from sys-
tem i , where n is the number of independent replications taken across system i. Then
for systems i and 1, the (unknown) variance of the estimated difference in performance
is

where Var denotes variance and Cov denotes covariance. If different seeds or streams
- -

are assigned to systems i and 1, then Cov[Yi, YI] = 0; if common seeds or streams are
- -

assigned, then frequently Cov[Yi, Y,] > 0, reducing the variance of the difference, which
leads to a more precise comparison.

The effect of CRN can be enhanced by synchronizing the random numbers, which
means forcing the random numbers to be used for the same purpose in each system. The
primary technique for achieving synchronization is to assign a different seed or stream to
each random input process and then to use the same collection of seeds or streams across
all systems. For example, in a simulation of a queue, this means assigning a stream to
the arrival process and a different stream to the service process. When common streams
are used across systems, the same random numbers will generate arrivals and service
times for each one.

Sometimes synchronization is facilitated by generating entity-transaction attributes
at the time the entity-transaction is created. For instance, the entire sequence of pro-
cessing times for a job at several stations can be generated when the job arrives at the
shop rather than generating each processing time as the job arrives at each station.

One must also take care to synchronize the random numbers across replications. To
be specific, replication 2 of systems i and 1 should both begin with the same random
numbers. This may not happen automatically, since replication 1 of system i may require
a different quantity of random numbers than replication 1 of system 1. The problem of
ensuring that all replications across all systems begin with the same random numbers
is simulation-language dependent. If a large number of seeds or streams can be created,
one approach is to assign different seeds or streams to each replication.

An exploratory experiment can be used to verify that CRN is having the desired
effect by estimating the covariance between outputs from different systems or design
points. The sample covariance between systems i and I is

278 COMPARING SYSTEMS VIA SIMULATION

The covariance terms should be positive; if they are negative, CRN may inflate variance
and should not be used.

8.2.4 Batching

For system or design point i, suppose that n outputs Yi l , Yi2, . . . , Yin are available,
either representing the results from across n replications, or n outputs from within a
single replication of a steady-state simulation. The following aggregation of the data is
sometimes useful: Set

for h = 1, 2, . . . , b, so that n = bm. Simply stated, Yih is the sample mean of the
"batch of outputs Y;, (h - I), + 1 , . . . , Yikm. There - are several reasons to consider basing
statistical analysis on the batch means Y i l , . . . , Yib rather than the original outputs Y i l ,
. . . , Y;, (see also the discussion in Chapter 7):

1. The batch means tend to be more nearly normally distributed than the original
outputs, since they are averages. This property is useful if the statistical analysis is based
on normal distribution theory.

2. When the data are from within a single replication of a steady-state simulation
and are therefore dependent, the batch means tend to be more nearly independent than
the original outputs. This property is useful if only a single replication is obtained from
each system and the statistical analysis is based on having IID data.

3. By using different batch sizes, m, for different systems, the variances of the batch
means across systems can be made more nearly equal than the variances of the original
outputs; equal variances is a standard assumption behind many statistical procedures
used for comparisons. To be specific, suppose that ~ ' (n) and ~ ? (n) are the sample vari-
ances of systems i and 1 for the original outputs. If ~ ' (n) > ~ ? (n) , a batch size of m
= ~ ? (n) / ~ ? (n) for system i and a batch size m = 1 for system 1 will cause the batch
means from i and 1 to have approximately equal variance. Of course, the same will be
true for batch sizes cm and c , respectively, for any positive integer c .

4. Saving all of the batch means may be possible when it is impossible or inconve-
nient to save all of the original, raw output data. Frequently, the output data are aggre-
gated into summary statistics, such as the sample mean and variance. But it is often
useful to be somewhere in between having all the data and having only the summary
statistics, especially if it is necessary to test the data for normality, equality of variances,
and so on. Batch means provide the middle ground. Surprisingly, it is not necessary to
maintain a large number of batch means, b, even if the number of original observa-
tions, n, is large. One way to see this is to look at tl-,/2,., the 1 - 4 2 quantile of the
t-distribution with v degrees of freedom (available in standard tables): t0.975,30 = 2.04,

8.2 BACKGROUND 279

while t",g75,, = 1.96, a very small difference. Therefore, batching a large number of
replications into more than b = 30 batch means will not have much of an effect on, say,
confidence intervals for the steady-state mean of a system, which are typically based
on the t-distribution with b - 1 degrees of freedom.

8.2.5 Comparing Two Systems

The simplest comparison problem is to estimate the difference in expected performance
of k = 2 systems. The appropriate procedure depends on whether the systems are sim-
ulated independently or with common random numbers; both procedures are reviewed
in this section. The presentation assumes that n replications are made of each system,
but it is equally valid if the outputs are batch means from a single replication of each
system. The procedures to be described below also make use of the sample mean and
variance of n outputs X I , X 2 , . . . , X,:

When two systems are simulated, the output data can be organized as follows, where
D, = Y y - Y z j , the difference in performance between systems 1 and 2 on replication j :

Replication
Sample Sample Expected

System 1 2 . . . n Mean Variance Performance

The estimator D = -Y2 can be used to estimate the expected difference in perfor-
mance, p1 p 2 . The estimate is almost certainly wrong, so a measure of error, typically
a confidence interval, is needed to bound the error with high probability.

If the systems are simulated independently, a (1 - a)100% confidence interval for
pl - p2 is

where t l - 01/2, is the 1 - a12 quantile of the t-distribution with v degrees of freedom.
If, on the other hand, CRN is used, the appropriate confidence interval is

280 COMPARING SYSTEMS VIA SIMULATION

This confidence interval accounts for the positive covariance due to CRN.
Both confidence intervals are valid with approximate coverage probability 1 - a if

the output data are nearly normally distributed, or the sample size is large. Provided
that n is not too small, say n > 10, the loss of degrees of freedom in going from (2) to
(3) is more than compensated by even a small positive covariance due to CRN. In other
words, CRN can lead to a shorter confidence interval and therefore a tighter bound on
the error of the estimate. The shorter the confidence interval, the easier it is to detect
differences in system performance.

When there are k > 2 systems, difficulties arise in extending the analysis above
to all d = k(k - 1)/2 differences pi - pl, for all i # I . A standard approach is to
form each confidence interval at level 1 - a /d , rather than 1 - a , which guarantees
that the overall confidence level for all d intervals is at least 1 - a by the Bonferroni
inequality. Unfortunately, this procedure is so conservative when k is large that the
confidence intervals may be too wide to detect differences in expected performance.
Therefore, other procedures, described in Section 8.3, are required when k > 2 systems
are compared.

8.3 PROBLEMS AND SOLUTIONS

In this section we address a variety of important problem formulations: screening of sys-
tems, selection of the best competitor, comparisons with a standard, comparisons with a
default, and comparison of systems that are functionally related. Each problem formula-
tion is accompanied by a number of solution methods along with numerical examples.

8.3.1 Screening Problems

Example 1 A brainstorming session produces 15 potential designs for the architecture
of a new computer system. Response time is the performance measure of interest, but
there are so many designs that a careful simulation study will be deferred until a pilot
simulation study determines which designs are worth further scrutiny. A shorter response
time is preferred.

If the expected response time is the performance measure of interest, the goal of the
pilot study is to determine which designs are the better performers, which have similar
performance, and which can be eliminated as clearly inferior.

Multiple Comparisons Approach. Let pi denote the expected response time for
architecture i. Multiple comparisons approaches the screening problem by forming
simultaneous confidence intervals on the parameters p i - p ~ for all i # I . These k (k 1)/2
confidence intervals indicate the magnitude and direction of the difference between each
pair of alternatives. The most widely used method for forming the intervals is Tukey's
procedure, which is implemented in many statistical software packages. General refer-
ences include Hochberg and Tamhane (1987) and Miller (1981).

8.3 PROBLEMS AND SOLUTIONS 281

Suppose that the systems are simulated independently to obtain IID normal outputs
Y, , , Yi2, . . . , Yin, from system i. Let Y, = zy', Y;,/n; be the sample mean from system
i , and let

be the pooled sample variance. Tukey's simultaneous confidence intervals for p; - p,
are

for all i # I, where Q:: is the 1 a quantile of the Studentized range distribution with

parameter k and v = c:=, (n; - 1) degrees of freedom [see Table 8.1 for critical values
when a = 0.05; for more complete entries, see Hochberg and Tamhane (1987, App. 3,
Table 8)].

When the Yij are normally distributed with common (unknown) variance, and nl =
n2 = . . . = nk, these intervals achieve simultaneous coverage probability 1 - a. Hayter
(1984) showed that the coverage probability is strictly greater than 1 - a when the
sample sizes are not equal.

Numerical Example. Suppose that there are only k = 4 computer architectures. For each
of them, n = 6 replications (each simulating several hours of computer use) are obtained,
giving the following summary data on response time in milliseconds:

Suppose that the objective is to determine, with confidence 0.95, bounds on the differ-
ence between the expected response times of each alternative. Then Tukey's procedure
forms confidence intervals with half-widths

where Q:$' = 3.96 is from Table 8.1. For instance, a confidence interval for p2-p& the
difference in the expected response times of architectures 2 and 4, is 85 - 62 + 16, or
23 + 16 ms. Since this confidence interval does not contain 0, and since shorter response
time is better, we can informally screen out architecture 2 from further consideration.

Subset Selection Approach. The subset selection approach is a screening device
that attempts to select a (random-size) subset of the k = 15 competing designs of Exam-
ple 1 that contains the design with the smallest expected response time. Gupta (1956,

h)
03 (0.05) " TABLE 8.1 95% Critical Values Qk, , of the Studentized Range Distribution

8.3 PROBLEMS AND SOLUTIONS 283

1965) proposed a single-stage procedure for this problem that is applicable in cases
when the data from the competing designs are independent, balanced (i.e., nl = ... =
nk = n) and are normally distributed with common (unknown) variance a 2 .

First specify the desired probability I a of actually including the best design in the
selected subset. Then simulate the systems independently to obtain IID normal outputs
Y i l , Yi2 , . . . , Y;,, for i = 1 , 2, . . . , k . Let 7; = xy= I Yi j /n be the sample mean from
system i , and let

be the pooled sample variance, an unbiased estimator of a *
Include the ith design in the selected subset if

-
Y , 5 I S j S k min 7 + gS

(0 1) where g = T k I) is a critical value from a multivariate t-distribution. Table 8.2
gives values of this constant for a = 0.05; more complete tables can be found in
Hochberg and Tamhane (1987, App. 3, Table 4); Bechhofer, Santner, and Goldsman
(BSG) (1995); or by using the Fortran program AS2 5 1 of Dunnett (1989). Gupta and
Huang (1976) proposed a similar procedure (requiring more obscure tables) for the
unbalanced case.

Notice that if a larger value of the system performance measure is better, the ith
-

design is selected if Yi 2 m a x l ~ j ~ k Yl - g~v'?$%.

Numerical Example. Continuing the example above, suppose that the objective is to
determine, with confidence 0.95, a subset of architectures that contains the one with the
shortest response time. Then the Gupta procedure selects those architectures for which

where T:$) = 2.19 is from Table 8.2. Therefore, the procedure selects architectures 1
and 4.

8.3.2 Selecting the Best

Example 2 For the purpose of evaluation prior to purchase, simulation models of four
different airline-reservation systems have been developed. The single measure of system
performance is the time to failure (TTF), so that larger TTF is better. A reservation
system works if either of two computers works. The four systems arise from variations
in parameters affecting the TTF and time-to-repair distributions. Differences of less than
about 2 days are considered practically equivalent.

284 COMPARING SYSTEMS VIA SIMULATION

(0.05) TABLE 8.2 95% Critical Values Tp," of the Multivariate t-Distribution with Common
Correlation 1/2

Indifference-Zone Selection Approach. If expected TTF is taken as the perfor-
mance measure of interest, the goal in this example is to select the system with the
largest expected TTF. In a stochastic simulation such a "correct selection" can never be
guaranteed with certainty. A compromise solution offered by indiflerence-zone selec-
tion is to guarantee to select the best system with high probability, say 1 - a, whenever
it is at least a user-specified amount better than the others; this practically significant
difference is called the indifference zone. In the example the indifference zone is 6 =
2 days. What happens if, unknown to the user, some system happens to be within 6
of the best (i.e., within the indifference zone)? Then it can (usually) be shown that the
probability of selecting a good system (i.e., one of the systems within the indifference
zone) is at least 1 - a.

Law and Kelton (1991) present indifference-zone procedures that have proven useful
in simulation, while Bechhofer et al. (1995) provide a comprehensive review of R&S

8.3 PROBLEMS AND SOLUTIONS 285

procedures. In this section we present three procedures, one due to Rinott (1978) that is
applicable when the output data are normally distributed and all systems are simulated
independently of each other, and two others, due to Nelson and Matejcik (1995), that
work in conjunction with common random numbers. See Section 8.4 for a numerical
example employing the first procedure.

Multiple Comparisons Approach. Multiple comparisons addresses the problem of
determining the best system by forming simultaneous confidence intervals on the param-
eters pi - maxr p, for i = 1, 2, . . . , k, where pi denotes the expected TTF for the
ith reservation system. These confidence intervals are known as multiple comparisons
with the best (MCB), and they bound the difference between the expected performance
of each system and the best of the others, with probability 1 - a. The first MCB proce-
dures were developed by Hsu (1984); a thorough review is provided in Hochberg and
Tamhane (1 987).

Matejcik and Nelson (1995) and Nelson and Matejcik (1995) established a fun-
damental connection between indifference-zone selection and MCB by showing that
most indzfference-zone procedures can simultuneously provide MCB conjidence inter-
vals with the width of the intervuls corresponding to the indifference zone. The proce-
dures displayed below are combined indifference-zone selection and MCB procedures.
The advantage of a combined procedure is that it not only selects a system as best but
also provides information about how close each of the inferior systems is to being the
best. This information is useful if secondary criteria that are not reflected in the perfor-
mance measure (such as ease of installation, cost to maintain, etc.) may tempt one to
choose an inferior system if it is not deficient by much, say less than 6.

The combined procedures below use the convention that a "." subscript indicates
averaging with respect to that subscript. For example, Y,. is the sample average of Y i l ,
Y i2 ,

The first procedure, Rinott + MCB, takes observations in two stages. The first stage
uses no 2 2 observations from each system to estimate marginal variances; an initial
sample size of at least no = 10 is recommended. These estimates establish the num-
ber of observations to be taken in the second stage of sampling in order to meet the
indifference-zone probability requirement.

Procedure Rinott + MCB (Independent Sampling)

1. Specify 6, a , and the first-stage sample size no.

2. Take an IID sample Y i l , Y12 , . . . , Yino from each of the k systems simulated
independently.

3. Compute the marginal sample variances

f o r i = l , 2 , . . . , k.

4. Find h from Table 8.3 if a = 0.1 or 0.05 [otherwise, use the more detailed tables
in Wilcox (1984) or Bechhofer et al. (1995)l. Compute the final sample sizes

286 COMPARING SYSTEMS VIA SIMULATION

TABLE 8.3 Values of h Required by the Procedure Rinott + MCB

for i = 1, 2 , . . . , k, where r.1 means to round up.

5. Take Ni - no additional IID observations from system i, independently of the
first-stage sample and the other systems, for i = 1, 2, . . . , k .

8.3 PROBLEMS AND SOLUTIONS 287

6. Compute the overall sample means

f o r i = l , 2 , . . . , k . -
7 . Select the system with the largest Y,. as best.
8. Simultaneously form the MCB confidence intervals for p; - max, + j as

- - - -
min(0, Ti. - max TI . - 6), max(0,Y;. - max 71. + 6)

I # i I # I
(4)

Notice that in step 5 it is equally valid to generate the N , observations by restart-
ing the simulation o f system i from the beginning, thereby regenerating the initial no
observations. In some simulation languages this approach is easier than restarting the
simulation from the end o f the first stage.

I f a smaller performance measure is better, Rinott + MCB (and the two procedures
that follow) change only in the final two steps, which become

-
7 . Select the system with the smallest Ti . as best.

8. Simultaneously form the MCB confidence intervals for pi - minl +, pl as

- - - -

min(0,T;. - min TI. - 6), max(0, Ti. - min 71. + 6)
/ # I I # I

Rinott's procedure, and the accompanying MCB intervals, simultaneously guaran-
tee a probability o f correct selection and confidence-interval coverage greater than or
equal to 1 - a under the stated assumptions. A fundamental assumption of the Rinott +
MCB procedure is that the k systems are simulated independently (see step 2 above).
In practice this means that different streams o f (pseudo)random numbers are assigned
to the simulation of each system. However, under fairly general conditions, assigning
common random numbers (CRN) to the simulation of each system decreases the vari-
ances of estimates o f the pairwise differences in performance (see Section 8.2.3). The
following procedure provides the same guarantees as Rinott + MCB under a more com-
plex set o f conditions, but it has been shown to be quite robust to departures from those
conditions. Unlike Rinott + MCB, it is designed to exploit the use of CRN to reduce
the total number of observations required to make a correct selection.

Procedure NM + MCB (Common Random Numbers)

1 . Specify 6, a, and the first-stage sample size no.
2. Take an IID sample Y i l , Yi2, . . . , YinO from each of the k systems using CRN

across svstems.

288 COMPARING SYSTEMS VIA SIMULATION

3. Compute the approximate sample variance of the difference of the sample means

k no

2 7, y, (Y;, - Y;. - B., + Y..)'

i = l j = l
S =

(k - l)(no - 1)

(a) 4. Let g = T, - I)(no- [see Table 8.2; or Hochberg and Tamhane (1987, App.
3, Table 4); or Bechhofer et al. (1995)l. Compute the final sample size

5. Take N - no additional IID observations from each system, using CRN across
systems.

6. Compute the overall sample means

f o r i = 1 , 2 , . . . , k. -

7. Select the system with the largest Y;. as best.
8. Simultaneously form the MCB confidence intervals as in Rinott + MCB.

The following procedure provides the same guarantees as Rinott + MCB under more
general conditions than NM + MCB; in fact, it requires only normally distributed data.
However, because it is based on the Bonferroni inequality, it tends to require more
observations than NM + MCB, especially when k is large.

Procedure Bonferroni + MCB (Common Random Numbers)

1. Specify 6, a! andno. Let t = ~ I - , / (~ - I) , . , - I .

2. Take an IID sample Y i l , Yi2, . . . , YinO from each of the k systems using CRN
across systems.

3. Compute the sample variances of the differences

for all i # I .
4. Compute the final sample size

8.3 PROBLEMS AND SOLUTIONS 289

5. Take N - no additional IID observations from each system, using CRN across
systems.

6. Compute the overall sample means

f o r i = 1 . 2 , k.
-

7. Select the system with the largest Y;. as best.

8. Simultaneously form the MCB confidence intervals as in Rinott + MCB.

For a numerical example, see Section 8.4.

Multinomial Selection Approach. Another approach to the airline-reservation
problem is to select the system that is most likely to have the largest actual TTF. To this
end, one can define p; as the probability that design i will produce the largest TTF from a
given observation from each system, (Yy, Y2,, . . . , Yk,) [i.e., pi = Pr{Y;, > rnaxlf; Y,;].
The goal now is to select the design associated with the largest pi-value.

More specifically, suppose that the goal is to select the best system with probability
1 - a whenever the ratio of the largest to second-largest p; is greater than some user-
specified constant, say I9 > 1. The indifference constant 0 can be regarded as the smallest
ratio "worth detecting."

The following single-stage procedure was proposed by Bechhofer, Elmaghraby, and
Morse (BEM) (1959) to guarantee the foregoing probability requirement.

Procedure BEM

1. For the given k and specified a and 19, find n from Table 8.4 for a = 0.25, 0.10,
or 0.05 [or from the tables in Bechhofer et al. (1959), Gibbons et al. (1977), or
Bechhofer et al. (1995)l.

2. Take a random sample of n multinomial observations Xi = (XI,, X2;, . . . , Xk,),
for j = 1, 2, . . . , n in a single stage, where

1 if Y,, > m a x l i , {Yl;]

In other words, if on the jth replication system i is best, set Xi, = 1 and XI, = 0
for all 1 # i (all of the nonwinners).

3. Let W; = xy=, Xi, for i = 1 , 2, . . . , k, the number of times system i is thc best.
Select the design that yielded the largest W, as the one associated with the largest
pi (in the case of a tie, pick any of the systems with the largest W;).

290 COMPARING SYSTEMS VIA SIMULATION

TABLE 8.4 Sample Size n for Multinomial Procedure BEM, and Truncation Numbers nT
for Procedure BG

k = 2 k = 3 k = 4 k = 5

01 0 n n~ n n~ n nT n n~

Numerical Example. To select the airline reservation system that is most likely to
have the largest actual TTF, suppose that management dictates a correct selection be
made with probability at least 0.95 whenever the ratio of the largest to second-largest
true (but unknown) probabilities of having the largest TTF is at least 1.2. From Table
8.4 with k = 4, a = 0.05, and the ratio I9 = 1.2, one finds that n = 979 TTFs must be
simulated for each system.

A more efficient but more complex procedure, due to Bechhofer and Goldsman
(1986), uses closed, sequential sampling; the procedure stops when one design is "suf-
ficiently ahead" of the others.

Procedure BG

1. For the k given, and the a and I9 specified, find the truncation number (i.e., an
upper bound on the number of vector observations) nT from Table 8.4 for a =
0.25, 0.10, or 0.05 [or from the tables in Bechhofer and Goldsman (1986) or
Bechhofer et al. (1995)l.

2. At the mth stage of experimentation (m 2 l) , take the random multinomial obser-
vation X, = (X I , , X2,, . . . , Xkm) (defined in procedure BEM) and calculate the
ordered category totals WLlIm 5 Wplm S . . . I WLkIm, where W;, = xg, Xij is
the number of times system i was the best in the first m stages, and [i] indicates
the index of the ith smallest total. Also calculate

8.3 PROBLEMS AND SOLUTIONS 291

3. Stop sampling at the first stage when either

whichever occurs first.
4. Let N (a random variable) denote the stage at which the procedure terminates.

Select the design that yielded the largest W I N as the one associated with the largest
p, (in the case of a tie, pick any of the systems with the largest WIN).

Numerical Example. Suppose that k = 3, a! = 0.25, and 8 = 3.0. Table 8.4 gives a
truncation number of n~ = 5 observations. Consider the data

Since Z2 = (f)2 + (f12 = $ < a/(1 - a) = 4, the first termination criterion for procedure
BG dictates that the procedure stops sampling and selects system 2.

Numerical Example. Under the same setup as the preceding example, consider the
following data.

Since m = n~ = 5 observations, sampling stops by the second criterion, and the procedure
selects system 1 .

Numerical Example. Again under the same setup, consider the following data.

The procedure stops according to the second criterion because m = n~ = 5. However,

292 COMPARING SYSTEMS VIA SIMULATION

since there is a tie between WI5 and WZ5, the experimenter selects either system 1 or
2.

Numerical Example. Again under the same setup, consider the following data.

Because systems 1 and 3 can do no better than tie system 2 (even if the potential remain-
ing n~ - m = 5 - 4 = 1 observation were taken), the third criterion instructs the user to
select system 2.

8.3.3 Comparisons with a Standard

Example 3 Several different investment strategies will be simulated to evaluate their
expected rate of return-the higher the better. None of the strategies will be chosen
unless its expected return is larger than a zero-coupon bond that offers a known, fixed
return. Since factors such as risk could also be considered, the strategy ultimately chosen
may not be the one with the largest expected return.

Here the goal is to select the best investment strategy only if it is better than the
standard; if no strategy is better than the standard, continue with the standard. More
precisely, the following probability requirement should be satisfied: Denote the standard
by po and the ordered means of the competitors by p[11 I p[21 I . . . 5 p[k]. For constants

(6 , a 0 , a I) with 0 < 6 < m, 2-k < 1 - a 0 < 1 and (1 - 2-k)/k < 1 - a1 < 1, specified
prior to the start of experimentation, the probability requirement must guarantee that

P(se1ect the standard) 2 1 - a 0 whenever p [k] I po (5)

and

P{select the best strategy) 2 1 - a1 whenever p[k] 2 max{po, p[k - I]) + 6 (6)

Equation (5) requires that the standard be selected as best with probability at least 1 -
a 0 whenever po exceeds all of the means of the other strategies; (6) requires that the
strategy with the largest mean be selected with probability at least 1 - a1 whenever its
mean, p[k], exceeds both the standard and the k - 1 other means by at least 6.

Presented below is a procedure due to Bechhofer and Turnbull (1978) for selecting
the best system relative to a given standard when the responses are normal with common
unknown variance a and the systems are simulated independently. It requires that an
initial sample of no 2 2 observations be taken from each system to estimate a 2 in the
first stage; an initial sample size of at least no = 10 is recommended.

8.3 PROBLEMS AND SOLUTIONS 293

Procedure BT

1. For the given (k, kn) and specified (6, an, a ,) , fix a number of observations no 2 2
to be taken in stage 1 .

2. Choose constants (g, h) from Table 8.5 for 1 - a o = 1 - a1 = I - a = 0.90 or 0.95
(or Bechhofer and Turnbull, 1978) corresponding to the k, no, 1 - an, and 1 - a!
of interest.

3. In stage 1 , take a random sample of no observations YiJ (j = 1, 2, . . . , no) from
the k strategies. Calculate the first-stage sample means,

for i = 1, 2, . . . , k, and the unbiased pooled estimate of a ',

4. In stage 2, take a random sample of N - no additional observations from each of
the strategies, where

and r.1 means to round up.
5. Calculate the overall sample means

f o r i = 1 , 2 , . . . , k.
-

6. If the largest sample mean YLkl > + h6/g, select the strategy that yielded it as
the one associated with p,kl; otherwise, select no strategy and retain the standard
as best.

Notice that in step 4 it is equally valid to generate the N observations by restarting
the simulation of each system from the beginning, thereby regenerating the initial no
observations. In some simulation languages this approach is easier than restarting the
simulation from the end of the first stage.

If a smaller performance measure is better, BT changes only in the final step, which
becomes

-

6. If the smallest sample mean Yr I l < PO - h6/g, select the strategy that yielded it as
the one associated with p[ll; otherwise, select no strategy and retain the standard
as best.

294 COMPARING SYSTEMS VIA SIMULATION

TABLE 8.5 Values of g (Top Entries) and h (Bottom Entries) for Procedure BT for
Comparing Normal Treatments with a Standard with 1 - a = 1 - (YO = 1 - a1

Numerical Example. Suppose that there are k = 3 investment strategies to compare
to a zero-coupon bond that has a fixed return of po = $25,000. The investor requires
that to merit the riskier investment, the best of the alternatives have at least a 6 = $500
greater expected return than the bond. The investor wants to make the correct selection
with probability at least 0.95.

An initial simulation of no = 10 replications is executed for each investment strategy
(excluding the standard, whose expected return is known), giving a pooled sample vari-
ance estimate of s2 = (827)'. From Table 8.5 with 1 - cq = 1 - a1 = 0.95, the critical
values are g = 3.961 and h = 2.230. Therefore, a total of

{ [(3'961)2(827)2 I} = max(10, r42.91) = 43 N = max 10,
5002

replications is needed for each of the k = 3 investment strategies, which can be obtained
by restarting the simulations from the beginning, or by simulating 43 - 10 = 33 addi-
tional replications of each alternative. After obtaining these data, the investment with
the largest sample mean return, YL3] , will be selected if

If this inequality is not satisfied, the investor will stay with the zero-coupon bond.

8.3 PROBLEMS AND SOLUTIONS 295

8.3.4 Comparisons with a Default

Example 4 A manufacturing company will replace an existing storage-and-retrieval
system if one can be found that is superior to the system currently in place. Five vendors
have proposed hardware-software systems, and simulation models have been developed
for each. Systems will be evaluated in terms of their retrieval times, but the system
ultimately chosen might not be the one with the smallest retrieval time because of dif-
ferences in cost, ease of installation, and so on.

If the expected retrieval time is the performance measure of interest, the goal of the
simulation study is to determine which designs are better than the system currently in
place, which is called the default (or control). Data on the performance of the default
system may be obtained either from the system itself or from a simulation model of the
system.

Notice that this problem of comparison with a default differs somewhat from that of
comparison with a standard. In comparison with a default, the contending systems must
compete against themselves as well as the (stochastic) system currently being used; in
comparison with a standard, the contending systems compete against themselves and
must also better a $xed hurdle.

Multiple Comparisons Approach. Let pi denote the expected retrieval time for
system i, where i = 0 corresponds to the default system, and i = 1,2, . . . , k - l correspond
to k 1 competing systems (for a total of k stochastic systems). A fundamental principle
of multiple comparisons is to make only the comparisons that are necessary for the
decision at hand, because the fewer confidence statements that are required to be true
simultaneously, the sharper the inference. Therefore, when comparing to a default, it
is better to find simultaneous confidence intervals for pi - po for i = 1, 2, . . . , k - 1 ,
rather than p; - p, for all i f 1. Such comparisons are called multiple comparisons
with a control (MCC). Further, if differences in a speciJied direction are of interest-in
the example only systems with smaller expected retrieval time than the default are of
interest-one-sided confidence intervals should be formed.

Suppose that the data are acquired independently from each system (a necessity if
data are collected from the default system itself) to obtain IID outputs Yil, YI2, . . . ,
Y;,, from system i. Let

be the sample variance from system i. MCC procedures are well known for the case
when the variances across systems are equal and the data are normal (see, e.g., Hochberg
and Tamhane, 1987; Miller 1981). Presented here is a simple procedure due to Tamhane
(1977) that is valid when variances may not be equal.

The simultaneous, upper one-sided confidence intervals are

296 COMPARING SYSTEMS VIA SIMULATION

for all i Z 0, where t 1 - p, ,, is the 1 - (3 = (1 - a)''(k - quantile of the t-distribution with
v degrees of freedom. When the output data are normally distributed, these intervals are
guaranteed to have coverage at least 1 - a regardless of the system variances. If the
upper bound for pi - po is less than or equal to 0, one can conclude that system i has
lower expected retrieval time than the default.

Numerical Example. Suppose that the daily average storage-and-retrieval time is
obtained from 10 simulated days (replications) of each of the five proposed systems,
each simulated independently. The corresponding data for the system currently in place
are available for 40 days. Summary statistics are as follows, with storage-and-retrieval
times in minutes. System 0 corresponds to the default.

When a = 0.10 and k = 6, 1 - f l = (1 - 0.1)'15 = 0.98, giving to.98,9 = 2.398 and t0,98,~9
= 2.125. Based on these results,

establishing that proposed system 3 has an expected storage-and-retrieval time that is
at least 0.5 minute shorter than that of the system currently in place. Similarly,

which shows that proposed system 4 may not be better than the default. Both of these
statements, together with analogous confidence intervals for p1 -PO, p2 -po and p5 -PO,
are correct with overall confidence level 1 - a = 0.9.

Selection Procedure. Here the goal is to select the best storage-and-retrieval system
only if it is better than the current system; if no alternative system is better than the
default, continue with the default. (Recall that in this example, smaller expected retrieval
time is better.) More precisely, the following probability requirement should be satisfied:
Denote the expected storage-and-retrieval time of the default by po and the ordered
means of the competitors by p[11 I pp1 I . . . I p[k- 11. For constants (6, ao, a l) with
0 < 6 < -, 2-k < 1 - a 0 < 1, and (1 - 2-k)/k < 1 - a1 < 1, specified prior to the start
of experimentation, the probability requirement must guarantee that

P{select the default} 2 1 - a o whenever p [~] 2 po (7)

and

8.3 PROBLEMS AND SOLUTIONS 297

TABLE 8.6 Sample Sizes n to Implement Procedure P for a. = a l = 0.05

k

P(se1ect best alternative} 2 1 - a1 whenever ~ " . I I] I min{po, pp1) - 6 (8)

Equation (7) requires that the default be selected as best with probability at least 1 - a,)
whenever po is smaller than all of the means of the alternatives; (8) requires that the
alternative system with the smallest mean be selected with probability at least 1 - a l
whenever its mean, p111, is less than both the default and the k - 2 other means by at
least 6.

The following single-stage procedure was proposed by Paulson (1952) for the case
in which a 2 is known. In practice this means that a pilot experiment must be run to
estimate a', after which it is treated as known.

Procedure P

1. For the k given and (6, a", a !) specified, let h = T ~ ! " _ O) , , be determined from the m

row of Table 8.2 for cq = 0.05 [for other values of an, see Table A.1 of Bechhofer
et al. (1995)l. Further, let n be the sample size from Table 8.6 for an = a1 = 0.05.

2. Take a random sample of n observations Y I I , Y ,2 , . . . , Yln in a single stage from
each system, including the default, 0.

3. Calculate the k sample means

-
for i = 0, 1, 2, . . . , k - 1. Let Y l l l = min{YI, . . . , Y k - 1] denote the smallest
(nondefault) sample mean.

4. If Ylll < Yo - ha*, select the system associated with Yell; otherwise, select
the default.

Notice that if larger performance is better, the only change in procedure P occurs in
step 4, which becomes

298 COMPARING SYSTEMS VIA SIMULATION

- -
4. Let YLk - 11 =-max{ Y . . . , Yk - 1] denote the largest (nondefault) sample mean.

If YLk 11 > Yo + ha*, select the system associated with Y [k - 11; otherwise,
select the default.

Numerical Example. Continuing the example above, suppose that the data from the
previous experiment are used to derive a pooled estimate of a* = 3.15, which will be
treated as the known variance from here on. If a difference of less than 1 minute in
storage-and-retrieval time means that it is not worth replacing the current system, 6 =

1 and the ratio 610 = 1 / a = 0.56. If a confidence level at least 1 - a 0 = 1 - a 1 =
(0.05) 0.95 is required for the decision, h = T 6 - I , m = 2.23 (from Table 8.2) and a sample of

size n = 98 must be taken from each system, according to the k = 6 column of Table
8.6 (after interpolation). After obtaining n replications of each system, including the
default, the alternative with the smallest average storage-and-retrieval time is selected
over the current system only if

8.3.5 Estimating Functional Relationships

Example 5 A number of factors may affect the performance of the storage-and-
retrieval system described in Section 8.3.4, including the number of retrieval devices,
the configuration of the storage area, and the logic that determines which items are
stored or retrieved next. A simulation study is performed to determine the impact of
these and other factors on performance as a first step toward choosing a configuration.

In this example the "systems" are defined by different specifications for a single
physical system. Questions that naturally arise include: Which factors have a significant
impact and are therefore worthy of further study? Which combination of the factor
settings gives the best performance, and how much better is it than other settings? And
how sensitive is system performance to a particular factor? Rather than treating the
factor settings as defining distinct, unrelated systems, it is statistically more efficient to
exploit a functional relationship among them by fitting a model.

The relationship that is most often assumed is the general linear model (GLM)

where Y is a k x 1 vector of outputs across k design points (systems), X is a k x
p known design matrix of independent variables that defines the alternative systems,
p is a p x 1 vector of unknown parameters that captures the relationships among the
systems, and E is a k x I vector of mean-zero random errors. A model such as (9) is
called a metamodel of the simulation. Fitting the model means estimating the value of
p based on simulation output data. After fitting the model, certain comparisons among
the elements of p may be of interest, as in Example 5, where there may be interest in
comparing the impact of various factors, or comparing mean performance at different
settings of the factors.

Suppose that n replications are made at each design point. Let Yi = xy= Yi j /n be
the sample mean at design point i, and let

8.3 PROBLEMS AND SOLUTIONS 299

be the vector of sample means across all k design points. Then as long as the same
number of replications is made at each design point, an estimator of p is the ordinary-
least-squares (OLS) estimator

where X' indicates the transpose of a matrix X.
The OLS point estimator is appropriate whether or not CRN is employed, but the

associated statistical analysis is affected by CRN. Many procedures exist for analysis
of a GLM under CRN, but they are complex and depend on a host of conditions. A
straightforward procedure proposed by Kleijnen (1 988) is presented here. The primary
assumption behind Kleijnen's method is that the number of replications at each design
point, n, is reasonably large, say n 2 25. This section assumes that the reader is familiar
with standard analysis techniques for the GLM when the design points are simulated
independently (see Chapter 6).

Let xy be the k x k matrix with i,lth element s:, for i = I, and C;,, for i # 1, where

is the sample variance of the outputs at design point i, and C,/ is the sample covari3nce
between the outputs from design points i and I [see equation (I)] . In other words, x y is
an estimator of the variance-covariance matrix of Y based on n replications. Kleijnen
proposes estimating the variance-covariance matrix of P by

Inference is based on the elements of xi. In particular, an approximate (1 - a)100%
confidence interval for the mth element of P, P,, is

where Gm is the square root of the mth diagonal element of xi.
Numerical Example. The model Y = Po + Pix + E is used to represent the relationship
between the average time in system Y and release rate x in the simulation of a manu-
facturing facility. At each of k = 3 release rates, x = 2, 5, 8, the experimenter makes
n = 3 replications, using CRN across systems on corresponding replications. With P =
(Po, PI)', the design matrix is

300 COMPARING SYSTEMS VIA SIMULATION

x = [i i]
which implies that

3 15
(xfx)- ' = [15 93] - l = [1.722 -0.278

-0.278 0.056

The output data (Y i j) obtained from the simulation are

I

Replication, j

Design Point, i 1 2 3

implying that Y = (8.667, 10.333, 12.333)'. Therefore, the estimated coefficients are

Inference on these coefficients requires the estimated variancexovariance matrix of Y,
which is

For example, 2.333 is the sample variance of { lO,7,9), the simulation outputs when x
= 2; and 3.667 is the covariance between the simulation outputs when x = 2 and x = 8.
Notice that all of the estimated covariances are positive, which is the desired effect of
CRN.

Applying (10) yields

Thus an approximate 95% confidence interval for PI , the change in expected average
system time per unit change in release rate, is 0.611 + (4.303)(0.012), or 0.61 1 f 0.052.
If CRN had been ignored in the analysis and a standard least-squares computation for
independent simulations had been used, the standard error $1 = 0.012 would become

= 0.263, which is 20 times larger and would make it impossible even to be sure if
Dl is positive.

8.4 CASE STUDY: AIRLINE-RESERVATION SYSTEM 301

CAUTION: This example is for illustrative purposes. Kleijnen recpmmends n 2 25
replications at each design point for validity of inference based on Xi.

8.4 CASE STUDY: AIRLINE-RESERVATION SYSTEM

The purpose of this section is to illustrate the implementation issues involved in a real-
istic comparison problem and to serve as an example of good practice. This case study
was first described in Goldsman et al. (1991). The goal is to evaluate k = 4 different
airline-reservation systems. The single measure of performance is the expected time-
to-failure, E[TTF]-the larger the better. The system works if either of two computers
works. Computer failures are rare, repair times are fast, and the resulting E[TTF] is
large. The four systems arise from variations in parameters affecting the time-to-failure
and time-to-repair distributions. From experience it is known that the E[TTF] values
are roughly 100,000 minutes (about 70 days) for all four systems. The end users are
indifferent to expected differences of less than 3000 minutes (about 2 days).

The large E[TTF] values, the highly variable nature of rare failures, the similarity of
the systems, and (as it turns out) the relatively small indifference zone of 3000 minutes
yield a problem with reasonably large computational costs. Although the similarity of
the systems suggests the use of common random numbers, for the purpose of this case
study the systems are simulated independently.

8.4.1 Method

Recall that the general goal behind R&S methods is to select the best system from
among k competitors, k = 4 airline-reservation systems in this case. Best means the
system having the largest underlying E[TTF]. Denote the E[TTF] arising from system
i by p,, i = 1, 2, . . . , k , and the associated ordered pi's by ~ [I I 5 p[21 5 . . . 5 plkp The
pi's, ~ [~] ' s , and their pairings are completely unknown. Since larger E[TTF] is preferred,
the mean difference between the two best svstems in the airline-reservation e x a m ~ l e is
p [k] -p[k 11. The smaller this difference is, the greater the amount of sampling that will
be required to differentiate between the two best systems. Of course, if prkl - p l k 1 1 is
very small, say less than 6, for all practical purposes it would not matter which of the
two associated systems is chosen as best. In other words, 6 is the smallest difference
"worth detecting." In the airline-reservation example, 6 = 3000 minutes.

A R&S procedure assures that the probability of making a correct selection (CS) of
the best system is at least a certain high value, 1 - a. The greater the value of 1 - a,
the greater the number of observations that will be required. A value of 1 - a = 0.90
is used in this study.

The two-stage procedure Rinott + MCB in Section 8.3.2 is appropriate for the airline-
reservation problem. The procedure assumes that system i produces independent and
identically distributed (IID) normal (p,, a:) output, where p, and a: are unknown, i =

1, 2, . . . , k, and where the k systems are independent. If p[kl - p l k - 11 > 6, the procedure
guarantees that P { C S] 2 1 - a.

The procedure runs as follows. In the first stage of sampling, take a random sample
of no observations from each of the k systems, using different random number streams
for each system to ensure independence. To aid the assumption of normality, and to
aggregate what turns out to be a very large number of replications, the observations
from system i that are used in the analysis are batch means, Yil , Yi2 , . . . , as defined in

302 COMPARING SYSTEMS VIA SIMULATION

Section 8.2.4. In other words, each of the basic data points Yij is actually an average
of the TTF values observed across a batch of replications.

Calculate the first-stage sample means,

and sample variances

for i = 1 , 2, . . . , k. The sample variances are used to determine the number of observa-
tions that must be taken in the second stage of sampling; the larger a sample variance,
the more observations must be taken in the second stage from the associated system.
Now set N, = m a ~ { n ~ , r (h ~ ~ / 6) ~ 1 } , where r.1 means to round the number up, and h is a
constant from Table 8.3. During the second stage of sampling, take Ni - no additional
observations from the ith system, i = 1 , 2 , . . . , k, or regenerate all Ni observations
starting from the beginning. - -

Finally, calculate the grand_means Y;. = ~ 2 , Yij/Ni, i = 1, 2, . . . , k, and select
the system having the largest Y;. (i.e., the largest observed average TTF) as best. Also,
bound the difference between the E[TTF] of each system and the largest E[TTF] of the
others by forming MCB confidence intervals for pi - max, + ; p,, i = 1, 2, . . . , k , as
given in equation (4).

8.4.2 Assumptions

The Rinott + MCB procedure requires that the observations taken within a particular
system be IID and normally distributed. These assumptions are evaluated in this sub-
section.

-
The outputs, Y;l, Yi2, . . . , YiN,, from the ith system are assumed to be IID with
expectation p;. This is true since the replications are independent of each other.
The outputs from across all systems are assumed to be independent (i.e., if i Z i',
all Yij's are independent of all Yirj's, j = 1, 2, . . .). This requirement is also satisfied
since different random number streams are chosen for each system's simulation.
The estimators, Tij, for i = 1, 2, . . . , k and j = 1 , 2 , . . . , N;, are assumed to be
normally distributed. If the number of replications in a batch is large enough, say
at least 20, the central limit theorem yields approximate normality for the batch
means estimators.
There are no assumptions concerning the variances of the outputs.

8.4.3 Experiment

The goal is to find the system having the largest E[TTF]. To achieve the goal, the fol-
lowing sequence of experiments was performed:

8.4 CASE STUDY: AIRLINE-RESERVATION SYSTEM 303

TABLE 8.7 Pilot Experiment (n, = 20 Batch Means)

1. A debugging experiment to check the computer code and assess execution speed.
2. A pilot experiment to study characteristics of the data and aid in planning the

production run.
3. A production run to produce the final results.

All experiments and analyses were performed on various SPARCstations.

Debugging Experiment. Five batches, each consisting of five replications of system
1, produced a sample mean TTF of 129,182 minutes and a sample standard deviation
of 69,417.2 minutes. Each replication took about 24 seconds of real time on a (nonded-
icated) SPARCstation 1. Since the sample variance was so large, a somewhat larger
pilot study was conducted; this would also serve as the first stage of the Rinott + MCB
procedure. The pilot study would take 20 batch means, each consisting of 20 replica-
tions, for each of the k = 4 systems. It was anticipated that the pilot study would use
at most 10 hours of real time.

Pilot Experiment. By dividing the pilot study among various SPARCstations it was
completed in less than 3 hours. The results are given in Table 8.7. To check the nor-
mality acsumption, data from the pilot study were used to conduct Shapiro-Wilk tests
for normality on the 20 batch means from each system (see, e.g., Bratley et al., 1987,
pp. 303-305); the tests passed at all reasonable levels.

For the case k = 4 and 1 - a = 0.90, the critical constant from Table 8.3 is h = 2.720.
This enabled calculation of the N,-values for the second stage of sampling. Since the
pilot study was also intended to be used as the first stage of Rinott + MCB sampling,
the resulting N,-values are displayed in the table. For example, for system 2, N2 - no
= 465 additional batch means are needed in stage 2, each consisting of 20 replications.
The total number of individual replications over all four systems was about 40,000.
A worst-case scenario of 24 seconds of real time per replication (as in the debugging
experiment) implied that the production run might take 250 hours.

Final Results. By dividing the production runs among the various SPARCstations,
they were completed in less than 2 days. The results are given in Table 8.8. These

TABLE 8.8 R&S Production Run

-

Y;. 110,816.5 106,411.8 99,093.1 86,568.9

304 COMPARING SYSTEMS VIA SIMULATION

TABLE 8.9 lko-Stage Rinott + MCB Intervals for the Airline-
Reservation Problem

MCB MCB

-
Lower

- - - - Upper
I Yi. Limit Yi. - maxi+ i yr . Limit

results clearly establish system 1 as the winner. The formal statement is that with 90%
confidence the correct selection has been made (with the proviso that the true difference
between the best and second best E[TTF] values is at least 6 = 3000 minutes).

The associated MCB confidence intervals, shown in Table 8.9, bound the difference
between each system and the best of the others. With a 90% confidence level these inter-
vals exclude systems 2 to 4 from being the best and clearly identify system 1 as being the
best. This statement is independent of the true difference between the best and second best.
In addition, the upper bound on the MCB interval for p1 - maxi+ I pi indicates that the
E[TTF] value for system 1 may be as much as 7405 minutes (approximately 5 days) longer
than the second-best reservation system, while the lower bound for p4 - max, + 4 pl indi-
cates that the E[TTF] value for system 4 may be as much as 27,248 minutes (approximately
19 days) shorter than the E[TTF] value of the best reservation system.

8.4.4 Discussion

There are a number of reasons to use R&S procedures when seeking the best of a number
of competing systems. Procedures such as Rinott's guarantee the user of a correct selection
with high probability when the true difference between the best and second-best system is
at least 6; even when the true difference is less than 6, Rinott's procedure ensures selec-
tion with high probability of a "good" system (i.e., one that is within 6 of the best). The
associated MCB intervals bound the difference. These guarantees compare favorably to
the simple "yes" or "no" answer that a classical hypothesis test is likely to provide. R&S
procedures are also straightforward, as our case study demonstrated; little more than one
tabled constant look-up and a sample-mean calculation is required.

One drawback to the Rinott + MCB procedure is that it tends to be conservative; that
is, it sometimes takes more observations than necessary in the presence of "favorable"
system mean configurations (i.e., configurations in which the largest mean and the others
differ by more than 6). This drawback arises from the fact that Rinott + MCB guarantees
P { C S] 2 1 - a for all configurations of the system means for which the best is at least
6 better than the second best.

ACKNOWLEDGMENTS

Portions of this chapter were published previously in Goldsman et al. (1991), Nelson
(1 992), and Goldsman and Nelson (1 994). Our work was supported by National Science
Foundation Grants DMI-9622065 and DMI-9622269.

REFERENCES 305

REFERENCES

Bechhofer, R. E., and D. Goldsman (1986). Truncation of the Bechhofer-Kiefer-Sobel sequential
procedure for selecting the multinomial event which has the largest probability, 11: extended
tables and an improved procedure, Communications in Statistics-Simulation and Computation
B, Vol. 15, pp. 829-85 1.

Bechhofer, R. E., and B. W. Turnbull (1978). Two (k+ 1)-decision selection procedures for compar-
ing k normal means with a specified standard, Journal of the American Statistical Association,
Vol. 73, pp. 385-392.

Bechhofer, R. E., S. Elmaghraby, and N. Morse (1959). A single-sample multiple decision pro-
cedure for selecting the multinomial event which has the highest probability, Annals of Math-
ematical Statistics, Vol. 30, pp. 102-1 19.

Bechhofer, R. E., T. J. Santner, and D. Goldsman (1995). Design and Analysis for Statistical
Selection, Screening and Multiple Comparisons, Wiley, New York.

Bratley, P., B. L. Fox, and L. E. Schrage (1987). A Guide to Simulation, 2nd ed., Springer-Verlag,
New York.

Dunnett, C. W. (1 989). Multivariate normal probability integrals with product correlation structure,
Applied Statistics, Vol. 38, pp. 564-579. Correction: Vol. 42, p. 709.

Gibbons, J. D., I. Olkin, and M. Sobel (1977). Selecting and Ordering Populations: A New Sta-
tistical Methodology, Wiley, New York.

Goldsman, D., and B. L. Nelson (1994). Ranking, selection and multiple comparisons in computer
simulation, in Proceedings of the 1994 Winter Simulation Conference, J. D. Tew, S. Manivan-
nan, D. A. Sadowski, and A. F. Seila, eds., IEEE, Piscataway, N.J., pp. 192-199.

Goldsman, D., B. L. Nelson, and B. Schmeiser (1991). Methods for selecting the best system,
in Proceedings of the 1991 Winter Simulation Conference, B. L. Nelson, W. D. Kelton, and
G. M. Clark, eds., IEEE, Piscataway, N.J., pp. 177-186.

Gupta, S. S. (1956). On a decision rule for a problem in ranking means, Ph.D. dissertation (Mimeo.
Ser. 150), Institute of Statistics, University of North Carolina, Chapel Hill, N.C.

Gupta, S. S. (1965). On some multiple decision (selection and ranking) rules, Technometrics, Vol.
7, pp. 225-245.

Gupta, S. S., and D.-Y. Huang (1976). Subset selection procedures for the means and variances
of normal populations: unequal sample sizes case, Sankhya B, Vol. 38, pp. 112-128.

Hayter, A. J. (1984). A proof of the conjecture that the Tukey-Kramer multiple comparisons
procedure is conservative, Annals of Statistics, Vol. 12, pp. 61-75.

Hochberg, Y., and A. C. Tamhane (1987). Multiple Comparison Procerlures, Wiley, New York.

Hsu, J. C. (1984). Constrained simultaneous confidence intervals for multiple comparisons with
the best, Annals of Statistics, Vol. 12, pp. 1 136-1 144.

Kleijnen, J. P. C. (1988). Analyzing simulation experiments with common random numbers, Man-
agement Science, Vol. 34, pp. 65-74.

Law, A. M., and W. D. Kelton (1991). Simulation Modeling and Analysis, 2nd ed., McGraw-Hill,
New York.

Matejcik, F. J., and B. L. Nelson (1995). Two-stage multiple comparisons with the best for com-
puter simulation, operations Research, Vol. 43, pp. 633440.

Miller, R. G. (1981). Simu1taneou.s Statistical Inference, 2nd ed., Springer-Verlag, New York.

Nelson, B. L. (1992). Designing efficient simulation experiments, in Proceedings of the 1992
Winter Simulation Conference, J . J . Swain, D. Goldsman, R. C. Crain, and J. R. Wilson, eds.,
IEEE, Piscataway, N.J., pp. 126-1 32.

Nelson, B. L., and F. J. Matejcik (1995). Using common random numbers for indifference-

306 COMPARING SYSTEMS VIA SIMULATION

zone selection and multiple comparisons in simulation, Management Science, Vol. 41, pp.
1935-1945.

Paulson, E. (1952). On the comparison of several experimental categories with a control, Annals
of Mathematical Statistics, Vol. 23, pp. 239-246.

Rinott, Y. (1978). On two-stage selection procedures and related probability-inequalities, Comrnu-
nicarions in Statistics-Theory and Methods A, Vol. 7, pp. 799-81 1.

Tamhane, A. C. (1977). Multiple comparisons in model I: One-way ANOVA with unequal vari-
ances, Communications in Statistics-Theory and Methods A, Vol. 6, pp. 15-32.

Wilcox, R. R. (1984). A table for Rinott's selection procedure, Journal of Quality Technology,
Vol. 16, pp. 97-100.

CHAPTER 9

Simulation Optimization

SIGRUN ANDRADOTTIR

Georgia Institute of Technology

9.1 INTRODUCTION

In this chapter we consider how simulation can be used to design a system to yield
optimal expected performance. More specifically, we assume that the performance of the
system of interest depends on the values of the (input) parameters chosen for the system,
and that we want to determine the optimal values of these parameters (possibly subject
to some constraints). We are interested in the situation when the underlying system
is complex enough that it is necessary to use simulation to evaluate its performance
for each set of input parameter values. The technique used to optimize the expected
system performance therefore needs to be robust enough to converge (i.e., locate an
optimal solution) despite the noise in the performance evaluations. In addition, it would
be desirable for the technique used to be reasonably efficient. However, this is in general
difficult to accomplish in our setting because using simulation to evaluate the system
performance for one set of parameter values with reasonable precision is often quite
computer intensive, and to locate the optimal solution we obviously need to evaluate
system performance for several different sets of parameter values.

We present an introduction to simulation optimization techniques and results. We
consider both the case when the set of feasible input parameter values is continuous,
as well as the case when this set is discrete. In the former case we focus on gradient-
based techniques, whereas in the latter case we focus on random search techniques and
other recent developments. The aim is to provide an introduction to major develop-
ments in the field of simulation optimization rather than a comprehensive survey of
the current status and history of the field. The emphasis is on techniques that are rela-
tively easy to apply and do not require extensive understanding of the structure of the
stochastic system being optimized. Also, we do not provide a detailed discussion of
when the methods presented are guaranteed to work, so a reader intending to apply the
methods discussed should check the references for this information. Additional material
on simulation optimization can be found in Chapters 6 and 8 of this book.. Chapter 6

Handbook of Sirnulution, Edited by Jerry Banks.
ISBN 0-471-13403-1 O 1998 John Wiley & Sons, Inc.

308 SIMULATION OPTIMIZATION

covers experimental design, including response surface methodology, that can be used
for continuous parameter simulation optimization. Chapter 8 is concerned with ranking
and selection and multiple comparison procedures that can be used for discrete simu-
lation optimization when the number of feasible alternatives is small (say, I 20). For
additional material on simulation optimization, the reader is referred to several recent
review papers, including Glynn (1986a, 1989), Meketon (1987), Jacobson and Schruben
(1989), Safizadeh (l990), Azadivar (1992), Gaivoronski (l992), Fu (1994), and Kleijnen
(1 9 9 9 , and references therein.

The chapter is organized as follows: In Section 9.2, gradient-based techniques for solv-
ing simulation optimization problems with continuous decision parameters are discussed.
First several different methods for using simulation to estimate the gradient of the expected
system performance with respect to the input parameter values are presented. Then two
classes of optimization techniques (stochastic approximation and sample path optimiza-
tion) are discussed. In Section 9.3, recent developments aimed at solving simulation opti-
mization problems with discrete decision parameters (including random search methods)
are presented. Finally, some concluding remarks are presented in Section 9.4, and a large
number of references on simulation optimization are provided.

9.2 CONTINUOUS DECISION PARAMETERS

In this section we discuss gradient-based techniques for solving continuous parameter sim-
ulation optimization problems. More specifically, we discuss two classes of methods that
take very different approaches to solving such optimization problems. The first class of
methods, stochastic approximation, is designed to address the randomness arising from
using simulation to evaluate the system performance and its derivatives by moving con-
servatively through the feasible region, so that even large errors should not put these algo-
rithms too far off course, and they should eventually converge to the optimal solution
despite the noise. On the other hand, the second class of methods, sample path optimiza-
tion, involves immediately converting the underlying (stochastic) simulation optimization
problem to a deterministic optimization problem whose solution can be expected to be
close to the solution of the original stochastic optimization problem. Then a standard deter-
ministic (mathematical programming) optimization technique is used to solve the approxi-
mating deterministic optimization problem. Stochastic approximation is discussed in Sec-
tion 9.2.2, and sample path optimization is discussed in Section 9.2.3.

Consider the optimization problem

min f (0)
8~ 8

where 0 is the (possibly vector-valued) decision parameter consisting of the input param-
eters of the simulation, the (real-valued) objective function f indicates how the expected
system performance depends on the input parameter 0 (i.e., f (0) is the expected sys-
tem performance when the input parameter values are given by 0), the feasible region
8 c 'Rd is the set of possible values of the in ut parameters, the positive integer d is dp. the dimension of the feasible region 8, and 11% is the set of d-dimensional real vectors.
We assume that the feasible region 8 is continuous and that the objective function f
cannot be evaluated analytically, but instead, its values are estimated using simulation.

Both stochastic approximation and sample path optimization methods require using
simulation to estimate the gradient (and possibly also higher derivatives) of the expected

9.2 CONTINUOUS DECISION PARAMETERS 309

performance of the underlying stochastic system. [The gradient Vf(0) of the perfor-
mance measure f (6) is the vector consisting of the elements aj'(6)/aei for i = 1, . . . ,
d, where I9 = (191, . . . , ed) and df(%)/a19; is the (partial) derivative off (0) with respect
to O i for i = 1, . . . , d. In the one-dimensional case (when d : I) , the gradient reduces
to the derivative f '(%).I Gradient estimation using simulation is a challenging problem
that has attracted a fair amount of attention in recent years. The underlying difficulty
is that if it is necessary to use simulation to evaluate the system performance, then an
analytical expression for the system performance obviously does not exist and hence
calculus cannot be used to obtain the required derivatives. An overview of techniques
for using simulation to obtain derivative estimates is given in Section 9.2.1.

Throughout this section we use an example that has become quite standard in the
literature on continuous parameter simulation optimization. This example and variants
thereof have been studied by Suri and Leung (1989), L'Ecuyer et al. (1994), L'Ecuyer
and Glynn (1994), Fu (1994), Healy and Xu (1994), and Andrad6ttir (1995a, 1996a).
The example is described below.

Example 1 Consider the problem of determining the optimal level of service in a
GI/G/I queueing system; this is a single-server queue in which the interarrival times
between successive customers are independent and identically distributed (with an arbi-
trary distribution) and the service times of the successive customers are also indepen-
dent and identically distributed (with an arbitrary distribution). Assume that the costs
arise from two sources: There is a cost associated with providing the service (this cost
increases as the level of service becomes better) and a cost associated with the average
sojourn time of a customer in the queue (this cost estimates customer satisfaction at
the service level 0; it decreases as the level of service is improved). More specifically,
if 0 is the mean service time per customer in a GI/G/I queueing system with mean
interarrival time 1/h, and if w(0) is the average steady-state system time (sojourn time)
per customer in this queueing system, then we want to solve an optimization problem
of the form given in equation (1) with

a
0 = @, e] and ,f(0) = - + pw(I9) for all 0 E (3

0

(so that 0 is the closed interval from e to e). The mean interarrival time I/h and the
scalars a, /3 > 0 and e < e are assumed to be given. Moreover, to ensure that the queue
is stable for all 0 E 0, we require that 0 < e < e < l/h. Note that the term a/@
in the objective function f represents the cost of providing service at the level 0 and
that the term pw(I9) represents the cost associated with the customer satisfaction at the
service level 0. Therefore, the values of a and /3 represent management assessment of
the relative importance of keeping service and customer satisfaction costs down.

9.2.1 Gradient Estimation

In this section we review techniques for applying simulation to obtain estimates of
the gradient of the expected system performance with respect to the (continuous) input
parameters to the simulation. The emphasis is on using finite differences to obtain the
gradient estimates because we feel that this is the easiest approach to use. A brief review
of other, more advanced gradient estimation techniques is also given.

31 0 SIMULATION OPTIMIZATION

Finite Differences. The most obvious way of using simulation to estimate the deriva-
tive of the expected system performance involves approximating the derivative using
finite differences. In the one-dimensional case when the feasible region 8 is a subset
of IR (so that d = I) , the derivative off is defined as follows:

f '(0) = lim f (0 + c) -f(@
c - 0 c

for all 0 E R. Therefore, if c is small, it is reasonable to expect that

Therefore, one can estimate the derivative f '(0) by conducting one simulation with input
parameter 0 + c and obtain an estimate f (0 ̂ + c) off (0 + c), and a second simulation with
input parameter 0 and obtain an estimate f (0) off (0) and then use

as an estimate off '(0).
In the general case (when d 2 I), suppose that ei = (0, . . . , 0, 1, 0, . . . , 0) is the

ith coordinate vector (with one in the ith position and zeros everywhere else) for i = 1,
. . . , d. Then the value of the gradient g(0) = Vf (0) can be estimated by 2(0), where

and for i = 1, . . . , d ,

This is the finite-difference gradient estimator obtained using forward differences. If
central differences are used, then, for i = 1, . . . , d, gi(0) is instead defined as follows:

In both cases, the symbols j(0), j (0 + ce,), and j (0 - cei) denote estimates of f(0),
f(O + cei), and f(O - cei) obtained by conducting simulations at the input parameter
values 0, 0 + cei, and 0 - cei, respectively, for i = 1, . . . , d.

From the previous discussion it is clear that to use finite differences to estimate the
gradient of the expected system performance with respect to the input parameters, it is
necessary to conduct several simulations at different sets of input parameter values. In
particular, when forward differences are used, it is necessary to conduct simulations at
d + 1 sets of parameter values, namely 0 and 0 +cei, for i = 1, . . . , d. When central dif-
ferences are used, it is necessary to conduct simulations at 2d parameter values, namely

9.2 CONTINUOUS DECISION PARAMETERS 31 1

8 +ce; and 19 - cei, for i = 1, . . . , d. Thus, when d > 1, more computational effort is usu-
ally required to obtain gradient estimates using central differences than when forward
differences are used. On the other hand, estimators obtained using central differences
usually have superior statistical properties to those obtained using forward differences
(more details on this are provided below).

Gradient estimates obtained using finite differences are in general biased, even if the
simulation results used to obtain these estimates are unbiased. This is because of the
error involved in approximating the gradient using finite differences [see, e.g., equation
(3)] . Usually, the bias is smaller when central differences are used than when forward
differences are used.

Another difficulty in using finite differences for gradient estimation is that to reduce
the bias, it is necessary to let the scalar c be small, but when c is small, the estima-
tors obtained usually have a large variance. Therefore, it is necessary to balance the
desire for small bias against the desire for small variance. Several studies addressing
this problem have appeared recently (Glynn, 1989; Zazanis and Suri, 1993; L'Ecuyer
and Perron, 1994). These studies discuss how the scalar c should be selected to minimize
the asymptotic mean-squared error (the variance plus the squared bias). As expected,
these studies show that in general better results are obtained for central differences than
for forward differences.

One way of addressing the variance problem discussed in the preceding paragraph is
to use common random numbers (CRN) in the different simulations required to obtain
an estimate i (0) of the value of the gradient g(8) = Vf(6). Glasserman and Yao (1992)
present results showing when the use of common random numbers is guaranteed to
achieve variance reduction in this setting. More details on common random numbers
are given in Chapter 8.

In Example 1, let 8 E 8 and suppose that we want to estimate the derivative,f '(8)
using finite differences. This can be accomplished as follows: Select a small value of
c having the property that 0 + c E (0, I/h) (so that the queue is stable when the mean
service time per customer is 8 + c). Given a sequence of interarrival times {T;} and
service times {S;(8)] (so that T; is the interarrival time between customers j - 1 and j
and Sj(6) is the service time of customer j when the mean service time is O), let Wo(8)
= So(8) and for ; = 1, . . . , N, let

[for all j , Wj(8) is the system time of customer j when the mean service time per cus-
tomer is 01. We can now use i (6) to estimate the derivative f '(B), where

where W(6 + c) - xy , W;(6 + c)/N and W(8) = x:, WJ(8)/N. This is a forward dif-
ference estimator for f '(8); a central difference estimator can be obtained by replacing
Wj(8) by W,(6 - c) in the numerator of the second term on the right-hand side in equa-

31 2 SIMULATION OPTIMIZATION

tion (7) [assuming that 8 - c E (0, I/h)] and by replacing c by 2c in the denominator
of the second term on the right-hand side in equation (7). The estimator g(8) could be
improved through initial transient deletion; see Chapter 7 for details. As discussed pre-
viously, using common random numbers can be expected to improve the estimator g(8).
In this example, using common random numbers would involve conducting the simula-
tions at the different parameter values with the same sequence of interarrival times {T, J ,
and using the same stream of uniform random numbers to generate the needed service
time sequences . (If forward differences are used, the sequences (Sj(0) J and {Sj(O + c))
should be generated using the same stream of uniform random numbers; if central dif-
ferences are used, the sequences {Sj(8-c)} and {Sj(8+c)] should be generated using the
same stream of uniform random numbers.) For example, if the interarrival and service
times are exponentially distributed (so that the system under study is an M/M/I queue),
then two independent sequences { Uj] and { Vj J of independent and U[O, 11-distributed
(uniformly distributed on the interval [O,I]) random variables are needed. Then, for all
j, we can let Tj = - In(U,)/h, S,(8) = - In(Vj) x 0, Sj(8 + c) = - In(V,) x (8 + c), and
Sj(O - c) = - In(Vj) x (8 - c). (In this example it is possible to implement the com-
mon random numbers approach in such a way that each random number is used for
exactly the same purpose in all simulation runs. This is not always possible for more
complicated systems.)

To illustrate the behavior of finite-difference derivative estimators, we now present
simulation results for the derivative w'(8) of the steady-state system time per customer
in an M/M/1 queue [this involves using a = 0 and f l = 1 in equation (7)]. We let h =
1, 8 E {0.25,0.5,0.75), c = 0.01, and N = 10,000. We compare the estimators obtained
using forward and central differences with and without common random numbers. Note
that in this case it is known theoretically that we have w(8) = 8/(1 - 8) for all 8 E

(0, I), so that we can compare the simulation results obtained with the true value of the
derivative w'(8) = 1/(1-8)2 for all 8 E (0, I). The results obtained using 10 replications
of each approach with the same seeds are given in Tables 9.1 and 9.2. As expected, the
tables show that using common random numbers vastly improves the precision of the
resulting derivative estimator, and that the derivative estimates obtained using central
differences are less biased than the corresponding derivative estimates using finite differ-
ences.

Advanced Gradient Estimation Techniques. We reviewed above how finite dif-
ferences can be used for gradient estimation in simulation. This approach involves con-
ducting simulations at several different sets of input parameter values in order to esti-
mate the gradient. We now review briefly gradient estimation techniques that require
only a single simulation run to estimate the gradient. These techniques are perturbation
analysis, the likelihood ratio method, and frequency-domain experimentation. Perturba-
tion analysis and the likelihood ratio method both require only one simulation run at
one set of parameter values to obtain gradient estimates. On the other hand, frequency-
domain experimentation involves oscillating the values of the input parameters during
a single simulation run. For additional material on gradient estimation, the reader is
referred to Glynn (1989), L'Ecuyer (1991), Fu (1994), and Fu and Hu (1997), and ref-
erences therein.

As mentioned previously, the gradient estimation problem involves finding ways of
using simulation to estimate the value of the gradient g(8) = Vf(0) of the expected
system performance f(8) with respect to the input parameter 8. To illustrate the difficulty
of this problem, assume for simplicity that

9.2 CONTINUOUS DECISION PARAMETERS 313

TABLE 9.1 Simulation Estimates of the Derivative w'(@), for 8 E (0.25, 0.5, 0.751,
Obtained Using Forward Differences With or Without Common Random Numbers

Replication

I
2
3
4
5
6
7
8
9

10

Average
Variance

Without
CRN With CRN

lw(e + C) - W ~ (~) J / C
= 1.802

Without
CRN With CRN

1.330 1.864
2.401 1.812
2.350 1.724
0.419 1.760
1.649 1.832
1.191 1.835
2.105 1.719
1.894 1.790
1.93 1 1.835
1.524 1.773

1.679 1.794
0.359 2.454 x

f (0) = E (h (0 , X)) for all 0

lw(o + C) - M ? (O) I / C

= 4.082

Without
CRN With CRN

5.432 4.027
8.414 4.293
8.89 1 3.629

- 1.247 3.825
7.261 4.014

-0.600 4.280
8.700 3.797
4.842 4.308
2.987 4.223
2.439 3.936

4.7 12 4.033
13.997 5.694 x lo - *

where h is a known deterministic and differentiable function and X is a random variable.
For example, in the context of Example 1, X could be the average system time of the
first N arriving customers with the mean service time per customer being 0 , and h could
be defined as h (0 , X) = a / 0 + PX, yielding an objective function f (0) that strongly
resembles the one given in equation (2). Similarly, consider a highly reliable system of
d components and let O i denote the (known) probability that component i survives for
at least T units of time for i = I , . . . , d, where T > 0 is fixed. Moreover, let 0 = (0 1 , . . .
, Od), let a , (O i) be the cost of component i when its reliability is 0 ; for i = 1, . . . , d, let
X be the time until the system of d components fails for the first time, and let h (8 , X)
= xf=, a . (B i) + f l l lx.r where I lu,r equals I if X < T and zero otherwise. and
/3 > 0. Then the objective function f is of the form f (0) = c:_ I a , (0 ;) + P P { X < T 1,
corresponding to trying to keep the cost of the components down while at the same
time keeping the probability that the system functions for the desired T units of time
large.

Suppose first that the cumulative distribution function F of the random variable X
does not depend on the parameter 0 . Then standard probability theory yields that g (0) =

V f (0) = V E (h (0 , X)) = E (V h (0 , X) J under general conditions. Therefore, if independent
and identically distributed observations X I , . . . , X N from the distribution F can be
generated, we can use xE I V h (O , X l) / N to estimate the gradient g (0) . The problem is
that in a simulation application, the distributions of the random variables involved may
depend on the parameter 0 (this is the case in the two examples discussed at the end

31 4 SIMULATION OPTIMIZATION

TABLE 9.2 Simulation Estimates of the Derivative w' (0) , for 0 E 10.25, 0.5, 0.75),
Obtained Using Forward Differences With or Without Common Random Numbers

Without Without Without
Replication CRN With CRN CRN With CRN CRN With CRN

Average 1.715 1.771 4.137 3.951 14.696 15.539
Variance 0.257 2.246 x 5.824 5.566 x lo-' 225.423 3.298

of the preceding paragraph). In the example considered here [see equation (8)], this
corresponds to the random variable X having cumulative distribution function Fs (in
mathematical notation, X - Fs) that depends on the input parameter value 8 . Therefore,
the expectation in equation (8) is now with respect to the distribution Fo , and hence
depends on the decision parameter 8; that is, we have

f (8) = Ed (h(8,X)) for all 8 (9)

Suppose that the random variable X - Fs has density f s for all 8. Then we have

In this case it is clearly not possible to interchange the order of the gradient and the
expectation (as we did previously when the distribution of X did not depend on 8) since
the expectation depends on the parameter 8 . This explains why specialized techniques
are required for obtaining gradient estimates using simulation.

Perturbation analysis refers to a class of related gradient estimation techniques.
Infinitesimal perturbation analysis (IPA) is the best known variant. Perturbation analy-
sis addresses the difficulty discussed previously by transforming the original problem
in such a way that it can be reformulated as the problem of estimating the gradient of
an expected value involving a random variable whose distribution does not depend on
the parameter I9 [as in equation @)I. Then the standard approach discussed previously
(to interchange the order of the expected value and gradient) is used to obtain the gradi-

9.2 CONTINUOUS DECISION PARAMETERS 315

ent estimates. Expressions for the gradient of the random variable inside the expectation
are obtained by considering how small perturbations in the underlying random variables
generated in the simulation program affect the sample path of the stochastic system of
interest generated using these random variables. To illustrate, consider Example 1 . Sup-
pose that Si(0) is exponentially distributed with mean 0 for all j and 0 E 0. Then, as
discussed near the end of the subsection "Finite Differences" in Section 9.2.1, we can
let S,(B) = - In(Vj) x 8 for all j and 0 E 0, where {Vj] is a sequence of independent
U[O, I]-distributed random variables. Hence the sequences of underlying random vari-
ables are now {TI] and {V;], and their distributions do not depend on the parameter 0.
Note that when the service time Sj(0) is differentiated with respect to the parameter 0,
we get SS(0) = - In(V,) = Sj(0)/O for all j and 0 E 0. From equation (6) we then get
that Wh(0) = S;,(0) for all 8 E 0. The derivative of W1 (8) with respect to 0 depends on
whether customer 1 has to wait in queue before receiving service. Note that for all j , the
jth customer has to wait in queue if and only if WJ _ l (0) T, > 0. From equation (6), we
have that if Wo(0) - TI > 0 (so customer 1 has to wait before receiving service), then
W; (0) = SA(0) + S; (0); otherwise, W; (0) = S; (0). Proceeding in the same manner, we
see that the perturbations Si(0) accumulate within each busy cycle (i.e., periods when
the server is busy serving successive customers without interruption). In particular, if
customer j is the kth arriving customer in a busy cycle, then Wi(0) = x',=j-k+l SL(0).
The IPA estimate of the derivative g(0) = f '(0) can now be computed as follows:

While IPA is an intuitive approach for obtaining gradient estimates using simula-
tion, it is unfortunately easy to develop examples where IPA is not guaranteed to work
(because the interchange of the gradient and expectation is not valid). Several different
variants of perturbation analysis have been developed to address this problem. For more
material on IPA and other variants of perturbation analysis, the reader is referred to the
references given at the beginning of this section, as well as Suri (1989), Glasserman
(1 99 I), Ho and Cao (1 99 I) , and references therein.

Applying the likelihood ratio method to estimate the derivative of the function f
given in equations (9) and (10) involves differentiating in equation (10) directly, taking
into account that f 0 will also need be differentiated with respect to 0. Assuming that
we can exchange the order of integration and expectation, we have that

(note that all the derivatives in this expression are with respect to the parameter 0).
We now want to express the derivative f '(0) as an expectation that can be estimated
via simulation. The first integral in this expression equals Efl {hf (0 ,X)] and it is easy
to estimate through simulation (see below). The second integral in the expression is
a little trickier to estimate, as we first need to rewrite it as an expectation [note that
f ;(x) is usually not a density function]. It would be desirable if this expectation could
be with respect to the same probability distribution as the first integral so that only one
simulation is needed to estimate g(0) = f '(0). This can be accomplished as follows:

31 6 SlMULATlON OPTIMIZATION

[Note that we adopt the convention 0/0 = 1. It is easy to show that division by zero
will not occur in the equation above; i.e., if fe(x) = 0, then f i(x) = 0.1 We have shown
that under general conditions we have

Therefore, we can estimate g(0) as follows: Generate X I , . . . , XN independent observa-
tions from the distribution FB and use i (0) = C: I [hr(O, Xi) + h(0, Xi)f;(Xi)/fs(Xi)]/N
as our estimate.

To illustrate, consider the following extremely simple example. Suppose that f(0)
= Ee {X), where X has an exponential distribution with rate 0 > 0 [so that h(0,X) =

XI. We have that fe(x) = 0ed'" when x 2 0 and fe(x) = 0 when x < 0, so that f(0) =

~ 0 e - ~ ~ d x and

corresponding to equation (12) with h(0,X) = X, h'(0,X) = 0, and f ;(X)/fe(x) = 1/0-X.
For more material on the likelihood ratio gradient estimation technique (also called the
score function method), the reader is referred to Glynn (1990), Rubinstein and Shapiro
(1993), and Andrad6ttir (1996b), and references therein. For a discussion of how like-
lihood ratio derivative estimates can be obtained for Example 1, see, for example, Fu
(1994) and L'Ecuyer and Glynn (1994). [The likelihood ratio L(O,Bo,X) = fe(X)/fs,(X),
where O,Oo E 0, measures how likely the outcome X is to occur under the density f e
relative to how likely it is to occur under the density fe, When the likelihood ratio is
differentiated with respect to 0, we obtain L'(8,00,X) = f ;(X)/fs,(X). Evaluating the
derivative with 0" = 0 yields L'(0,0,X) = f i(X)/fe(X), the ratio found in equation (12).
This explains why the gradient estimation technique discussed in this and the preceding
paragraph is referred to as the likelihood ratio method.]

The frequency-domain approach for gradient estimation involves oscillating the value
of the (possibly vector-valued) input parameter in a sinusoidal fashion during a single
simulation run. This can be used to estimate the sensitivity of the performance measure
to the input parameter in a single simulation run, leading to estimates of the gradient of
the performance measure relative to the input parameter. In particular, if it is of interest
to estimate g(0) = Vf (O), where 0 = (0 I , . . . , Od), then the value of the input parameter
used at "time" (index) t is Oi(t) = Oi+ai sin(wit), for all i and t , where w = (wl , . . . , wd)
is the oscillation frequency and a = (al, . . ., a d) is the oscillation amplitude. The global
simulation clock can often be used as the index t (Mitra and Park, 1991). Then the per-
formance measure f is approximated around 0 using a polynomial (response) function
of the input parameters. This approximation can be used to derive frequency-domain
(harmonic) estimators for g(0). For more details on frequency-domain experimentation,

9.2 CONTINUOUS DECISION PARAMETERS 317

including expressions for harmonic gradient estimators and a discussion of how the
index t , amplitude a, and frequency w should be selected, the reader is referred to
Jacobson (1994) and references therein. For a discussion of how a harmonic estimator
of the derivative can be obtained for Example 1, see, for example, Fu (1994).

We now briefly compare the four gradient estimation techniques we have discussed.
The easiest method to use is the finite-difference approach. This approach should be
implemented using common random numbers (so that the variance will not be too large).
The disadvantage of using this approach is that it requires several simulation runs, and
it yields biased estimates of the gradient in general. Unlike finite-difference methods,
both perturbation analysis and the likelihood ratio method require knowledge of the
structure of the stochastic system being simulated and hence are more difficult to use
than finite-difference methods. But they require only a single simulation run and often
produce estimators having desirable statistical features such as unbiasedness and strong
consistency (unlike finite-difference approaches). The likelihood ratio method is more
generally applicable than IPA (other variants of perturbation analysis are frequently
needed in order to obtain unbiasedness or strong consistency) but often yields estimates
with a larger variance than the estimates obtained using IPA (assuming both techniques
are applicable). The frequency-domain experimentation approach resembles the finite-
difference approach more than it resembles the perturbation analysis and likelihood ratio
approaches (except that it only requires a single simulation run). In general, it produces
biased estimates of the gradient.

9.2.2 Stochastic Approximation

In this section we discuss how stochastic approximation methods can be used to solve
continuous parameter simulation optimization problems of the form given in equation
(1). We emphasize the case when the simulation optimization problem at hand is either
unconstrained (so that 8 = lid), or constrained with known (not noisy) constraints and
a closed, convex feasible region 8 [see, e.g., Bazaraa and Shetty (1 979, Defs. 2.1.1 and
2.2.1), for the definitions of closed and convex sets].

The first stochastic approximation algorithm was proposed by Robbins and Monro
(1951). This algorithm was originally designed to find a root of a noisy function. When
applied to solve optimization problems of the form given in equation (I) , this algorithm
seeks to locate a root of the function Vf, the gradient of the objective function. A
projected, multivariate version of the Robbins-Monro algorithm is given below.

Algorithm 1

Step 0: Select (a) an initial estimate of the solution 0 I E 8 , (b) a (gain) sequence {a,) -
of positive real numbers such that C y , a, = - and C,=, a; < -, and (c) a suitable
stopping criterion. Let n = 1.

Step 1: Given 8,, generate an estimate g(0,) of Vf(0,).

Step 2: Compute

where for all 0 E 1Rd, ~ ~ (0) is the point in 8 that is closest to 0 [so that ~ ~ (0) = 0
when 0 E 81.

318 SIMULATION OPTIMIZATION

Step 3: If the stopping criterion is satisfied, then stop and return O n + 1 as the estimate
of the optimal solution. Otherwise, let n = n + 1 and go to step 1.

When finite differences (see Section 9.2.1) are used to obtain the gradient estimates
in step 1 of the Robbins-Monro algorithm, the resulting procedure is referred to as the
Kiefer-Wolfowitz algorithm [Kiefer and Wolfowitz (1952) proposed and analyzed this
method in the one-dimensional case using central differences to estimate the deriva-
tive]. In this case, one would select a sequence {c,) of positive real numbers such that
C, -, 0 as n +-, Cr= anc, < -, and CF= u:/c: < w in step 0 of Algorithm 1.
Then if forward differences are used to estimate the gradient, each gradient estimate
i(8,) in step 1 is obtained using equation (4) with 8 = 8, and c = c,. Otherwise, if
central differences are used, each gradient estimate i(8,) is obtained using equation (5)
with 8 = 8, and c = c,. As in the section "Finite Differences" in Section 9.2.1, when
finite differences are used to estimate the gradient, it is in general desirable to use com-
mon random numbers among the different simulations [see L'Ecuyer et al. (1994) for
empirical results documenting this statement].

Obviously, the behavior of the stochastic approximation algorithms discussed pre-
viously depends on the choice of the sequences {a,] and {c, }. These sequences are
usually selected to maximize the asymptotic rate of convergence of the algorithms. The
gain sequence {a,) is usually selected to be of the form a, = a/n for all n, where a
is a positive scalar. With this choice of gain sequence, the Robbins-Monro algorithm
will, under certain conditions, converge at the fastest possible asymptotic rate (i.e., at
the rate n-'/2). In the forward difference case, the sequence {c,] is usually chosen to
be of the form c, = ~ / n ' / ~ for all n, yielding an asymptotic convergence rate of n-'/4
under certain conditions. On the other hand, in the central difference case, one usually
lets c, = ~ / n ' / ~ for all n, yielding an asymptotic convergence rate of n-'/3 under cer-
tain conditions. In both cases the parameter c is a positive scalar. Even if the sequences
{a,) and {c,] are selected in this manner, the behavior of the Robbins-Monro and
Kiefer-Wolfowitz algorithms depends on how well the scalars a and c are chosen.

In general, the Robbins-Monro and Kiefer-Wolfowitz algorithms can only be
expected to converge to a local optimal solution of the underlying optimization prob-
lem (1). Note that each iteration of these methods involves moving in the direction
of i(8,), where 8, is the current estimate of the solution and i(8,) is an estimate of
V f (8,). This is the direction along which we expect the objective function f to decrease
the fastest. Therefore, both the Robbins-Monro algorithm (when applied to solve opti-
mization problems) and the Kiefer-Wolfowitz algorithm are versions of the steepest
descent algorithm for solving continuous deterministic optimization problems. For more
discussion of when these algorithms are guaranteed to converge, the reader is referred
to Kushner and Clark (1978), Benveniste et al. (1990), and Ljung et al. (1992). The
(theoretical) convergence rates of these algorithms (see the previous discussion) can
be derived using Theorem 2.2 of Fabian (1968). See also Ruppert (1991) for a recent
review of stochastic approximation procedures.

The Robbins-Monro and Kiefer-Wolfowitz algorithms do not always work well,
and in recent years, a number of new stochastic approximation algorithms have been
proposed to address this problem. We now discuss very briefly several of these variants.

One problem with the Robbins-Monro and Kiefer-Wolfowitz procedures is that the
unconstrained versions of these algorithms (with 8 = IRd) are not guaranteed to converge
when the objective function f grows faster than quadratically in the decision parameter
8. Traditionally, this problem has been addressed by projecting the sequence gener-

9.2 CONTINUOUS DECISION PARAMETERS 31 9

-
ated by these algorithms onto a compact (i.e., closed and bounded), convex set, say 8,
even though the original optimization problem is unconstrained. However, this is not a
very satisfactory approach because these algorithms then cannot converge if the opti-
mal solution does not lie in the set 8, and_ if the set 0 is selected to be large (so that
the solution probably lies within the set 8, then these algorithms can converge very
slowly. Approaches for addressing this problem have been proposed and analyzed by
Andrad6ttir (1996a) using scaling, and by Chen and Zhu (1986), Yin and Zhu (1989),
and Andrad6ttir (199%) using projections involving an increasing sequence of sets.

From the discussion in the section "Finite Differences" in Section 9.2.1, it is clear
that when the Kiefer-Wolfowitz algorithm is applied using forward differences to esti-
mate the gradient, it is necessary to conduct simulations at d + 1 different parameter
values in each iteration of the algorithm, where d is the dimension of the underlying
stochastic optimization problem [see equation (I)]. Moreover, when central differences
are used to estimate the gradient, the number of simulations that are needed in each iter-
ation of the algorithm increases to 2d. This obviously means that when the number of
dimensions d is large, the Kiefer-Wolfowitz algorithm requires a lot of computational
effort per iteration and may therefore converge slowly. To address this problem, Spall
(1992) has proposed and analyzed the application of a stochastic approximation algo-
rithm of the form given in Algorithm 1 to solve stochastic optimization problems using
simultaneous perturbations to estimate the gradient. This procedure requires only two
simulations per iteration, regardless of the dimension d. Similar ideas have also been
proposed and analyzed by Kushner and Clark (1978) and Ermoliev (1983). In addition
Pflug (1990) has proposed a method for simulation optimization that requires only two
simulations per iteration. However, this approach differs from the other approaches dis-
cussed previously in that Pflug uses weak derivatives (which are defined in his paper),
whereas Spall, Kushner and Clark, and Ermoliev all use gradient estimates that resemble
standard finite-difference gradient estimates.

As mentioned previously, when the gain sequence (a , } is of the form a, = u/n
for all n, where a is a positive scalar, the performance of the Robbins-Monro and
Kiefer-Wolfowitz algorithms depends on the choice of the scalar a. A number of
researchers have developed and analyzed adaptive procedures where the value of the
multiplier u is updated throughout the optimization process. In general, when these
methods are applied to optimize a function f , the aim is for the sequence of multi-
pliers to converge to the inverse of the Hessian of the objective function f evaluated at
the solution as the number of iterations grows (so the sequence of multipliers is matrix
valued in this case). For more details, see Venter (1967), Nevel'son and Has'minskii
(1973), Lai and Robbins (1979), Ruppert (1985), and Wei (1987).

Another difficulty experienced by the Robbins-Monro and Kiefer-Wolfowitz algo-
rithms is that the gain sequence {a ,) often decreases too quickly, forcing these algo-
rithms to take very small steps and hence converge very slowly. The empirical speed
of convergence can often be increased by decreasing the value of the gain sequence
only when there is reason to believe the algorithm has reached a neighborhood of the
optimal solution. This idea was proposed and analyzed in the one-dimensional case by
Kesten (1958) and extended to higher dimensions by Delyon and Juditsky (1993).

Several other approaches for addressing the stepsize problem discussed in the preced-
ing paragraph have been developed. One of these approaches involves using constant
gain (i.e., u, = a for all n, where u is a positive scalar). Dupuis and Simha (1991)
prove the convergence of a sampling controlled version of Algorithm 1 with constant
gain. Another approach is to use ideas from deterministic optimization to select the step

320 SIMULATION OPTIMIZATION

sizes {a,} . Wardi (1990) and Yan and Mukai (1993) propose and analyze methods that
resemble the steepest descent method for deterministic optimization using Armijo step-
sizes. Also, Shapiro and Wardi (1996a) discuss the use of line search to select the step
sizes. Another approach for addressing the step-size problem that has received a fair
amount of attention in recent years is to use averaging. More specifically, this approach
involves letting the gain sequence {a,] decrease to zero at a slower rate than l/n. This
means that the convergence rate of the sequence { O n) generated by Algorithm I will
equal (under certain conditions), so the algorithm will converge at a rate that is
slower than the optimal rate of I/&. However, by using averaging to estimate the
solution [i.e., let the estimate of the solution after n iterations have been completed be c:+,' OJ(n + l)] the resulting algorithm can be shown to converge at the fastest pos-
sible rate of I/&. This idea has been studied by Polyak (1990), Yin (1991), Polyak
and Juditsky (1992), and Kushner and Yang (1993). [A different type of averaging has
been studied by Ruszczynski and Syski (1983).]

The stochastic approximation algorithms discussed above are all designed to locate
local solutions to either unconstrained optimization problems or optimization problems
with a known closed and convex feasible region. For stochastic approximation algo-
rithms that are designed to solve global optimization problems with continuous decision
variables, the reader is referred to Gelfand and Mitter (1991). Moreover, for a discus-
sion of stochastic approximation algorithms for solving constrained problems with noisy
constraints, the reader is referred to Kushner and Clark (1978).

A number of researchers have studied the application of stochastic approximation
algorithms to solve simulation optimization problems of the form given in equation
(1). Essentially, this involves using gradient estimates derived using one of the meth-
ods discussed in Section 9.2.1 in step 1 of Algorithm 1. For example, Glynn (1986b)
proved the convergence of stochastic approximation algorithms when applied to opti-
mize the steady-state behavior of both regenerative stochastic processes (with finite-
difference estimates of the gradient) and regenerative finite-state-space Markov chains
(with either finite-difference or likelihood ratio gradient estimates). Andrad6ttir (1996b)
has extended this work to show how the Robbins-Monro algorithm with likelihood
ratio gradient estimates converges when applied to optimize the steady-state behavior
of general state-space Markov chains that are regenerative in either the standard sense
or the Harris sense. She also shows how the Robbins-Monro algorithm can be used to
optimize the transient (finite-horizon) behavior of general state-space Markov chains,
again using likelihood ratio estimates of the gradient. Moreover, Fu (1990), Chong and
Ramadge (1992, 1993), and L'Ecuyer and Glynn (1994) have studied the application
of stochastic approximation algorithms to optimize the steady-state behavior of single-
server queues. Fu (1990) and Chong and Ramadge (1992, 1993) use IPA to estimate
the gradient, whereas L'Ecuyer and Glynn (1994) consider gradient estimates obtained
using either finite differences, the likelihood ratio method, or IPA.

9.2.3 Sample Path Optimization

The optimization techniques discussed in the preceding section (see Algorithm 1) are
stochastic in that when these algorithms are used to solve simulation optimization prob-
lems, the estimators i(O,) required in the different iterations are usually obtained using
independent simulations [i.e., given the value of O n , the simulation used to estimate
i(O,) in iteration n does not depend on simulations conducted in the previous iterations
1, . . . , n - 1 to estimate ~ (O I) , . . . , i(On- I)]. Recently, a different class of methods

9.2 CONTINUOUS DECISION PARAMETERS 321

has been developed for solving continuous parameter simulation optimization problems.
These methods involve converting the original simulation optimization problem into an
approximate deterministic optimization problem, and then using standard mathematical
programming techniques to locate the optimal solution.

To illustrate, suppose that the objective function f is of the form given in equation
(8). Then we could generate independent observations X I , . . . , XN from the distribution
F, and approximate the objective function using

Once then observations X I , . . . , XN have been generated, the approximate objective
function,fN(6) is now a deterministic function of the decision parameter 6, so that we
can approximate the original simulation optimization problem (I) with the deterministic
optimization problem

Now a standard mathematical programming algorithm can be applied to solve this
approximate deterministic optimization problem, yielding an estimate of the optimal
solution 6;(w), where w = (XI , . . . , XN). The issue at hand is to determine under what
conditions, the solution 0;(w) of the approximate deterministic optimization problem
(14) is "close" to the solution 6* of the original optimization problem (1) .

As was discussed in the section "Advanced Gradient Estimation Techniques" in Sec-
tion 9.2.1, assuming that the objective function f is such that it can be estimated using
simulations involving exclusively random variables whose distribution does not depend
on the decision parameter 6 [as in equation (S)] is often not realistic. So suppose now
that the objective function is instead of the form given in equation (9). Then, again as in
the same section, it is necessary to transform the objective function in such a way that
the distribution of the underlying random variables no longer depends on the parameter
6 . This can be achieved using either IPA or likelihood ratios. We now illustrate how
this can be accomplished using likelihood ratios when the objective function f is given
by equation (9). Later in this section we illustrate the use of IPA for this purpose in the
context of Example 1.

As in equation (lo), assume that for all 6 E G , the underlying random variable X
has density function f e . Moreover, suppose that there exists Bo E 0 such that fd,,(x) =
0 implies that fs(x) = 0 for all possible observations x of the random variable X and
all 6 E 8. Then we have that

for all 0 E 9 (as in Section 9.2.1, we adopt the notation that 010 = I). Recall that the
term f0(x)/feo(x) is called the likelihood ratio. We can now approximate the original
objective function f as follows. Generate independent observations X I , . . . , XN from
the distribution Fo, and let

[Note that this transformation of the objective function effectively involves using impor-
tance sampling to estimate the objective function for all 19 # Oo; see, for example, Glynn
and Iglehart (1989), Shahabuddin (1994), and Andradbttir et al. (1995) for discussions
of importance sampling.] As before, we can now apply a standard mathematical pro-
gramming algorithm to solve the approximate deterministic optimization problem (14)
with the objective function fN(19) now given in equation (15), yielding an estimate of
the optimal solution e:(w), where w = (Xi , . . . , XN). Again, it is of interest to determine
under what conditions the solution 0:(w) of this approximate deterministic optimization *
problem is "close" to the solution I9 of the original optimization problem (1) .

The optimization approach discussed above is often called sample path optimization,
because it involves using simulation to generate only one sample path w = (XI , . . . , XN)
of the underlying stochastic process, and the estimate I9$(w) of the solution depends on
the particular sample path w that was used to define the approximate deterministic opti-
mization problem (14). A number of researchers have recently studied this approach in
a variety of contexts. Rubinstein and Shapiro (1993) have proposed and analyzed this
approach using importance sampling to obtain the approximate deterministic objective
function [a special example of this approach is described in the preceding paragraph;
see equation (15)l. Their approach is called the stochastic counterpart method. Plam-
beck et al. (1996) have applied this method to optimize stochastic systems using IPA
gradient estimates. Healy and Xu (1994) have also discussed and analyzed this method;
they call the method retrospective optimization [see also the earlier work of Healy and
Schruben (1991)l. Moreover, Chen and Schmeiser (1994) have studied the application
of a related approach to solve root-finding problems. Additional theoretical work regard-
ing the convergence of the sample path approach has appeared in Robinson (1996) and
Shapiro and Wardi (1 996b).

One advantage of the sample path approach relative to stochastic approximation is
that it is easy to extend it to situations where not only the objective function, but also
the constraints, cannot be evaluated analytically, but instead, have to be estimated using
simulation. (Recall that most stochastic approximation algorithms discussed in Section
9.2.2 assume that the underlying optimization problem is either unconstrained, or with
known constraints.) This is because we can approximate the constraint functions using
a deterministic (sample path based) approximate functions in the same fashion as we
approximate the objective function [see equations (1 3) and (15)l. Then a standard math-
ematical programming algorithm for constrained optimization can be used to solve the
resulting approximate constrained deterministic optimization problem. See also Shapiro
(1996) for a comparison of the asymptotical behavior of stochastic approximation and
sample path methods.

We now return to Example 1 and discuss how sample path optimization with IPA
gradient estimates can be used to solve the simulation optimization problem (1) when

9.3 DISCRETE DECISION PARAMETERS 323

the feasible set 0 and the objective functionf are given in equation (2). Assume that the
service times Si(19) are independent and exponentially distributed with mean I9 for all i.
Then we can let Si(B) = - In(Vi) x 0 for all i, where { Vi) is an independent sequence
of U[O, I]-distributed random variables (this same idea was used in Section 9.2.1 to ob-
tain IPA estimates for the derivative gAof the objective function f). It is clear that for
all integers N, the following function f N is an approximation of the original objective
function f :

where the system times WI(B), . . . , WN(0) are computed using equation (6). Moreover,
once the first N interarrival times TI, . . . , TN and uniform random variables VI , . . . , VN
have been generated, the function fN(19) is a deterministic function of I9 that depends on
the parameters a, p, T I , . . . , TN, and VI, . . . , VN. Therefore, we can now use a standard
mathematical programming algorithm to solve the approximate deterministic optimiza-
tion problem (14) with the objective function f N defined in equation (16). Note that the
derivative of the approximate objective function f N with respect to 19 equals the IPA
estimate of the derivative g = f ' of the original objective function f derived in Section
9.2.1 [see equation (1 I)]. Therefore, any derivative-based mathematical programming
algorithm that is applied to solve the deterministic optimization problem (14) with the
objective function f N defined in equation (16) will use IPA derivative estimates to locate
the optimal solution.

9.3 DISCRETE DECISION PARAMETERS

In this section we review briefly methods that have been proposed recently for solving
simulation optimization problems with discrete decision parameters. More specifically,
we are concerned with methods for solving the optimization problem (1) when the fea-
sible region 0 is discrete. For example, in designing a manufacturing facility, one may
need to determine which of, say, five different choices of a particular piece of equip-
ment satisfies one's needs the best in terms of cost, capacity, reliability, and so on. This
case when the decision parameter only takes a discrete set of values (five in the pre-
ceding example) has so far received less attention by the research community than the
continuous-parameter case discussed in Section 9.2. When the number of alternatives
to choose from is small, say no larger than 20, the ranking and selection and multiple
comparison methods discussed in Chapter 8 can be used to locate the optimal alterna-
tive. However, these methods become computationally burdensome as the size of the
feasible region grows. Related approaches that we do not discuss in this chapter include
methods for solving the multiarmed-bandit problem and learning automata procedures.
Instead, we first discuss some recently proposed random search methods for solving
discrete simulation optimization problems, and then discuss other recent developments
addressing the same problem.

The reason why we do not discuss methods for solving the multiarmed-bandit prob-
lem and learning automata procedures here is that these methods are designed to achieve
the goal of spending as much time as possible at the optimal solution. Therefore,

324 SIMULATION OPTIMIZATION

although these methods can be used to solve discrete simulation optimization problems,
they are not designed to satisfy our goal, which is to find the optimal solution as quickly
as possible. To illustrate, these methods are suitable for determining which of several
treatment options is most likely to save a patient's life. Here the effectiveness of a par-
ticular treatment is determined by using it to treat patients, and it is obviously desirable
to be conservative and apply the treatment that appears to be best to treat most of the
patients, because the cost of applying a poor treatment to treat a patient may be the death
of that patient. However, in the simulation optimization context, the cost of visiting the
different alternatives does not depend on the quality of the alternatives. Therefore, meth-
ods that move aggressively around the feasible region attempting to locate the optimal
alternative as quickly as possible are more suitable for solving simulation optimiza-
tion problems than conservative methods (such as methods for solving the multiarmed-
bandit problem and learning automata procedures) that may tend to spend too much
time at local solutions and hence converge slowly.

9.3.1 Random Search

The algorithms discussed in this section all involve moving successively from a feasible
point to a neighboring feasible point in search of the optimal solution. Therefore, for
each O E 8 , it is necessary to specify a set N(O) c 8\{O] consisting of all the neighbors
of the feasible alternative 0. The algorithms discussed in this section all have the feature
that they generate a sequence (0,) taking values in the state space 9, with O n + 1 E

N(0,)U (0 ,) for all n. The flexibility in choosing the neighborhood structure {N(O) : 0 E
8) depends on the algorithm used, but in all cases the neighborhood structure must be
connected, in the sense that for all 0, 0' E 8 , 0 # Of, there exists an integer 1 and
feasible alternatives Oo, . . . , Or, such that Oo = 0, 0, = O', and O i + l E N(O,) for all i
= 0 . . . , 1 - 1. (In other words, it is possible to go from any feasible alternative 0 to
any other feasible alternative 0' by moving successively from a feasible alternative to
a neighbor of that alternative.) In addition to the difference in flexibility in the choice
of the neighborhood structure, these algorithms differ in how a decision to move from
a current alternative 0, to the next alternative O n + 1 is made. They also differ in how
estimates of the optimal solution are obtained.

Andraddtir (1995b, 1996c) has proposed and analyzed two random search methods
for discrete stochastic optimization. In each iteration of these methods, simulations are
conducted to estimate the value of the objective function at two neighboring feasible
alternatives, the resulting estimates of the objective function values are then compared,
and the alternative that has the better observed objective function value is passed on to
the next iteration. Also, both algorithms use the feasible alternative that the generated
sequence {On) has visited most often to estimate the optimal solution. One of these two
methods is guaranteed to converge to a local solution of the underlying optimization
problem, whereas the other one is globally convergent (under certain conditions). The
details of how one version of the globally convergent method can be applied to solve
the discrete optimization problem (1) are given below. This procedure assumes that the
feasible set 8 is finite. Let 181 < denote the number of feasible alternatives. Note
that after n iterations, O n is the current feasible alternative, for all 19 E 8 , Vn(0) is the
number of times the algorithm has visited alternative 8 so far, and 0,*, the estimate of
the optimal solution after n iterations, is the alternative that the algorithm has visited
most often so far.

9.3 DISCRETE DECISION PARAMETERS 325

Algorithm 2

Step 0: Select a starting point go E 9 and a suitable stopping criterion. Let Vo(Bo) =

1 and Vo(0) = 0 for all 0 E 9, with 0 # Oo. Let n = 0 and 0: = 0,. Go to step 1.
Step 1: Generate a uniform random variable 0; such that for all 0 E 8 , with 0 # O,,,

we select 01, = 0 with probability 1/(181 - I). Go to step 2.
Step 2: Usesimu1a;ion to generate an estimatej(0,) of f(0,) and an estimatej(0;) of

f(0;). If f(0,) > f(0;), then let 0,,+1 = 19;. Otherwise, let O n + 1 = 0,. Go to step 3.

Step 3: Let n = n + 1, V,(O,) = V , (0,) + 1, and V,(O) = V , (0) for all 0 E 8, * * with 8 # 0,. If V,(0,) > v,(o,* I) , then let 0:= O,,. Otherwise, let 0, = 0, - 1. If the
stopping criterion is satisfied, then stop and return 8: as the estimate of the optimal
solution. Otherwise, go to step 1.

Yan and Mukai (1992) have proposed and analyzed a method for (global) discrete
stochastic optimization called the stochastic ruler algorithm. Essentially, the method
proposed by Yan and Mukai compares observations of the objective function values
with observations of a predetermined uniform random variable U called the stochastic
ruler. The range of the stochastic ruler should include all possible observations of the
objective function. Yan and Mukai use the current element 0, of the sequence generated
by the algorithm to estimate the optimal solution. They assume that the feasible region 9
is finite and that both the neighborhood structure N and the transition matrix R (see step
1 of Algorithm 3 below) are symmetric, which means that if 0' E N(0), then I9 E N(0')
and R(0,O') = R(0', 0). Moreover, the transition matrix R must satisfy R(O,Of) > 0 if and
only if 0' E N(0) and Cg, N (g) R(0, 0') = 1. The details of Yan and Mukai's procedure
are given below. Note that in step 2 of this procedure, {M,) is a sequence of positive
integers such that M, -, w as n -, w.

Algorithm 3 (Stochastic Ruler Algorithm)

Step 0: Select a starting point 0" E 8 and a suitable stopping criterion. Let n = 0 and
go to step 1 .

Step 1: Generate a neighbor 0; E N(0,) of the current alternative 0, such that for all
0 E N(0,), we have that P(0; = 0) = R(O,,@). Go to step 2.

Step 2: FOR i = 1, . . . , M,, DO:
Use simulation to generate an estimate f("(0:J off (0;).
Generate an observation u:) of the stochastic ruler U.
1f f (')(0:,) > u,I'), then let O n + 1 = 8, and go to step 3.

END DO
Let O n + 1 = 0; and go to step 3.

Step 3: If the stopping criterion is satisfied, then stop and return O n + 1 as the estimate
of the optimal solution. Otherwise, let n = n + 1 and go to step I .

Alrefaei and Andradbttir (1996, submitted a) have developed a variant of the stochas-
tic ruler algorithm (Algorithm 3) that is guaranteed to converge to the set of global
optimal solutions under assumptions that are slightly more general than those of Yan
and Mukai. This variant involves letting M, = M, a constant positive integer, for all
n, whereas Yan and Mukai assume that M, -, as n -, m. Therefore, the new variant
requires less computational effort per iteration than the original stochastic ruler method.
Moreover, the approach of Alrefaei and Andradbttir involves using the number of visits

326 SIMULATION OPTIMIZATION

to the different states to estimate the optimal solution, much as in Algorithm 2. This
modification of the stochastic ruler approach appears to perform better in practice than
the original version.

Gong et al. (1992) have also proposed and analyzed a (stochastic comparison)
method for discrete stochastic optimization. Their method is motivated by the stochastic
ruler method of Yan and Mukai, and can be thought of as a mixture of Algorithms 2
and 3. In particular, Gong et al. use the same neighborhood structure as ~ l g o r i t h m 2
[i.e., N(0) = 8 \ { 0] , for all 0 E 81, and their alg9rithm differs from Algorithm 3 in that
in step 2 of Algorithm 3 they do not compare f (')(0;) with u!), but instead compare
f (')(0;) with f (')(On) (similar to Algorithm 2).

The methods discussed so far in this section all use either the alternative that has
been visited most often by the algorithm to estimate the optimal solution [this is the case
of the methods proposed by Andrad6ttir (1995b, 1996c) and Alrefaei and Andradbttir
(1 996, submitted a); see Algorithm 21 or they use the current alternative being consid-
ered by the algorithm to estimate the optimal solution [this is the case of the meth-
ods proposed by Yan and Mukai (1992) and Gong et al. (1992); see Algorithm 31.
Andrad6ttir (submitted) has proposed another approach for estimating the optimal solu-
tion, namely to average all the estimates of the objective function values at the different
feasible alternatives obtained so far by the algorithm and use the alternative with the best
(smallest if one is minimizing, largest if one is maximizing) average estimated objec-
tive function value as the estimate of the optimal solution (this approach for estimating
the optimal solution is used in Algorithm 4 below). She discusses the advantages of
using this approach for estimating the optimal solution relative to the other approaches
discussed previously and shows that the use of this approach for estimating the optimal
solution appears to significantly accelerate the convergence of Algorithm 2 when applied
to solve a simple discrete simulation optimization problem. heals so presents and ana-
lyzes a variant of the stochastic comparison method of Gong et al. (1992) that uses this
approach for estimating the optimal solution. Similarly, Alrefaei and Andrad6ttir (1997,
submitted b) present and analyze a variant of the stochastic ruler method (Algorithm 3)
that uses this approach for estimating the optimal solution; through a numerical example
they show that this variant appears to perform better in practice than other variants of the
stochastic ruler method. Finally, Alrefaei and Andrad6ttir (submitted c) have developed
a variant of the simulated annealing algorithm that uses this approach for estimating the
optimal solution (Algorithm 4 below); again this approach for estimating the optimal
solution seems to yield improved performance relative to other approaches.

The remainder of this section is concerned with the application of simulated anneal-
ing to solve discrete simulation optimization problems. The simulated annealing algo-
rithm was originally developed to solve (global) discrete deterministic optimization
problems. The basic idea behind this algorithm is to allow hill-climbing moves so that
the algorithm can escape from local solutions. More specifically, if in a given iteration
n we are comparing the current alternative 0, with a candidate alternative 0;, and if
f(0;) l f(0,) [so that 0; is a better alternative than 0, since we are trying to solve a
minimization problem of the form (I)], then the algorithm will always move over to 8;
(i.e., we will always have O n + 1 = 0;). On the other hand, if f(0;) > f(0,) (so that 0,
is a better alternative than O;), then the algorithm will stay at the better alternative 0,
with a certain probability [with probability 1 - exp[(f (0,) - f (0;))/T,], where T, > 0
for all rz] and it will make the hill-climbing move over to the worse alternative 0; with
the remaining (positive) probability.

In recent years, a number of researchers have studied the use of simulated anneal-

9.3 DISCRETE DECISION PARAMETERS 327

ing to solve discrete simulation optimization problems. Bulgak and Sanders (1988) and
Haddock and Mittenthal (1992) proposed heuristic versions of the simulated annealing
approach and applied these to optimize certain manufacturing systems. The first rigorous
application of simulated annealing to solve stochastic optimization problems that we are
aware of was proposed and analyzed by Gelfand and Mitter (1989). Since then, other
researchers have proposed and analyzed variants of the simulated annealing approach
for discrete stochastic optimization. This includes Gutjahr and Pflug (1996), Fox and
Heine (1996), Lee (1995), and Alrefaei and Andrad6ttir (1995, submitted c). Except
for the methods of Alrefaei and Andraddtir (1995, submitted c), all of these methods
(and the simulated annealing algorithm for discrete deterministic optimization described
previously) use a slowly decreasing "cooling schedule" {T,) for deciding whether to
stay at the current alternative 0, or move to the candidate alternative 0: in iteration n
of the algorithm [i.e., {T ,] is a sequence of positive scalars such that T,, -0 as n -,
and T,, 2 C/log(n + 1) for all n, where C is a given constant that does not depend on
n]. Also, it is usually necessary to assume that the estimates of the objective function
values f (0,) and f(0:) needed in iteration n of these methods become more and more
precise as n grows. This means that the computational (simulation) effort required per
iteration grows as the number of iterations grows.

We conclude this section by presenting one version of the simulated annealing
approach of Alrefaei and Andrad6ttir (submitted c) that uses the approach for estimating
the optimal solution proposed by Andrad6ttir (submitted). This approach involves using
a constant temperature T, = T > 0 for all n. This means that the probability of making a
hill-climbing move (see step 2 of Algorithm 4) does not decrease as the number of iter-
ations grows, allowing the procedure to continue to search the feasible set agressively
for global solutions as the number of iterations grows. Note that for all 0 E 0, A,(%)
is the sum of all estimates off (0) obtained in the first n iterations of the algorithm and
C,(O) is the number of such estimates. Moreover, 0:denotes the estimate of the optimal
solution after n iterations have been completed. Finally, the neighborhood structure N
and transition matrix R can be chosen as in Algorithm 3.

Algorithm 4 (Simulated Annealing Algorithm)

Step 0: Select a starting point O o 6 0 and a suitable stopping criterion. For all 0 E 0,
let Ao(0) = Co(0) = 0. Let n = 0, 0; = Oo, and go to step 1.

Step 1: Generate a neighbor 0; E N (0 ,) of the current alternative 0 , such that for all
% E N(0,,), we have that P{0A = 8) = R(%,,0). Go to step 2.

Step 2: Use simulation to generate estimates?(%,) andj(0;) off (0,) and f (%A), respec-
iively, that are independent of any estimates generated in previous iterations. If
f(0:) 5 ,f(0,), then let O n + 1 = 0;. Otherwise, generate a uniform random variable
u, - U[0,1]. If

then let O n + 1 = 0;. Otherwise, let O n + , = 0,. Go to step 3.

Step 3: Let n = n+l,A,(0) = A , - , (%)+f(%) and ~ ~ (0) = C , , (%)+I , for 0 = On, 0:, and

328 SIMULATION OPTIMIZATION

A,(0) = A , ,(0) and C,(0) = C,_ ,(0), for all 0 E 8, with 0 # On, 0;. Let 0: E 8
be a solution to the (deterministic) optimization problem mine. An(0)/C,(0). If the
stopping criterion is satisfied, then stop and return 0: as the estimate of the optimal
solution. Otherwise, go to step 1.

9.3.2 Other Recent Developments

The branch-and-bound method is a well-known approach for solving deterministic dis-
crete optimization problems. Recently, Norkin et al. (1994) have proposed a version of
this approach that is designed to solve discrete stochastic optimization problems. Their
approach involves partitioning the feasible region 8 into smaller subsets and estimat-
ing upper and lower bounds on the values the objective function f can take within the
individual subsets. These bounds are used for determining the most promising subset
(which is divided into smaller subsets) and for removing from consideration nonprospec-
tive subsets. Details of the procedure, including a discussion of how the required upper
and lower bounds can be computed, are given by Norkin et al.

Another approach for solving discrete stochastic optimization problems involves
using simulation to generate observations of the objective function at the different fea-
sible alternatives, and using these data for constructing a confidence set S c 8 having
the feature that for any global solution 0" to the discrete optimization problem (I), we
have that P{O* E S} 2 1 - a!, where 0 < a! < 1 is a predetermined constant (usu-
ally, a! < 0.1). Obviously, it is desirable to conduct the simulation in such a way that
the resulting confidence set is as small as possible (so that we will have obtained as
much information as possible about which alternatives are optimal). Pflug (1994) has
proposed a sequential procedure for achieving this in the case when the observations of
the objective function values at the different feasible alternatives are all normally dis-
tributed (he also reviews some earlier approaches). In each iteration of his procedure,
the expected size of the confidence set obtained after generating 1 additional observa-
tions off (0) is computed for all 0 E 8 (here 1 is a positive integer chosen by the user).
Then 1 additional observations of f(0') are generated for the alternative 0' E 8 that
yielded the smallest expected confidence set size. See also Futschik and Pflug (1995)
for a two-step procedure for obtaining valid confidence sets.

Finally, Ho et al. (1992) discuss some ideas that are relevant in this context. They
point out that it is often true that less computer time is required for ranking alternatives
(according to the value the objective function takes at these alternatives) than for esti-
mating the objective function values precisely at the different alternatives. (This is the
basic idea behind both their ordinal optimization approach and several of the methods
discussed in Section 9.3.1.) They also suggest that in situations where the underlying
feasible region 8 is very large (so that the discrete optimization procedures discussed
above are very computer intensive), one could quickly conduct simulations at the dif-
ferent alternatives 0 E 8 to obtain a rough ranking of the alternatives. Then one could
discard all but the r top alternatives in this rough ranking, where r << 181 is a posi-
tive integer chosen by the user, and use one of the methods discussed in Section 9.3 to
locate the best alternative among the r remaining ones. Obviously, discarding all but r
of the feasible alternatives carries the risk that none of the remaining alternatives is any-
where close to being optimal (in which case this approach would perform very poorly).
However, Ho et al. show that the probability that the set consisting of the r remaining
alternatives contains a near-optimal solution to the discrete optimization problem (1) is
often surprisingly large.

REFERENCES 329

9.4 CONCLUSIONS

In this chapter we have provided an introduction to the field of simulation optimiza-
tion. The focus has been on gradient-based techniques for simulation optimization with
respect to continuous decision variables and on random search methods for simulation
optimization with respect to discrete decision variables. Related subjects are discussed
in Chapters 6 and 8.

Meketon (1987) states that "optimization for simulation, to date, remains an art, not
a science." Although a substantial amount of progress has been made since this was
written, optimization in simulation remains a challenging problem. Most of the currently
existing methods for simulation optimization require a fair amount of sophistication
on the part of the user; a good understanding of both the structure of the underlying
stochastic system and the optimization technique being applied is often required. In
addition, a large amount of computer time is often required for locating a near-optimal
solution of the problem at hand. Hence, increasing the efficiency and ease of application
of simulation optimization techniques is an important area of current and future research.

ACKNOWLEDGMENT

This work was partially supported by the National Science Foundation under Grants
DDM-92 10679 and DMI-9523 1 1 1.

REFERENCES

Alrefaei, M. H., and S. Andradbttir (1995). A new search algorithm for discrete stochastic opti-
mization, in Proceedings of the 1995 Winter Simulation Conference, C . Alexopoulos, K. Kang,
W. R. Lilegdon, and D. Goldsman, eds., IEEE, Piscataway, N.J.. pp. 236-241.

Alrefaei, M. H., and S. Andradbttir (1996). Discrete stochastic optimization via a modification
of the stochastic ruler method, in Proceedings of the 1996 Winter Simulation Conference, J .
M . Charnes, D. J. Morrice, D. T. Brunner, and J. J. Swain, eds., IEEE, Piscataway, N.J., pp.
4 0 6 4 1 1 .

Alrefaei, M. H., and S. Andrad6ttir (1997). Accelerating the convergence of the stochastic ruler
method for discrete stochastic optimization, Proceedings of the 1997 Winter Simulation Con-
ference, in S. Andradbttir, K. J. Healy, D. H. Withers, and B. L. Nelson, eds., IEEE, Piscataway,
N.J., pp. 352-357.

Alrefaei, M. H., and S. Andradbttir (submitted a). A modification of the stochastic ruler method
for discrete stochastic optimization.

Alrefaei, M. H., and S. Andradbttir (submitted b). Discrete stochastic optimization using variants
of the stochastic ruler method.

Alrefaei, M. H., and S. Andradbttir (submitted c). A simulated annealing algorithm with constant
temperature for discrete stochastic optimization.

Andradbttir, S. (1995a). A stochastic approximation algorithm with varying bounds, Operations
Research, Vol. 43, pp. 1037-1048.

Andradbttir, S. (199%). A method for discrete stochastic optimization, Management Science, Vol.
41, pp. 1946-1961.

Andradbttir, S. (1996a). A scaled stochastic approximation algorithm, Management Science, Vol.
42, pp. 475-498.

330 SIMULATION OPTIMIZATION

Andradbttir, S. (1996b). Optimization of the transient and steady-state behavior of discrete event
systems, Management Science, Vol. 42, pp. 717-737.

Andradbttir, S. (1996~). A global search method for discrete stochastic optimization, SIAM Journal
on Optimization, Vol. 6, pp. 513-530.

Andradbttir, S. (submitted). Accelerating the convergence of random search methods for discrete
stochastic optimization.

Andradbttir, S., D. P. Heyman, and T. J. Ott (1995). On the choice of alternative measures in
importance sampling with Markov chains, Operations Research, Vol. 33, pp. 509-519.

Azadivar, F. (1992). A tutorial on simulation optimization, in Proceedings of the 1992 Winter
Simulation Conference, J . J . Swain, D. Goldsman, R. C. Crain, and J. R. Wilson, eds., IEEE,
Piscataway, N.J., pp. 198-204.

Bazaraa, M. S., and C. M. Shetty (1979). Nonlinear Programming: Theory andAlgorithms, Wiley,
New York.

Benveniste, A,, M. Mitivier, and P. Priouret (1990). Adaptive Algorithms and Stochastic Approx-
imations, Springer-Verlag, Berlin.

Bulgak, A. A,, and J. L. Sanders (1988). Integrating a modified simulated annealing algorithm
with the simulation of a manufacturing system to optimize buffer sizes in automatic assembly
systems, in Proceedings of the 1988 Winter Simulation Conference, M. Abrams, P. Haigh, and
J. Comfort, eds., IEEE, Piscataway, N.J., pp. 684-690.

Chen, H., and B. W. Schmeiser (1994). Retrospective approximation algorithms for stochastic root
finding, in Proceedings of the 1994 Winter Simulation Conference, J . D. Tew, S. Manivannan,
D. A. Sadowski, and A. F. Seila, eds., IEEE, Piscataway, N.J., pp. 255-261.

Chen, H. F., and Y. M. Zhu (1986). Stochastic approximation procedures with randotnly varying
truncations, Scientia Sinica Series A, Vol. 29, pp. 914-926.

Chong, E. K. P., and P. J. Ramadge (1992). Convergence of recursive algorithms using IPA deriva-
tive estimates, Discrete Event Dynamic Systems, Vol. 2, pp. 339-372.

Chong, E. K. P., and P. J. Ramadge (1993). Optimization of queues using an infinitesimal perturba-
tion analysis-based stochastic algorithm with general update times, SIAM Journal on Control
and Oprimization, Vol. 31, pp. 698-732.

Delyon, B., and A. Juditsky (1993). Accelerated stochastic approximation, SIAM Journal on Opti-
mization, Vol. 3, pp. 868-88 1.

Dupuis, P., and R. Simha (1991). On sampling controlled stochastic approximation, IEEE Trans-
actions on Automatic Control, Vol. 36, pp. 9 15-924.

Ermoliev, Y. (1983). Stochastic quasigradient methods and their application to system optimiza-
tion, Stochastics, Vol. 9, pp. 1-36.

Fabian, V. (1968). On asymptotic normality in stochastic approximation, Annals of Mathematical
Statistics, Vol. 39, pp. 1327-1332.

Fox, B. L., and G. W. Heine (1996). Probabilistic search with overrides, Annals of Applied Prob-
ability, Vol. 6, pp. 1087-1094.

Fu, M. C. (1990). Convergence of a stochastic approximation algorithm for the GI/G/l queue
using infinitesimal perturbation analysis, Journal of Optimization Theory and Applications,
Vol. 65, pp. 149-160.

Fu, M. C. (1994). Optimization via simulation: a review, Annals of Operations Research, Vol. 53,
pp. 199-247.

Fu, M. C., and J. Q. Hu (1997). Conditional Monte Carlo: Gradient Estimation and Optimization
Applications, Kluwer, Norwell, Mass.

Futschik, A,, and G. Ch. Pflug (1995). Confidence sets for discrete stochastic optimization, Annals
of Operations Research, Vol. 59, pp. 95-108.

Gaivoronski, A. A. (1992). Optimization of stochastic discrete event dynamic systems: a survey of

REFERENCES 331

some recent results, in Simulation and Opriniizution: Proceedings ofthe Internationcd Whrk-
shop on Cornputationally Intensive Methods in Sirnulation and Oprimization, G. Ch. Pflug and
U. Dieter, eds., Springer-Verlag, Berlin, pp. 2 4 4 4 .

Gelfand, S. B., and Mitter, S. K. (1989). Simulated annealing with noisy or imprecise energy
measurements, Journal qf' Optimization Theory and Applications, Vol. 62, pp. 49-62.

Gelfand, S. B., and Mitter, S. K. (1991). Recursive stochastic algorithms for global optimization
in R ~ , SIAM Journal on Control and Optimization, Vol. 29, pp. 999-1018.

Glasserman, P. (1991). Gradient Estimation via Perturbation Analysis, Kluwer, Norwell, Mass

Glasserman, P., and D. D. Yao (1992). Some guidelines and guarantees for common random
numbers, Management Science, Vol. 38, pp. 884-908.

Glynn, P. W. (1986a). Optimization of stochastic systems, in Proceedings qfthe 1986 Winter Sim-
ulation Conference, J . R. Wilson, J. 0 . Henriksen, and S. D. Roberts, eds., IEEE, Piscataway,
N.J., pp. 52-59.

Glynn, P. W. (1986b). Stochastic approximation for Monte Carlo optimization, in Proceedings of
the 1986 Winter Simulation Conference, J . R. Wilson, J. 0 . Henriksen, and S. D. Roberts, eds.,
IEEE, Piscataway, N.J., pp. 356-365.

Glynn, P. W. (1989). Optimization of stochastic systems via simulation, in Proceedings of the
1989 Winter Simulation Conference, E. A. MacNair, K. J . Musselman, and P. Heidelberger
eds., IEEE, Piscataway, N.J., pp. 90-105.

Glynn, P. W. (1990). Likelihood ratio gradient estimation for stochastic systems, Corntnunications
of the ACM, Vol. 33, pp. 75-84.

Glynn, P. W., and D. L. Iglehart (1989). Importance sampling for stochastic simulations, Man-
agement Science, Vol. 35, pp. 1367-1 392.

Gong, W.-B., Y.-C. Ho, and W. Zhai (1992). Stochastic comparison algorithm for discrete
optimization with estimation, Proceedings of the 31st Conference on Decision Control, pp.
795-800.

Gutjahr, W. J., and G. Ch. Pflug (1996). Simulated annealing for noisy cost functions, Journal of

Global Optirnizutiotz, Vol. 8, pp. 1-13.

Haddock, J., and J. Mittenthal (1992). Simulation optimization using simulated annealing, Com-
puters in Industrial Engineering, Vol. 22, pp. 387-395.

Healy, K. J., and L. W. Schruben (1991). Retrospective simulation response optimization, in Pro-
ceedings of the 1991 Winter Simulation Conference, B. L. Nelson, W. D. Kelton, and G. M.
Clark, eds., IEEE, Piscataway, N.J., pp. 901-906.

Healy, K. J., and Y. Xu (1994). Simulation based retrospective approaches to stochastic system
optimization, preprint.

Ho, Y.-C., and X.-R. Cao (1991). Perturbation Analysis of Discret~~ Event Dynamical Systems,
Kluwer, Norwell, Mass.

Ho, Y.-C., R. S. Sreenivas, and P. Vakili (1992). Ordinal optimization of DEDS, Discrete Event
Dynanzic Systenzs, Vol. 2, pp. 61-88.

Jacobson, S. H. (1994). Convergence results for harmonic gradient estimators, ORSA Journal of
Computing, Vol. 6, pp. 381-397.

Jacobson, S. H., and L. W. Schruben (1989). Techniques for simulation response optimization,
Operations Research Letters, Vol. 8, pp. 1-9.

Kesten, H. (1958). Accelerated stochastic approximation, Annals q f Mccrthematical Statistics, Vol.
29, pp. 41-59.

Kiefer, J., and J. Wolfowitz (1952). Stochastic estimation of the maximum of a regression function,
Annuls of Mathematical Statistics, Vol. 23, pp. 462466.

Kleijnen, J. P. C. (1995). Sensitivity analysis and optimization in simulation: design of experi-
ments and case studies, in Proceedings of the 1995 Winter Simulation Conference, C. Alex-

332 SIMULATION OPTIMIZATION

opoulos, K. Kang, W. R. Lilegdon, and D. Goldsman eds., IEEE, Piscataway, N.J., pp. 133-
140.

Kushner, H. J., and D. S. Clark (1978). Stochastic Approximation Methods for Constrained and
Unconstrained Systems, Springer-Verlag, New York.

Kushner, H. J., and J. Yang (1993). Stochastic approximation with averaging of the iterates: opti-
mal asymptotic rate of convergence for general processes, SIAM Journal on Control and Opti-
mization, Vol. 31, pp. 1045-1062.

Lai, T. L., and H. Robbins (1979). Adaptive design and stochastic approximation, Annals of Staris-
tics, Vol. 7, pp. 1196-1221.

L'Ecuyer, P. (1991). An overview of derivative estimation, in Proceedings of the 1991 Winter
Simulation Conference, B. L. Nelson, W. D. Kelton, and G. M. Clark, eds., IEEE, Piscataway,
N.J., pp. 207-217.

L'Ecuyer, P., and P. W. Glynn (1994). Stochastic optimization by simulation: convergence proofs
for the GI/G/I queue in steady-state, Management Science, Vol. 40, pp. 1562-1578.

L'Ecuyer, P., and G. Perron (1994). On the convergence rates of IPA and FDC derivative estima-
tors, Operations Research, Vol. 42, pp. 643-656.

L'Ecuyer, P., N. Giroux, and P. W. Glynn (1994). Stochastic optimization by simulation: numeri-
cal experiments with the M/M/I queue in steady-state, Management Science, Vol. 40, pp.
1245-1261.

Lee, J.-Y. (1995). Faster simulated annealing techniques for stochastic optimization problems,
with application to queueing network simulation, Ph.D. dissertation, Statistics and Operations
Research, North Carolina State University, Raleigh, N.C.

Ljung, L., G. Ch. Pflug, and H. Walk (1992). Stochastic Approximation and Optimization of Ran-
dom Systems, Birkhauser Verlag, Basel, Switzerland.

Meketon, M. S. (1987). Optimization in simulation: a survey of recent results, in Proceedings of
the 1987 Winter Simulation Conference, A. Thesen, H. Grant, and W. D. Kelton, eds., IEEE,
Piscataway, N.J., pp. 58-67.

Mitra, M., and S. K. Park (1991). Solution to the indexing problem of frequency domain simulation
experiments, in Proceedings of the 1991 Winter Simulation Conference, B. L. Nelson, W. D.
Kelton, and G. M. Clark, eds., IEEE, Piscataway, N.J., pp. 907-915.

Nevel'son, M. B., and R. Z. Has'minskii (1973). An adaptive Robbins-Monro procedure, Automa-
tion and Remote Control, Vol. 34, pp. 1594-1607.

Norkin, V., Y. Ermoliev, and A. Ruszczynski (1994). On optimal allocation of indivisibles under
uncertainty, preprint.

Pflug, G. Ch. (1990). On-line optimization of simulated Markovian processes, Mathematics of
Operations Research, Vol. 15, pp. 38 1-395.

Pflug, G. Ch. (1994). Adaptive designs in discrete stochastic optimization, preprint

Plambeck, E. L., B.-R. Fu, S. M. Robinson, and R. Suri (1996). Sample-path optimization
of convex stochastic performance functions, Mathematical Programming, Vol. 75, pp. 137-
176.

Polyak, B. T. (1990). New method of stochastic approximation type, Automation and Remote
Control, Vol. 51, pp. 937-946.

Polyak, B. T., and A. B. Juditsky (1992). Acceleration of stochastic approximation by averaging,
SIAM Journal on Control and Optimizarion, Vol. 30, pp. 838-855.

Robbins, H., and S. Monro (1951). A stochastic approximation method, Annals of Mathematical
Statistics, Vol. 22, pp. 400407.

Robinson, S. M. (1996). Analysis of sample-path optimization, Mathematics of operations
Research, Vol. 21, pp. 513-528.

Rubinstein, R. Y., and A. Shapiro (1993). Discrete Event Systems: Sensitivity Analysis and

REFERENCES 333

Stochastic Optimization by the Score Function Method, Wiley, Chichester, West Sussex, Eng-
land.

Ruppert, D. (1985). A Newton-Raphson version of the multivariate Robbins-Monro procedure,
Annals ~~Strrt ist ics, Vol. 13, pp. 236-245.

Ruppert, D. (1991). Stochastic approximation, in Handbook of Sequential Anuhsis, B. K. Ghosh
and P. K. Sen, eds., Marcel Dekker, New York, pp. 503-529.

Ruszczynski, A,, and W. Syski (1983). Stochastic approximation method with gradient averaging
for unconstrained problems, IEEE Transactions on Auromuric Control, Vol. 29, pp. 1097-1 105.

Safizadeh, M. H. (1990). Optimization in simulation: current issues and the future outlook, Naval
Research Logistics, Vol. 37, pp. 807-825.

Shahabuddin, P. (1994). Importance sampling for the simulation of highly reliable Markovian
systems, Munugement Science, Vol. 40, pp. 333-352.

Shapiro, A. (1996). Simulation-based optimization: convergence analysis and statistical inference,
Stochastic Models, Vol. 12, pp. 4 2 5 4 5 4 .

Shapiro, A,, and Y. Wardi (1996a). Convergence analysis of stochastic algorithms, Mathematics
of 0peration.s Research, Vol. 2 1, pp. 615-628.

Shapiro, A,, and Y. Wardi (1996b). Convergence analysis of gradient descent stochastic algo-
rithms, Jo~irnal of Optimization Theory and Applications, Vol. 9 1 pp. 4 3 9 4 5 4 .

Spall, J. C. (1992). Multivariate stochastic approximation using a simultaneous perturbation gra-
dient approximation, IEEE Tran.sacticms on Automatic Control, Vol. 37, pp. 332-341.

Suri, R. (1989). Perturbation analysis: the state of the art and research issues explained via the
GI/G/I queue, Proceedings of the IEEE, Vol. 77, pp. 114-137.

Suri, R., and Y. T. Leung (1989). Single run optimization of discrete event simulations: an empiri-
cal study using the M/M/I queue, IEEE Trun.sactiotz.s, Vol. 2 1, pp. 3 5 4 9 .

Venter, J. H. (1967). An extension of the Robbins-Monro procedure, Annuls of Mathematical
Statistics, Vol. 38. pp. 181-190.

Wardi, Y. (1990). Stochastic algorithms with Armijo stepsizes for minimization of functions, Jour-
nrrl of Optimization Theory and Applications, Vol. 64, pp. 3 9 9 4 1 7.

Wei, C. Z. (1987). Multivariate adaptive stochastic approximation, Anntr1.c of Stritistics, Vol. 15,
pp. 1115-1130.

Yan, D., and H. Mukai (1992). Stochastic discrete optimization, SIAM Jourtzul on Control and
Optimization, Vol. 30, pp. 594-612.

Yan, D., and H. Mukai (1993). Optimization algorithm with probabilistic estimation, J~ur t zd of
Optimization Theory and Applications, Vol. 79, pp. 345-37 1.

Yin, G. (1991). On extensions of Polyak's averaging approach to stochastic approximation.
Stoc,hastics und Stocha.ttics Reports, Vol. 36, pp. 245-264.

Yin, G., and Y. M. Zhu (1989). Almost sure convergence of stochastic approximation algorithms
with non-additive noise, It~ternutional Journal of Control, Vol. 49, pp. 1361-1376.

Zazanis, M. A,, and R. Suri (1993). Convergence rates of tinite-difference sensitivity estimates
for stochastic systems, Operutions Resrrrrch, Vol. 41, pp. 694-703.

CHAPTER 10

Verification, Validation, and Testing

OSMAN BALCl
Virginia Polytechnic Institute and State University

10.1 INTRODUCTION

A simulation study is conducted for a variety of purposes, including problem solv-
ing and training. Starting with problem formulation and culminating with presentation
of simulation study results, it consists of complex processes of formulation, analysis,
modeling, and experimentation (or exercise). A typical simulation study requires mul-
tifaceted knowledge in diverse disciplines such as operations research, computer sci-
ence, statistics, and engineering. Due to the complex processes and multifaceted knowl-
edge requirements, simulation practitioners and managers face significant technical chal-
lenges in conducting successful simulation studies. A successful simulation study is
defined to be the one that produces a sufficiently credible solution that is accepted and
used by the decision makers.

To increase significantly the probability of success in conducting a simulation study,
an organization must have a department or group called simulution quulity assurance
(SQA). The SQA group is responsible for total quality management and works closely
with the simulation project managers in planning, preparing, and administering quality
assurance activities throughout the simulation study. The SQA is a managerial approach
that is critically essential for the success of a simulation study. Oren [I-31 presents con-
cepts, criteria, and paradigms that can be used in establishing an SQA program within
an organization.

Assuring total quality involves the measurement and assessment of a variety of
quality characteristics such as accuracy, execution efficiency, maintainability, portabil-
ity, reusability, and usability (human-computer interface). Simulation study objectives
dictate a priority ordering of these quality characteristics since all of them cannot be
achieved at the same level.

The purpose of this chapter is to present principles and techniques for the assess-
ment of accuracy throughout the life cycle of a simulation study. The accuracy quality
characteristic is assessed by conducting verification, validation, and testing (VV&T).

Handbook of SSimulation, Edited by Jerry Banks.
ISBN 0-471-1 3403-1 O 1998 John Wiley & Sons, Inc.

336 VERIFICATION, VALIDATION, AND TESTING

Model veriJication is substantiating that the model is transformed from one form into
another, as intended, with sufficient accuracy. Model verification deals with building the
model right. The accuracy of transforming a problem formulation into a model speci-
fication or the accuracy of converting a model representation in a micro flowchart into
an executable computer program is evaluated in model verification.

Model validation is substantiating that within its domain of applicability, the model
behaves with satisfactory accuracy consistent with the study objectives. Model valida-
tion deals with building the right model.

An activity of accuracy assessment can be labeled as verification or validation based
on an answer to the following question: In assessing the accuracy, is the model behavior
compared with respect to the corresponding system behavior through mental or com-
puter execution? If the answer is "yes," model validation is conducted; otherwise, it
implies that the transformational accuracy is judged implying model verification.

Model testing is ascertaining whether inaccuracies or errors exist in the model. In
model testing, the model is subjected to test data or test cases to determine if it functions
properly. "Test failed" implies the failure of the model, not the test. A test is devised
and testing is conducted to perform either validation or verification or both. Some tests
are devised to evaluate the behavioral accuracy (i.e., validity) of the model, and some
tests are intended to judge the accuracy of model transformation from one form into
another (verification). Therefore, the entire process is commonly called model W & T .

Testing should not be interpreted just as functional testing which requires computer
execution of the model. Administering reviews, inspections, and walkthroughs is similar
to devising a test under which model accuracy is judged. In this case, panel members
become part of the devised test and the testing is conducted by each member executing a
set of tasks. Therefore, informal techniques described in Section 10.4 are also considered
testing techniques.

10.2 LIFE CYCLE AND A CASE STUDY

The processes and phases of the life cycle of a simulation study and a simulation and
modeling case study are presented in this section. The case study is used throughout
the chapter to illustrate the life cycle and the VV&T principles and techniques. The life
cycle of a simulation study is presented in Figure 10.1 [4, 51. The phases are shown by
shaded oval symbols. The dashed arrows describe the processes that relate the phases
to each other. The solid arrows refer to the credibility assessment stages. Banks et al.
[6] and Knepell and Arangno [7] review other modeling processes for developing sim-
ulations.

The life cycle should not be interpreted as strictly sequential. The sequential repre-
sentation of the dashed arrows is intended to show the direction of development through-
out the life cycle. The life cycle is iterative in nature and reverse transitions are expected.
Every phase of the life cycle has an associated VV&T activity. Deficiencies identified
by a VV&T activity may necessitate returning to an earlier process and starting all over
again.

The 10 processes of the life cycle are shown by the dashed arrows in Figure 10.1.
Although each process is executed in the order indicated by the dashed arrows, an error
identified may necessitate returning to an earlier process and starting all over again.
Some guidelines are provided below for each of the 10 processes.

10.2 LIFE CYCLE AND A CASE STUDY 337

/ COMMUNICATED \

DECISION MAKERS

I
Experimental COMMUNICATIVE
Model W & T

I

,
EXPERIMENTAL / ~ e s i ~ n of Experiments

Figure 10.1 Life cycle of a simulation study.

10.2.1 Problem Formulation

When a problem is recognized, a decision maker (a client or sponsor group) initiates a
study by communicating the problem to an analyst (a problem solver, contractor, or a
consultant/research group). The problem communicated is rarely clear, specific, or orga-
nized. Hence an essential study to formulate the uctual problem must follow. Problem

338 VERIFICATION, VALIDATION, AND TESTING

formulation problem structuring or problem definition) is the process by which the ini-
tially communicated problem is translated into a formulated problem sufficiently well
defined to enable specific research action [8].

Balci and Nance [9] present a high-level procedure that (I) guides the analyst during
problem formulation, (2) structures the formulated problem VV&T, and (3) seeks to
increase the likelihood that the study results are utilized by decision makers.

Case Study. The town of Blacksburg in Virginia (client) receives complaints from the
drivers using the traffic intersection at Prices Fork Road and Toms Creek Road, shown
in Figure 10.2, about too much waiting during rush-hour periods. The town hires a
consulting company (the contractor) to conduct a study and propose a solution to the
problem.

The contractor conducts the process of problem formulation and determines the study
objective as follows:

Identify which operating policy should be implemented at the traffic intersection so as to
reduce the average waiting time of vehicles in each travel path to an acceptable level during
rush-hour periods. Possible operating policies include different light timings, two-way stop
signs, four-way stop signs, flashing red and yellow lights, and constructional changes such
as adding new lanes.

10.2.2 lnvestigation of Solution Techniques

All alternative techniques that can be used to solve the formulated problem should be
identified. A technique whose solution is estimated to be too costly or is judged not
to be sufficiently beneficial with respect to the study objectives should be disregarded.
Among the qualified ones, the technique with the highest expected benefits/cost ratio
should be selected.

The statement "when all else fails, use simulation" is misleading if not invalid. The
question is not to bring a solution to the problem, but to bring a sufficiently credible
one that will be accepted and used by the decision maker(s). A technique other than
simulation may provide a less costly solution, but it may not be as useful.

Sometimes, the problem communicated is formulated with the influence of a solu-
tion technique in mind. Occasionally, simulation is chosen without considering any other
technique just because it is the only one the analyst(s) can handle. Skipping the investi-
gation process may result in unnecessarily expensive solutions, sometimes to the wrong
problems.

As a result of the investigation process, it is assumed here that simulation is chosen
as the most appropriate solution technique. At this point, the simulation project team
should be activated and be made responsible for the formulated problem VV&T and
feasibility assessment of simulation before preceeding in the life cycle.

Case Study. The contractor investigates all possible solution techniques and selects
discrete-event simulation as the one with the highest benefits/cost ratio.

10.2.3 System Investigation

Characteristics of the system that contains the problem formulated should be investi-
gated for consideration in system definition and modeling. Shannon [lo] identifies six

10.2 LIFE CYCLE AND A CASE STUDY 339

Figure 10.2 Traffic intersection at Prices Fork Road and Toms Creek Road

major system characteristics: (1) change, (2) environment, (3) counterintuitive behavior,
(4) drift to low performance, (5) interdependency, and (6) organization. Each charac-
teristic should be examined with respect to the study objectives that are identified with
the formulation of the problem.

In simulation, we deal primarily with stochastic and dynamic real systems that
change over a period of time. How often and how much the system will change during
the course of a simulation study should be estimated so that the model representation can
be updated accordingly. Changes in the system may also change the study objectives.

A system's environment consists of all input variables that can affect its state signifi-
cantly. The input variables are identified by assessing the significance of their influence
on the system's state with regard to the study objectives. Underestimating the influence
of an input variable may result in inaccurate environment definition.

340 VERIFICATION, VALIDATION, AND TESTING

Some complex systems may show counterintuitive behavior, which should be identi-
fied for consideration in defining the system. However, this is not an easy task, especially
for those systems containing many subjective elements (e.g., social systems). Cause and
effect are often not closely related in time or space. Symptoms may appear long after
the primary causes [lo]. To be able to identify counterintuitive behavior, it is essential
that the simulation project employ people who have expert knowledge about the system
under study.

A system may show a drip to low perjormance due to the deterioration of its com-
ponents (e.g., machines in a manufacturing system) over a period of time. If this char-
acteristic exists, it should be incorporated within the model representation especially if
the model's intended use is forecasting.

The interdependency and organization characteristics of the system should be exam-
ined prior to the abstraction of the real system for the purpose of modeling. In a complex
stochastic system, many activities or events take place simultaneously and influence
each other. The system complexity can be overcome by way of decomposing the sys-
tem into subsystems and subsystems into other subsystems. This decomposition can be
carried out by examining how system elements or components are organized.

Once the system is decomposed into subsystems whose complexity is manageable
and the system characteristics are documented, model formulation process can be started
following the system and objectives definition VV&T.

Case Study. The contractor conducts the process of system investigation. It is deter-
mined that the traffic intersection will not change during the course of the study. The
interarrival time of vehicles in lane Lj where j = 1, 2, 3, . . . , 1 1 is identified as an
input variable making up the environment, whereas pedestrians, emergency vehicles,
and bicycles are excluded from the system definition due to their negligible effect on
the system's state. No counterintuitive behavior can be identified. The system perfor-
mance does not deteriorate over time.

10.2.4 Model Formulation

Model formulation is the process by which a conceptual model is envisioned to represent
the system under study. The conceptual model is the model that is formulated in the
mind of the modeler [S] . Model formulation and model representation constitute the
process of model design.

Input data analysis and modeling [l 1 , 121 is a subprocess of model formulation and
is conducted with respect to the way the model is driven. Simulation models are clas-
sified as self-driven or trace-driven. A self-driven (distribution-driven or probabilistic)
simulation model is the one that is driven by input values obtained via sampling from
probability distributions using random numbers. A trace-driven (or retrospective) sim-
ulation model, on the other hand, is driven by input sequences derived from trace data
obtained through measurement of the real system.

Under some study objectives (e.g., evaluation, comparison, determination of func-
tional relations) and for model validation, input data model(s) are built to represent the
system's input process. In a self-driven simulation (e.g., of a traffic intersection), we
collect data on an input random variable (e.g., interarrival time of vehicles), identify
the distribution, estimate its parameters, and conclude upon a probability distribution
as the input data model to sample from in driving the simulation model [13]. In a trace-
driven simulation, we trace the system (e.g., using hardware and software monitors) and

10.2 LIFE CYCLE AND A CASE STUDY 341

TABLE 10.1 Probabilistic Models of Vehicle Interarrival Times for
Each Lane

Lane Probability Location Scale Shape
Number(s) Distribution Parameter Parameter Parameter

Gamma
Weibull
Weibull
Lognormal
Weibull
Weibull
Weibull
Lognormal
Weibull
Weibull

utilize the refined trace data as the input data model to use in driving the simulation
model.

Case Study. All assumptions made in abstracting the traffic intersection operation
under the study objective are stated and listed explicitly. Data are collected on the inter-
arrival times of vehicles, current traffic light timing, probabilities of turns, and travel
times in each travel path. A single arrival process is observed for lanes 1 and 2 and
divided probabilistically. ExpertFit software [I31 is used to identify probabilistic mod-
els of the input process. The results of input data modeling are given in Table 10.1.

The estimated probabilities of right turns are presented in Table 10.2. The probabil-
ity distributions identified characterize the rush-hour traffic conditions and are used to
sample from in driving the self-driven simulation model built.

10.2.5 Model Representation

This is the process of translating the conceptual model into a communicative model. A
communicative model is "a model representation which can be communicated to other
humans, can be judged or compared against the system and the study objectives by more
than one human" [5] . A communicative model (i.e., a simulation model design speci-
fication) may be represented in any of the following forms: (1) structured, computer-
assisted graphs, (2) flowcharts, (3) structured English and pseudocode, (4) entity-cycle

TABLE 10.2 Estimated Probabilities of Right Turns

Location Probability

Turning to lane 2 from the combined
arrival process for lanes 1 and 2 0.634

Right turn in lane 2 0.346
Right turn in lane 5 0.160
Right turn in lane 1 I 0.140

342 VERIFICATION, VALIDATION, AND TESTING

(or activity-cycle) diagrams, (5) condition specification [14], and (6) more than a dozen
diagramming techniques described in ref. 15.

Several communicative models may be developed: one in the form of structured
English intended for nontechnical people, another in the form of a micro flowchart
intended for a programmer. Different representation forms may also be integrated in a
stratified manner. The representation forms should be selected based on (1) their appli-
cability for describing the system under study, (2) the technical background of the peo-
ple to whom the model is to be communicated, (3) how much they lend themselves to
formal analysis and verification, (4) their support for model documentation, (5) their
maintainability, and (6) their automated translatability into a programmed model.

Case Study. The Visual Simulation Environment (VSE) software product [16-181 is
selected for simulation model development and experimentation. An aerial photograph
of the traffic intersection obtained from the town of Blacksburg is scanned as shown in
Figure 10.2. Vehicle images, tree branches, and light posts on the roads are removed
from the scanned image using Adobe Photoshop software. The cleaned image is brought
into the VSE Editor by clicking, dragging, and dropping. The photographic image is
decomposed into components represented as circles as shown in Figure 10.3. The com-

Figure 10.3 Model specification in the Visual Simulation Environment.

10.2 LIFE CYCLE AND A CASE STUDY 343

ponents are connected with each other using the path tool. The traffic light for each lane
is depicted by a line which changes color during animation. New classes are created by
inheriting from the built-in VSE class hierarchy. Methods in each class are specified by
using VSE's very high-level object-oriented scripting language. Vehicles are modeled
as dynamic objects and are instantiated at run time with respect to the interarrival times
sampled from the probability distributions shown in Table 10.1. Each graphical object
in the model representation is set to belong to a class to inherit the characteristics and
behavior specified in that class.

10.2.6 Programming

Translation of the communicative model (model specification) into a programmed model
(executable model) constitutes the process of programming. A programmed model is an
executable simulation model representation which does not incorporate an experiment
design. The process of programming can be performed by the modeler using a simu-
lation software product [19], a simulation programming language [19], or a high-level
programming language [20].

Case Study. The traffic intersection model specification is created by using the VSE
Editor tool. Then, by selecting the "Prepare for Simulation" menu option, the model
specification is automatically translated into an executable form. The VSE Simulator
tool is used to execute and animate the model and conduct experiments.

10.2.7 Design of Experiments

This is the process of formulating a plan to gather the desired information at minimal
cost and to enable the analyst to draw valid inferences [lo]. An experimental model is
the programmed model incorporating an executable description of operations presented
in such a plan.

A variety of techniques are available for the design of experiments. Response-
surjace methodologies can be used to find the optimal combination of parameter values
that maximize or minimize the value of a response variable [I 11. Factorial designs can
be employed to determine the effect of various input variables on a response variable
(Chapter 6; [21]). Variance reduction techniques can be implemented to obtain greater
statistical accuracy for the same amount of simulation [I I]. Ranking and selection tech-
niques can be utilized for comparing alternative systems (Chapter 8; [I 1, 191). Several
methods (e.g., replication, batch means, regenerative) can be used for statistical analysis
of simulation output data (Chapter 7).

Case Study. The VSE Simulator's design of experiments panel is used to specify the
method of replications for statistical analysis of simulation output data. Fourteen per-
formance measures are defined for all travel paths:

WiL = average waiting time of vehicles arriving and turning left in lane J ,

j = 1 ,3 ,6 ,9

Wjs = average waiting time of vehicles arriving and travelling straight in lane j,

J = 2,4,5,7, 1 0 , l l

344 VERIFICATION, VALIDATION, AND TESTING

WjR = average waiting time of vehicles arriving and turning right in lane j ,

j = 2,5,8, 11

The waiting time is the time spent by a vehicle in the entire traffic intersection, from
arrival to the intersection to departure. The experimentation objective is to select the
best traffic light timing out of three alternatives: the current light timing and two other
alternatives suggested based on observation. The best light timing produces the lowest
WjL, WjS , and WjR for each lane j .

10.2.8 Experimentation

This is the process of experimenting with the simulation model for a specific purpose.
Some purposes of experimentation are [lo] (1) training, (2) comparison of different
operating policies. (3) evaluation of system behavior, (4) sensitivity analysis, (5) fore-
casting, (6) optimization, and (7) determination of functional relations. The process of
experimentation produces the simulation results.

Case Study. Using the VSE Editor, the model is instrumented to collect data on each
performance measure. The model is warmed up for a total of 1000 vehicles passing
through the intersection. Data are collected during the steady-state period of 10,000
vehicles. Identical experimental conditions are created by way of using the same random
number generator seeds for each traffic light timing alternative. The model is replicated
30 times and each performance measure replication value is written to output file f ,
where f = 1, 2, 3, . . . , 14. Then the VSE Output Analyzer tool is used to open the
output files and construct confidence intervals and provide general statistics for each
performance measure.

10.2.9 Redefinition

This is the process of (1) updating the experimental model so that it represents the cur-
rent form of the system, (2) altering it for obtaining another set of results, (3) changing
it for the purpose of maintenance, (4) modifying it for other use(s), or (5) redefining a
new system to model for studying an alternative solution to the problem.

Case Study. Using the VSE Editor, the traffic light timing is modified and a new exe-
cutable model is produced. The VSE Simulator is used to conduct experiments with the
model under the new traffic light timing. The VSE Output Analyzer is used to construct
confidence intervals and provide general statistics for each performance measure.

10.2.1 0 Presentation of Simulation Results

In this process, simulation results are interpreted and presented to the decision makers
for their acceptance and implementation. Since all simulation models are descriptive,
deciding on a solution to the problem requires rigorous analysis and interpretation of the
results. The presentation should be made with respect to the intended use of the model. If
the model is used in a "what if" environment, the results should be integrated to support
the decision maker in the decision-making process. Complex simulation results may also

10.3 VERIFICATION, VALIDATION, AND TESTING PRINCIPLES 345

necessitate such an integration. The report documenting the study and its results together
with its presentation also constitutes a form of supporting the decision maker.

Case Study. The experimentation results under three traffic light timing alternatives
are presented to the decision makers. There was not a single alternative that reduced the
average waiting time in every travel path. However, alternative 1 was found to reduce
the waiting times to acceptable levels in all travel paths and hence it is accepted and
implemented by the decision makers.

10.3 VERIFICATION, VALIDATION, AND TESTING PRINCIPLES

According to Webster's Encyclopedic Unabridged Dictionary, a principle is defined as
"I. an accepted or professed rule of action or conduct. 2. a fundamental, primary, or
general law or truth from which others are derived. 3. a fundamental doctrine or tenet;
a distinctive ruling opinion." All three definitions above apply to the way the term prin-
ciple is used herein.

Principles are important to an understanding of the foundations of VV&T. The princi-
ples help researchers, practitioners, and managers better comprehend what VV&T is all
about. They serve to provide the underpinnings for over 75 VV&T techniques, described
in Section 10.4, that can be used throughout the life cycle. Understanding and applying
these principles is crucially important for the success of a simulation study.

The 15 principles presented herein are established based on the experience described
in the published literature and the author's experience during his VV&T research since
1978. The principles are listed below in no particular order.

Principle 1 VV&T must be conducted throughout the entire life cycle of a simulation
study.

VV&T is not a phase or step in the life cycle but a continuous activity throughout the
entire life cycle presented in Figure 10.1. Conducting VV&T for the first time in the life
cycle when the experimental model is complete is analogous to a teacher who gives only
a final examination [22]. No opportunity is provided throughout the semester to notify
the student that he or she has serious deficiencies. Severe problems may go undetected
until it is too late to do anything but fail the student. Frequent tests and homeworks
throughout the semester are intended to inform students about their deficiencies so that
they can study more to improve their knowledge as the course progresses.

The situation in VV&T is exactly analogous. The VV&T activities throughout the
entire life cycle are intended to reveal any quality deficiencies that might be present as
the simulation study progresses from problem definition to the presentation of simulation
results. This allows us to identify and rectify quality deficiencies during the life-cycle
phase in which they occur.

A simulation model goes through five levels of testing during its life cycle:

Level I : Private Testing. Performed by the modeler in private with no documen-
tation. Although informal, private testing is strongly encouraged prior to formal
submodel/module testing [23].

Level 2: Submodel (Module) Testing. Planned, performed, and documented inde-
pendently by the SQA group. Submodel testing treats each submodel as a stand-

346 VERIFICATION. VALIDATION, AND TESTING

alone unit, with its own input and output variables, that can be tested without other
submodels.

Level 3: Integration Testing. Planned, performed, and documented independently
by the SQA group. Its objective is to substantiate that no inconsistencies in inter-
faces and communications between the submodels exist when the submodels are
combined to form the model. It is assumed that each submodel has passed the
submodel testing prior to integration testing.

Level 4: Model (Product) Testing. Planned, performed, and documented indepen-
dently by the SQA group. Its objective is to assess the validity of the overall model
behavior.

Level 5: Acceptance Testing. Planned, performed, and documented independently
by the sponsor of the simulation study or the independent third party hired by
the sponsor. Its objective is to establish the sufficient credibility of the simulation
model so that its results can be accpeted and used by the sponsor.

Principle 2 The outcome of simulation model VV&T should not be considered as a
binary variable where the model is absolutely correct or absolutely incorrect.

Since a model is an abstraction of a system, perfect representation is never expected.
Shannon [lo] indicates that "it is not at all certain that it is ever theoretically possible to
establish if we have an absolutely valid model; even if we could, few managers would
be willing to pay the price." The outcome of model VV&T should be considered as a
degree of credibility on a scale from 0 to 100, where 0 represents absolutely incorrect
and 100 represents absolutely correct. As depicted in Figure 10.4 [lo , 241, as the degree
of model credibility increases, so will the model development cost. At the same time,
the model utility will also increase, but probably at a decreasing rate. The point of
intersection of two curves changes from one model to another.

Principle 3 A simulation model is built with respect to the study objectives and its
credibility is judged with respect to those objectives.

The objectives of a simulation study are identified in the formulated problem phase
and explicitly and clearly specified in the system and objectives definition phase of the

0 Degree of Model Credibility 100

Figure 10.4 Model credibility versus cost and utility.

10.3 VERIFICATION, VALIDATION, AND TESTING PRINCIPLES 347

life cycle shown in Figure 10.1. Accurate specification of the study objectives is crucial
for the success of a simulation study. The model is either developed from scratch or an
existing model is modified for use or an available one is selected for use as is, all with
respect to the study objectives.

The study objectives dictate how representative the model should be. Sometimes,
60% representation accuracy may be sufficient; sometimes, 95% accuracy may be
required, depending on the importance of the decisions that will be made based on
the simulation results. Therefore, model credibility must be judged with respect to the
study objectives. The adjective sufJlcient must be used in front of the terms such as
model credibility, model validity, or model accuracy to indicate that the judgment is
made with respect to the study objectives. It is more appropriate to say that "the model
is sufficiently valid" than to say that 'the model is valid." Here "sufficiently v a l i d
implies that the validity is judged with respect to the study objectives and found to be
sufficient.

Principle 4 Simulation model VV&T requires independence to prevent developer's
bias.

Model testing is meaningful when conducted in an independent manner by an unbi-
ased person. The model developer with the most knowledge of the model may be the
least independent when it comes to testing. The developers are often biased because
they fear that negative testing results can damage the credibility of the organization and
may lead to the loss of future contracts.

The independence in model testing can be achieved in two ways: (1) establishing
an SQA group within the organization conducting the simulation study, and (2) using
an independent third party hired by the sponsor of the simulation study. The first one
is required to achieve independence in level 3 and 4 testing within the organization as
described under principle 1. The SQA group must be independent from the department
in charge of conducting the simulation study and should report to the top management.
The SQA group is responsible for planning, performing, and documenting all level 2, 3,
and 4 tests in an unbiased manner. It should be made clear to the simulation project team
that the main thrust of testing is to detect and document faults; it is not performance
appraisal of the project team. This point must be communicated persuasively to everyone
involved so that full cooperation is achieved in discovering and documenting errors.

The second one is required to achieve independence in level 5 (acceptance) testing as
described under principle 1. The requirements for acceptance testing must be specified in
the legal contract by the sponsor. The test cases to be used must be well documented.
Although the sponsor can perform the acceptance testing, it is recommended that an
independent third party contracted by the sponsor be responsible for the testing. In that
way, the organization conducting the simulation study cannot claim that the sponsor is
biased.

Principle 5 Simulation model VV&T is difficult and requires creativity and insight.
One must thoroughly understand the entire simulation model so as to design and

implement effective tests and identify adequate test cases. Knowledge of the problem
domain, expertise in the modeling methodology and prior modeling, and VV&T expe-
rience are required for successful testing. However, it is not possible for one person to
fully understand all aspects of a large and complex model, especially if the model is
a stochastic one containing hundreds of concurrent activities. The fundamental human
limitation, called the Hrair limit, indicates that a human being cannot process more

348 VERIFICATION, VALIDATION, AND TESTING

than 7 k 2 entities simultaneously. Hence testing a complex simulation model is a very
difficult task that requires creativity and insight.

A model's developers are usually the most qualified to show the creativity and insight
required for successful testing since they are intimately knowledgeable about the inter-
n a l ~ of a model. However, they are usually biased when it comes to model testing and
they cannot be fully utilized. Therefore, the inability to use model developers effec-
tively for testing increases the difficulty of testing. False beliefs exist about testing, as
indicated by Hetzel [22]: "Testing is easy; anyone can do testing; no training or prior
experience is required." The difficulty of model VV&T must not be underestimated.
The model testing must be well planned and administered by the SQA group.

Principle 6 Simulation model credibility can be claimed only for the conditions for
which the model is tested.

The accuracy of the input-output transformation of a simulation model is affected
by the characteristics of the input conditions. The transformation that works for one set
of input conditions may produce absurd output when conducted under another set of
input conditions. In the case study, for example, a stationary simulation model is built
assuming constant arrival rate of vehicles during the evening rush hour, and its credi-
bility may be judged sufficient with respect to the evening rush-hour input conditions.
However, the simulation model will show invalid behavior when run under the input
conditions of the same traffic intersection between 7 : 00 A.M. and 6 : 00 P.M. During
this time period, the arrival rate of vehicles is not constant and a nonstationary simula-
tion model is required. Hence establishing sufficient model credibility for the evening
rush-hour conditions does not imply sufficient model credibility for input conditions
during other times. The prescribed conditions for which the model credibility has been
established is called the domain of applicability of the simulation model [25]. Model
credibility can be claimed only for the domain of applicability of the model.

Principle 7 Complete simulation model testing is not possible.
Exhaustive (complete) testing requires that the model is tested under all possible

input conditions. Combinations of feasible values of model input variables can generate
millions of logical paths in the model execution. Due to time and budgetary constraints,
it is impossible to test the accuracy of millions of logical paths. Therefore, in model
testing, the purpose is to increase our confidence in model credibility as much as dictated
by the study objectives rather than trying to test the model completely. How much to
test or when to stop testing is dependent on the desired domain of applicability of the
simulation model. The larger the domain, the more testing is required. The domain of
applicability is determined with respect to the study objectives.

Hundreds of logical paths may need to be tested so as to substantiate model cred-
ibility under a set of prescribed conditions. Due to budgetary and time constraints, all
logical paths may not be tested. Test data or test cases are prepared to test the logical
paths in a random manner. Test data can be generated by using (I) random values, (2)
deterministic values, (3) minimum values for all input variables, (4) maximum values
for all input variables, (5) a mixture of minimum and maximum values for all input
variables, (6) invalid values, and (7) simulated values.

When using test data, it must be noted that the law of large numbers simply does
not apply. The question is not how much test data is used, but what percentage of the
valid input domain is covered by the test data. The higher the percentage of coverage,
the higher the confidence we can gain in model credibility.

10.3 VERIFICATION, VALIDATION, AND TESTING PRINCIPLES 349

Principle 8 Simulation model VV&T must be planned and documented.
Testing is not a phase or step in the model development life cycle; it is a continuous

activity throughout the entire life cycle. The tests should be identified, test data or cases
should be prepared, tests should be scheduled, and the entire testing process should be
documented. Ad hoc or haphazard testing does not provide reasonable measurement of
model accuracy. Hetzel [22] points out that "such testing may even be harmful in leading
us to a false sense of security." Careful planning is required for successful testing.

Planning and documenting model testing involves at least three groups of people:
(1) sponsor nf the sirnulction study, (2) SQA group of the organization conducing the
simulation s~udy, and (3) simulation project management. The sponsor is responsible for
documenting the tests and specifying the test cases or data with which the acceptance
testing will be performed. It is recommended that a plan for acceptance testing be made
part of the 1eg;ll contract between sponsor and contractor of the simulation study. If the
study is conducted internally within an organization, acceptance testing plan should
be pa.. of the requirements specification document. The SQA group is responsible for
planning, performing, and documenting level 2 (module), level 3 (integration), and level
4 (model) testing.

A test plan is a document describing what is selected for testing, test database and
code, test specifications, standards and conventions, test control, test configuration, test
tools, and the results expected. An acceptance test plan is presented by Beizer [23].

Principle 9 Type I, 11, and 111 errors must be prevented.
Three types of errors may be committed in conducting a simulation study as depicted

in Figure 10.5 191. A r y e I error is committed when the simulation results are rejected
when in fact they are sufficiently credible. A type I1 error occurs when invalid simu-
lation results are accepted as if they are sufficiently valid. A type 111 error occurs if
the wrong problem is solved and committed when the problem formulated does not
completely contain the actual problem.

Committing a type I error unnecessarily increases the cost of model development. The
consequences of type I1 and type I11 errors can be catastrophic, especially when critical
decisions are made on the basis of simulation results. A type 111 error implies that the prob-
lem solution and the simulation study results will be irrelevant when it is committed.

The probability of committing a type I error is called model builder's risk and the
probability of committing a type I1 error is called model user :s risk [26]. VV&T activ-
ities must focus on minimizing these risks as much as possible. Balci and Sargent 1261
show how to quantify these risks when using hypothesis testing for the validation of a
simulation model with two or more output variables.

Figure 10.5 illustrates the occurrence of three types of errors, assuming that the sim-
ulation study results are certified by an independent organization. Whenever feasible,
simulation results should be independently certified so as to remove the developer's bias
and promote independent VV&T (see Principle 4).

Principle 10 Errors should be detected as early as possible in the life cycle of a sim-
ulation study.

A rush to model implementation is a common problem in simulation studies. Some-
times simulation models are built by direct implementation in a simulation system or
(simulation) programming language with no or very little formal model specification.
As a result of this harmful build-and-fix approach, experimental model VV&T becomes
the only main credibility assessment stage.

350 VERIFICATION, VALIDATION, AND TESTING

Problem

Does the formulated
problem contain the complete

No

a solution which is

Is the

results certified?

Are the
simulation results

accepted?

I The actual problem does not have a
solution which is sufficiently credible.

Is the

Type I Error Type I1 Error

Figure 10.5 Type I, 11, and 111 errors in a simulation study.

Detection and correction of errors as early as possible in the life cycle of a simulation
study must be the primary objective. Sufficient time and energy must be expended for
each VV&T activity shown in Figure 10.1. Nance [5] points out that detecting and
correcting major modeling errors during the process of model implementation and in
later phases is very time consuming, complex, and expensive. Some vital errors may
not be detectable in later phases, resulting in the occurrence of a type I1 or I11 error.

Nance and Overstreet [27] advocate this principle and provide diagnostic testing tech-
niques for models represented in the form of condition specification. A model analyzer
software tool is included in the definition of a simulation model development environ-

10.3 VERIFICATION, VALIDATION, AND TESTING PRINCIPLES 351

SIMULATION
MODEL

Correspondence - SYSTEM

Inference

olm 02m 02, okm 0: 0; o;, 0;
Model Output Variables System Output Variables

Figure 10.6 Model and system characteristics

ment so as to provide effective early detection of model specification errors 116, 28,
291.

Principle 11 Multiple response problem must be recognized and resolved properly.
Figure 10.6 shows a simulation model with k output variables (responses or per-

formance measures) and q input variables representing a system with corresponding k
output variables and q input variables. Superscript nz indicates model and s indicates
system. SM stands for submodel and SS stands for subsystem.

Due to the multiple response problem described by Shannon [lo], the validity of a
simulation model with two or more output variables (responses) cannot be tested by
comparing the corresponding model and system output variables one at a time (i.e., 0;'
versus O; , 07 versus O;, . . . , 0; versus Oi, as shown in Figure 10.6) using a univariate
statistical procedure. A multivariate statistical procedure must be used to incorporate the
correlations among the output variables in the comparison. Two such multivariate sta-
tistical techniques are presented by Balci and Sargent [30] using Hotelling's T~-statistic
for constructing ellipsoidal joint confidence regions to assess model validity. The tech-
niques are described below.

The first technique requires independence between the model and system output data
and is intended for self-driven simulation models of observable systems. Assume that
the model and system each has k output variables, as depicted in Figure 10.6, with n
observations on each model output variable and N observations on each system output
variable. Let (pn')' = [p;', &, . . . , p;IZ] and (p")' = [pi , p i , . . . , p i] be the k-dimensional
vectors of population means of model and system output variables, respectively. Let

- -
(Gm)' = [ti;', 0 7 , . . . , 0 ; 1 1] and (as)' = [S;, S i , . . . , o;l] be the k-dimensional vectors
of sample means of observations on model and system output variables, respectively.
Then, the lOO(1- y)% joint confidence region is specified by those vectors 6 = pm - I*'
satisfying the inequality

352 VERIFICATION, VALIDATION, AND TESTING

where S is the pooled variance-covariance matrix and T $; ~ , , + , - , _ I is the upper y
percentage point of Hotelling's T2-distribution with degrees of freedom k and n + N -
k - 1.

The second technique requires paired observations between the model and system
output - variables and is intended for trace-driven simulation models. Let a' = [dl, dl,
. . . , dk] be the k-dimensional vector of sample means of differences between the paired
observations on the model and system output variables with a sample size of N. The
100(1 - y)% joint confidence region consists of the vectors satisfying the inequal-
ity

where Sd is the variance-covariance matrix of the differences.
When k = 3, the joint confidence region can be presented visually as illustrated

in Figure 10.7 and can be used to assess the model accuracy with an exact level of
100(1 - y)% confidence. We can conclude that we are 100(1 - y)% confident that the
differences between the population means of corresponding model and system output
variables are contained within the joint confidence region shown in Figure 10.7. Ideally,
the joint confidence region contains zero at its center, and the smaller its size, the better
it is. Any deviation from the idealistic case is an indication of the degree of invalid-
ity. As k increases, interpretation of the joint confidence region becomes difficult but

Figure 10.7 Joint confidence region representing the validity of a simulation model with three
output variables.

10.3 VERIFICATION, VALIDATION, AND TESTING PRINCIPLES 353

not impossible. With the use of computer-aided assistance, the model validity can be
examined.

Principle 12 Successfully testing each submodel (module) does not imply overall
model credibility.

Suppose that a simulation model is composed of submodels (SM,r) representing sub-
systems (SS,) respectively, as depicted in Figure 10.6. Submodel x can be tested indi-
vidually by comparison to subsystem x, where x = (1, b, . . . , j, using many of the VV&T
techniques described in Section 10.4. The credibility of each submodel is judged to be
sufficient with some error that is acceptable with respect to the study objectives. We
may find each submodel to be sufficiently credible, but this does not imply that the
whole model is sufficiently credible. The allowable errors for the submodels may accu-
mulate to be unacceptable for the entire model. Therefore, the entire model must be
tested even if each submodel is found to be sufficiently credible.

Principle 13 Double validation problem must be recognized and resolved properly.
If data can be collected on both system input and output, model validation can be

conducted by comparing model and system outputs obtained by running the model with
the "same" input data that drives the system. Determination of the "same" is yet another
validation problem within model validation. Therefore, this is called the double validu-
tion problem This is an important problem that is often overlooked. It greatly affects
the accuracy of model validation. If invalid input data models are used, we may still find
the model and system outputs sufficiently matching each other and conclude incorrectly
on the sufficient validity of the model.

The "same" is determined by validating the input data models. In the case study,
the input data models are the probability distributions given in Table 10.1. We must
substantiate that the input data models have sufficient accuracy in representing the sys-
tem input process. Input data modeling deals with characterization of the system input
data 113, 311. Simulation models are categorized into two classes with respect to the
way they are driven: trace-driven and self-driven. In trace-driven simulation, the sys-
tem input is characterized by the trace data collected from the instrumented system. The
trace data become the input data model which should be validated against the actual
system input process.

In selj-driven simulations, the simulation model is driven by randomly sampling from
the probabilistic models developed to represent the data collected on the system input
process. Usually, input data modeling is achieved by fitting standard probability distribu-
tions to observed data. The input data models should be constructed using a multivariate
statistical approach if the input variables are correlated. Individually building a proba-
bilistic model for each input variable does not incorporate the correlations among the
input variables; therefore, a multivariate probabilistic approach should be used.

Principle 14 Simulation model validity does not guarantee the credibility and accept-
ability of simulation results.

Model validity is a necessary but not a sufficient condition for the credibility and
acceptability of simulation results. We assess model validity with respect to the study
objectives by comparing the model with the system as it is defined. If the study objec-
tives are identified incorrectly and/or the system is defined improperly, the simulation
results will be invalid; however, we may still find the model to be sufficiently valid

354 VERIFICATION, VALIDATION, AND TESTING

by comparing it with the improperly defined system and with respect to the incorrectly
identified objectives.

A distinct difference exists between the model credibility and the credibility of simu-
lation results. Model credibility is judged with respect to the system (requirements) def-
inition and the study objectives, whereas the credibility of simulation results is judged
with respect to the actual problem definition and involves the assessment of system def-
inition and identification of study objectives. Therefore, model credibility assessment is
a subset of credibility assessment of simulation results.

Principle 15 Formulated problem accuracy greatly affects the acceptability and cred-
ibility of simulation results.

It has been said that a problem correctly formulated is half solved [32]. Albert Ein-
stein once indicated that the correct formulation of a problem was even more crucial
than its solution. The ultimate goal of a simulation study should not be just to produce
a solution to a problem but to provide one that is sufficiently credible and accepted and
implemented by the decision makers. We cannot claim that we conducted an excellent
simulation study but the decision makers did not accept our results and we cannot do
anything about it. Ultimately we are responsible for the acceptability and usability of
our simulation solutions, although in some cases we cannot affect or control the accept-
ability.

Formulated problem accuracy assessed by conducting formulated problem VV&T
greatly affects the credibility and acceptability of simulation results. Insufficient problem
definition and inadequate sponsor involvement in defining the problem are identified
as two important problems in the management of computer-based models. It must be
recognized that if problem formulation is poorly conducted, resulting in an incorrect
problem definition, no matter how fantastically we solve the problem, the simulation
study results will be irrelevant. Balci and Nance [9] present an approach to problem
formulation and 38 indicators for assessing the formulated problem accuracy.

10.4 VERIFICATION, VALIDATION, AND TESTING TECHNIQUES

More than 75 VV&T techniques are presented in this section. Most of these techniques
come from the software engineering discipline and the remaining are specific to the
modeling and simulation field. The software VV&T techniques selected which are appli-
cable for simulation model VV&T are presented in a terminology understandable by a
simulationist. Descriptions of some software VV&T techniques are changed so as to
make them directly applicable and understandable for simulation model VV&T.

Figure 10.8 shows a taxonomy that classifies the VV&T techniques into four primary
categories: informal, static, dynamic, and formal. A primary category is further divided
into secondary categories, shown in italics. The use of mathematical and logic formalism
by the techniques in each primary category increases from informal to formal from left
to right. Similarly, the complexity also increases as the primary category becomes more
formal.

It should be noted that some of the categories presented in Figure 10.8 possess similar
characteristics and in fact have techniques that overlap from one category to another.
However, a distinct difference between each classification exists, as it is evident in the
discussion of each in this section. The categories and techniques in each category are
described on page 355.

10.4 VERIFICATION, VALIDATION, AND TESTING TECHNIQUES 355

Verification, Validation and Testing Techniques
I

I I I I
Informal Static Dynamic Formal

I
Audlt
Desk Checking
Documentation Checking
Face Validation
Inspections
Reviews
Turmg Test
Walkthroughs

I
Cause-Effect Graphing
Control A I U I ~ ~ S I S

Calling S t ~ c f u r e Analysis
Concurrent Pmcess Analysis
Control Flow Analysis
State Transttion Analysns

Data Analy.~is
Data Dependency Analys~s
DataFlow Analysls

FaultlFailure Analysw
Inre$ace Analysis

Model lnterface Analysis
User lnterface Analysis

Semantic Analysis
Structural Analysis
Symbolic Evaluat~on
Syntax Analysis
Traceability Assessment

I
Acceptance Testing
Alpha Testing
Assertton Checking
Beta Testing
Boaom-Up Testing
Companson Testing
Compliance Testing

Authorization Testing
Performance Testing
Secunty Testing
Standards Testing

Debugging
Execution Testing

Execution Monitoring
Execution Profiling
Execution Tracing

FaultlFailure lnsenion Testlng
Field Testing
Functional (Black-Box)Testing
Graphical Comparisons
interface Testing

Data lnterface Testing
Model lnterface Testing
User lnterface Testmg

Ohject-Flow Testing
Partition Testtng
Predictive Validation
Product Testmg
Regression Testing
Sensitivity Analysts
Special lnput Tesrrng

Boundary Value Testing
Equivalence Partitioning Testing
Extreme lnput Testmg
Invalid lnput Testing
Real-Time lnput Testing
Self-Driven lnput Testlng
Stress Testing
Trace-Driven Input Testlng

Statlsrical Technrques
Srructural (White-Uor)Tesnng

Branch Testing
Condit~on Testing
Data Flow Testing
Loop Testing
Path Testmg
Statement Test~ng

Submodel/Module Testing
Symbolic Debugging
Top-Down Testing
Visualizatton/Animatton

I
Induction
Inductive Assertions
Inference
Lambda Calculus
Logical Deduction
Predicate Calculus
Pred~cate Transformation
Proof of Correctness

Figure 10.8 Taxonomy of verification, validation, and t e s t i n g techniques

10.4.1 Informal VV&T Techniques

Informal techniques are among the most commonly used. They are called informal
because the tools and approaches used rely heavily on human reasoning and subjec-
tivity without stringent mathematical formalism. The "informal" label does not imply a
lack of structure or formal guidelines for the use of the techniques. In fact, these tech-
niques are applied using well-structured approaches under formal guidelines and they
can be very effective if employed properly.

356 VERIFICATION, VALIDATION, AND TESTING

Audit. An audit is undertaken to assess how adequately the simulation study is con-
ducted with respect to established plans, policies, procedures, standards, and guidelines.
The audit also seeks to establish traceability within the simulation study. When an error
is identified, it should be traceable to its source via its audit trail. The process of doc-
umenting and retaining sufficient evidence about how the accuracy is substantiated is
called an audit trail [33]. Auditing is carried out on a periodic basis through a mixture
of meetings, observations, and examinations [34]. Audit is a staff function and serves
as the "eyes and ears of management" [33].

Desk Checking. Desk checking (also known as self-inspection) is the process of thor-
oughly examining one's work to ensure correctness, completeness, consistency, and
unambiguity. It is considered to be the very first step in VV&T and is particularly useful
for the early stages of development. To be effective, desk checking should be conducted
carefully and thoroughly, preferably by another person, since it is usually difficult to see
one's own errors [35]. Syntax checking, cross-reference checking, convention violation
checking, detailed comparison to specification, reading the code, the control flow graph
analysis, and path sensitizing should all be conducted as part of desk checking [23].

Documentation Checking. Documentation checking is conducted to ensure correct-
ness, completeness, consistency, and unambiguity of all model documentation and to
justify that all documentation is up to date with respect to model logic specification.
Often, a model component logic is modified but the component's documentation is not
updated. Sometimes model logic is documented erroneously. In the case study, the doc-
umentation delivered to the decision makers must be an accurate and up-to-date descrip-
tion of model logic and its results.

Face Validation. The project team members, potential users of the model, people
knowledgeable about the system under study, based on their estimates and intuition,
subjectively compare model and system behaviors under identical input conditions and
judge whether the model and its results are reasonable. Face validation is useful as a
preliminary approach to validation [36]. In the case study, the confidence intervals for
the 14 performance measures obtained under the currently used traffic light timing can
be presented to experts. The experts can judge if average waiting times of vehicles are
reasonable under the rush-hour traffic conditions observed.

Inspections. Inspections are conducted by a team of four to six members for any
model development phase such as system and objectives definition, conceptual model
design, or communicative model design. For example, in the case of communicative
model design inspection, the team consists of:

1. Moderator: manages the inspection team and provides leadership.

2. Reader: narrates the model design (communicative model) and leads the team
through it.

3. Recorder: produces a written report of detected faults.

4. Designer: representative of the team that created the model design

5. Implementer: translates the model design into code (programmed model).
6. Tester: SQA group representative.

10.4 VERIFICATION, VALIDATION, AND TESTING TECHNIQUES 357

An inspection goes through five distinct phases: overview, preparation, inspection,
rework, and follow-up [37]. In phase I the designer gives an overview of the (sub)model
design to be inspected. The (sub)model characteristics such as purpose, logic, and inter-
faces are introduced and related documentation is distributed to all participants to study.
In phase I1 the team members prepare individually for the inspection by examining the
documents in detail. The moderator arranges the inspection meeting with an established
agenda and chairs it in phase 111. The reader narrates the (sub)model design documenta-
tion and leads the team through it. The inspection team is aided by a checklist of queries
during the fault-finding process. The objective is to find and document the faults, not
to correct them. The recorder prepares a report of detected faults immediately after the
meeting. Phase IV is for rework in which the designer resolves all faults and problems
specified in the written report. In the final phase, the moderator ensures that all faults
and problems have been resolved satisfactorily. All changes must be examined carefully
to ensure that no new errors have been introduced as a result of a fix.

Major differences exist between inspections and walkthroughs. An inspection is a
five-step process, but walkthroughs consist of only two steps. The inspection team uses
the checklist approach for uncovering errors. The procedure used in each phase of the
inspection technique is formalized. The inspection process takes much longer than a
walkthrough; however, the extra time is justified because an inspection is a powerful
and cost-effective way of detecting faults early in the model development life cycle [23,
33, 37401.

Reviews. The review is conducted in a manner similar to that of the inspection and
walkthrough except in the way the team members are selected. The review team also
involves managers. The review is intended to give management and study sponsors
evidence that the model development process is being conducted according to stated
study objectives and to evaluate the model in light of development standards, guidelines,
and specifications. As such, the review is a higher-level technique than the inspection
and walkthrough.

Each review team member examines the model documentation prior to the review. The
team then meets to evaluate the model relative to specifications and standards, recording
defects and deficiencies. The review team may be given a set of indicators to measure, such
as (1) appropriateness of the definition of system and study objectives, (2) adequacy of all
underlying assumptions, (3) adherence to standards, (4) modeling methodology used, (5)
model representation quality, (6) model structuredness, (7) model consistency, (8) model
completeness, and (9) documentation. The result of the review is a document portray-
ing the events of the meeting, deficiencies identified, and review team recommendations.
Appropriate action may then be taken to correct any deficiencies.

In contrast with inspections and walkthroughs, which concentrate on correctness
assessment, reviews seek to ascertain that tolerable levels of quality are being attained.
The review team is more concerned with model design deficiencies and deviations from
stated model development policy than it is with the intricate line-by-line details of the
implementation. This does not imply that the review team is not concerned with dis-
covering technical flaws in the model, only that the review process is oriented toward
the early stages of the model development life cycle [33, 34, 41, 421.

Turing Test. The Turing test is based on the expert knowledge of people about the
system under study. The experts are presented with two sets of output data obtained,
one from the model and one from the system, under the same input conditions. Without

358 VERIFICATION, VALIDATION, AND TESTING

identifying which one is which, the experts are asked to differentiate between the two.
If they succeed, they are asked how they were able to do it. Their response provides
valuable feedback for correcting model representation. If they cannot differentiate, our
confidence in model validity is increased [44-45].

In the case study, two confidence intervals are first constructed for the average wait-
ing time of vehicles arriving and turning left in lane 1 : (1) confidence interval estimated
via simulation, and (2) confidence interval constructed based on data collected at the
traffic intersection. The two sets of confidence intervals are presented to an expert who
has intimate knowledge of the traffic intersection operation. Without identifying which
one is which, the expert is asked to differentiate between the two. If the expert cannot
identify which one belongs to the real traffic intersection, the model is considered suf-
ficiently valid with respect to that performance measure. This process is repeated for
each of the 14 performance measures.

Walkthroughs. Walkthroughs are conducted by a team composed of a coordinator,
model developer, and three to six other members. All members other than the model
developer should not be directly involved in the development effort. A typical structured
walkthrough team consists of:

1. Coordinator: most often the SQA group representative who organizes, moder-
ates, and follows up the walkthrough activities

2. Presenter: most often the model developer

3. Scribe: documents the events of the walkthrough meetings

4. Maintenance Oracle: considers long-term implications

5. Standards Bearer: concerned with adherence to standards

6. Client Representative: reflects the needs and concerns of the client

7. Other Reviewers: such as simulation project manager and auditors

The main thrust of the walkthrough technique is to detect and document faults; it
is not performance appraisal of the development team. This point must be made clear
to everyone involved so that full cooperation is achieved in discovering errors. The
coordinator schedules the walkthrough meeting, distributes the walkthrough material to
all participants well in advance of the meeting to allow for careful preparation, and
chairs the meeting. During the meeting, the presenter walks the other members through
the walkthrough documents. The coordinator encourages questions and discussion so as
to uncover any faults [35, 46-49].

10.4.2 Static VV&T Techniques

Static VV&T techniques are concerned with accuracy assessment on the basis of char-
acteristics of the static model design and source code. Static techniques do not require
machine execution of the model, but mental execution can be used. The techniques
are very popular and widely used, with many automated tools available to assist in the
VV&T process. The simulation language compiler is itself a static VV&T tool. Static
VV&T techniques can obtain a variety of information about the structure of the model,
modeling techniques and practices employed, data and control flow within the model,
and syntactical accuracy [42].

10.4 VERIFICATION, VALIDATION, AND TESTING TECHNIQUES 359

Cause-Effect Graphing. Causeeeffect graphing assists model correctness assess-
ment by addressing the question of what causes what in the model representation. It
is performed by first identifying causes and effects in the system being modeled and by
examining if they are reflected accurately in the model specification. In the case study
the following causes and effects may be identified: (I) the change of lane 1 light to red
immediately causes the vehicles in lane 1 to stop; (2) an increase in the duration of lane
I green light causes a decrease in the average waiting time of vehicles in lane 1; and
(3) an increase in the arrival rate of lane 1 vehicles causes an increase in the average
number of vehicles at the intersection.

As many causes and effects as possible are listed and the semantics are expressed in a
cause-effect graph. The graph is annotated to describe special conditions or impossible
situations. Once the causeeeffect graph has been constructed, a decision table is created
by tracing back through the graph to determine combinations of causes which result in
each effect. The decision table is then converted into test cases with which the model
is tested 142, 48, 501.

Control Analysis. The control analysis category consists of the following techniques
that are used for the analysis of the control characteristics of the model:

1 . Calling Structure Analysis: used to assess model accuracy by identifying who
calls whom and who is called by whom. The "who" could be a module, procedure,
subroutine, function, or a method in an object-oriented model [Sl]. In the case study,
inaccuracies caused by message passing (e.g., sending a message to a nonexistent object)
in the object-oriented traffic intersection VSE model can be revealed by analyzing which
methods invoke a method and by which methods a method is invoked.

2. Concurrent Process Analysis: especially useful for parallel and distributed simu-
lations presented in Chapter 13. Model accuracy is assessed by analyzing the overlap or
concurrency of model components executed in parallel or as distributed. Such analysis
can reveal synchronization problems such as deadlocks [52].

3. Control Flow Analysis: requires the development of a graph of the model where
conditional branches and model junctions are represented by nodes and the model seg-
ments between such nodes are represented by links 1231. A node of the model graph
usually represents a logical junction where the flow of control changes, while an edge
represents toward which junction it changes. This technique examines sequences of con-
trol transfers and is useful for identifying incorrect or inefficient constructs within model
representation.

Nance and Overstreet [27] propose several diagnostics based on analysis of graphs
constructed from a particular form of model specification called condition speciJicution
114, 531. The diagnostic assistance is categorized into three parts:

1 . Analytical: determination of the existence of a property
2. Comparative: measures of differences among multiple model representations

3. Informative: characteristics extracted or derived from model representations

Action cluster attribute graph, action cluster incidence graph, and run-time graph
constitute the basis for the diagnosis.

The analytical diagnosis is conducted by measuring the following indicators: attribute
utilization, attribute initialization, action cluster completeness, attribute consistency,

360 VERIFICATION, VALIDATION, AND TESTING

connectedness, accessibility, out-complete, and revision consistency. The comparative
diagnosis is done by measuring attribute cohesion, action cluster cohesion, and com-
plexity. The following indicators are measured for the informative diagnosis: attribute
classiciation, precedence structure, decomposition, and run-time graph [27].

4. State Transition Analysis: requires the identification of a finite number of states
the model execution goes through. A state transition diagram is created showing how the
model transitions from one state to another. Model accuracy is assessed by analyzing the
conditions under which a state change occurs. This technique is especially effective for
those simulation models created under the activity scanning, three-phase, and process
interaction conceptual frameworks [20].

Data Analysis. The data analysis category consists of several techniques that are used
to ensure that (I) proper operations are applied to data objects (e.g., data structures,
event lists, linked lists), (2) the data used by the model are properly defined, and (3)
the defined data are properly used [33]:

1. Data Dependency Analysis: involves the determination of what variables depend
on what other variables [54]. For parallel and distributed simulations, the data depen-
dency knowledge is critical for assessing the accuracy of process synchronization.

2. Data Flow Analysis: used to assess model accuracy with respect to the use of
model variables. This assessment is classified according to the definition, referencing
and unreferencing of variables [35] (i.e., when variable space is allocated, accessed,
and deallocated). A data flow graph is constructed to aid in the data flow analysis. The
nodes of the graph represent statements and corresponding variables. The edges repre-
sent control flow. Data flow analysis can be used to detect undefined or unreferenced
variables (much as in static analysis) and, when aided by model instrumentation, can
track minimum and maximum variable values, data dependencies, and data transfor-
mations during model execution. It is also useful in detecting inconsistencies in data
structure declaration and improper linkages among submodels 142, 551.

Fault/Failure Analysis. Fault (incorrect model component)/failure (incorrect behav-
ior of a model component) analysis uses model input-output transformation descriptions
to identify how the model might logically fail. The model design specification is exam-
ined to determine if any failure-mode possibilities could logically occur and in what
context and under what conditions. Such model examinations often lead to identifica-
tion of model defects [51].

Interface Analysis. The interface analysis category consists of several techniques
that are especially useful for verification and validation of interactive and distributed
simulations:

1. Model Interjiace Analysis: conducted to examine the (sub)model-to-(sub)model
interface and determine if the interface structure and behavior are sufficiently accurate.

2. User Interface Analysis: conducted to examine the user-model interface and
determine if it is human engineered so as to prevent occurrences of errors during the
user's interactions with the model. It is also used to assess how accurately the inter-
face is integrated with the simulation model. This technique is particularly useful for
accuracy assessment of interactive simulation models used for training purposes.

10.4 VERIFICATION, VALIDATION, AND TESTING TECHNIQUES 361

Semantic Analysis. Semantic analysis is conducted by the simulation system trans-
lator or a simulation programming language compiler and attempts to determine the
modeler's intent in writing the code. The compiler informs the modeler about what is
specified in the source code so that the modeler can verify that the true intent is accu-
rately reflected.

The compiler generates a wealth of information to help the modeler determine if the
true intent is accurately translated into the executable code [42]:

1. Symbol Tables: the elements or symbols that are manipulated in the model, func-
tion declarations, type and variable declarations, scoping relationships, interfaces,
dependencies, and so on.

2. Cross-Reference Tables: describe called versus calling submodels (where each
data element is declared, referenced, and altered), duplicate data declarations (how
often and where occurring), and unreferenced source code.

3. Subroutine Inteqace Tables: describe the actual interfaces of the caller and the
called.

4. Maps: relate the generated run-time code to the original source code.

5. "Pretty Printers" or Source Code Formarters: provide reformatted source listing
on the basis of its syntax and semantics, clean pagination, highlighting of data
elements, and marking of nested control structures.

Structural Analysis. Structural analysis is used to examine the model structure and
to determine if it adheres to structured principles. It is conducted by constructing a con-
trol flow graph of the model structure and examining the graph for anomalies, such as
multiple entry and exit points, excessive levels of nesting within a structure and ques-
tionable practices such as the use of unconditional branches (i.e., GOTOs). Yiicesan
and Jacobson [56, 571 apply the theory of computational complexity and show that the
problem of verifying structural properties of simulation models is intractable. They illus-
trate that modeling issues such as accessibility of states, ordering of events, ambiguity
of model specifications, and execution stalling are NP-complete decision problems.

Symbolic Evaluation. Symbolic evaluation is used to assess model accuracy by exer-
cising the model using symbolic values rather than actual data values for input. It is
performed by feeding symbolic inputs into the (sub)model and producing expressions
for the output which are derived from the transformation of the symbolic data along
model execution paths. Consider, for example, the following function:

function jobArrivalTime(arrivalRate,currentClock,randomNumberj
lag - -10
Y = l a g * currentclock
z = 3 * y
if Z < 0 then
arrivalTime= currentclock log(randomNumber)/arrivalRate

else
arrivalTime= Z - log(randomNumberj/arrivalRate

end if
return arrivalTime

end jobArrivalTime

362 VERIFICATION, VALIDATION, AND TESTING

In symbolic execution, lag is substituted in Y = -lO*currentClock. Substituting
again, we find Z = 30*current~lock. Since currentclock is always zero or
positive, an error is detected that will never be greater than zero.

When unresolved conditional branches are encountered, a decision must be made as
to which path to traverse. Once a path is selected, execution continues down the new
path. At some point in time, the execution evaluation will return to the branch point
and the previously unselected branch will be traversed. Eventually, all paths are taken.

The result of the execution can be represented graphically as a symbolic execution
tree [35, 581. The branches of the tree correspond to the paths of the model. Each node
of the tree represents a decision point in the model and is labeled with the symbolic
values of data at that juncture. The leaves of the tree are complete paths through the
model and depict the symbolic output produced.

Symbolic evaluation assists in showing path correctness for all computations regard-
less of test data and is also a great source of documentation. However, it has the follow-
ing disadvantages: (1) the execution tree can explode in size and become too complex
as the model grows; (2) loops cause difficulties, although inductive reasoning and con-
straint analysis may help; (3) loops make thorough execution impossible since all paths
must be traversed; and (4) complex data structures may have tb be excluded because
of difficulties in symbolically representing particular data elements within the structure
[5 8-60].

Syntax Analysis. Syntax analysis is carried on by the simulation software compiler or
simulation programming language compiler to assure that the mechanics of the language
are applied correctly [23]. In the case study, during model preparation, the VSE Editor
lists all syntax errors in the preparation window as shown in Figure 10.9. Double-click-
ing a syntax error name displays the method where the error occurs, draws a rectangle
around the statement, and highlights the token as a potential source of error.

Traceability Assessment. The traceability assessment is used to match, one to one,
the elements of one form of the model to another. For example, the elements of the
system and objectives definition (requirements specification) are matched one to one to
the elements of the communicative model (design specification). Unmatched elements
may reveal either unfulfilled requirements or unintended design functions [51].

10.4.3 Dynamic VV&T Techniques

Dynamic VV&T techniques require model execution and are intended for evaluating
the model based on its execution behavior. Most dynamic VV&T techniques require
model instrumentation. The insertion of additional code (probes or stubs) into the exe-
cutable model for the purpose of collecting information about model behavior during
execution is called model instrumentation. Probe locations are determined manually or
automatically based on static analysis of model structure. Automated instrumentation is
accomplished by a preprocessor which analyzes the model static structure (usually via
graph-based analysis) and inserts probes at appropriate places.

Dynamic VV&T techniques are usually applied using the following three steps. In
step 1 the executable model is instrumented, in step 2 the instrumented model is exe-
cuted, and in step 3 the model output is analyzed and dynamic model behavior is eval-
uated. For example, consider the worldwide air traffic control and satellite communi-
cation object-oriented visual simulation model created by using the VSE [16-181 in

10.4 VERIFICATION, VALIDATION, AND TESTING TECHNIQUES 363

Figure 10.9 Identification of syntax errors during model preparation

Figure 10.10. The model can be instrumented in step 1 to record the following infor-
mation every time an aircraft enters the coverage area of a satellite: (1) aircraft tail
number; (2) current simulation time; (3) aircraft's longitude, latitude, and altitude; and
(4) satellite's position and identification number. In step 2 the model is executed and
the information collected is written to an output file. In step the output file is examined
to reveal discrepancies and inaccuracies in model representation.

Acceptance Testing. Acceptance testing is conducted either by the client organiza-
tion, by the developer's SQA group in the presence of client representatives, or by an
independent contractor hired by the client after the model is officially delivered and
before the client officially accepts the delivery. The model is operationally tested by
using the actual hardware and actual data to determine whether all requirements spec-
ified in the legal contract are satisfied [33, 371.

Alpha Testing. Alpha testing refers to the operational testing of the alpha version of
the complete model at an inhouse site that is not involved with the model development
[2 3] .

Assertion Checking. An assertion is a statement that should hold true as the simula-
tion model executes. Assertion checking is a verification technique used to check what

364 VERIFICATION, VALIDATION, AND TESTING

Figure 10.10 Visual simulation of global air traffic control and satellite communication. (From
ref. 16.)

is happening against what the modeler assumes is happening so as to guard model exe-
cution against potential errors. The assertions are placed in various parts of the model
to monitor model execution. They can be inserted to hold true globally-for the entire
model; regionally-for some submodels; locally-within a submodel; or at entry and
exit of a submodel. The assertions are similar in structure and the general format for a
local assertion is [61]:

ASSERT LOCAL (extended-logical-expression) [optional-qualifiers]
[control-options]

The "optional-qualifiers" may be chosen such as all, some, after j th air-
craft, before time t. The "control options" may have the following example syn-
tax [61]:

HALT
' ' ' [V1OLAT1ONS1 [{ EXIT [VIA] procedure - name > 1

Consider, for example, the following pseudocode [42]:

Base :=Hours * PayRate;
Gross := Base * (1 + BonusRate) ;

10.4 VERIFICATION, VALIDATION, AND TESTING TECHNIQUES 365

In just these two simple statements, several assumptions are being made. It is assumed
that Hours, PayRate, Base, BonusRate, and Gross are all nonnegative. The fol-
lowing asserted code can be used to prevent execution errors due to incorrect values
inputted by the user:

Assert Local (Hours 2 0 and PayRate 2 0 and BonusRatet 0) ;
Base := Hours * PayRate;
Gross := Base * (1 + BonusRate) ;

Assertion checking is also used to prevent structural model inaccuracies. For exam-
ple, the model in Figure 10.10 can contain assertions such as (I) a satellite communi-
cates with the correct ground station, (2) an aircraft's tail number matches its type, and
(3) an aircraft's flight path is consistent with the official airline guide.

Clearly, the assertion checking serves two important needs: (1) it verifies that the
model is functioning within its acceptable domain, and (2) the assertion statement doc-
uments the intentions of the modeler. However, the assertion checking degrades the
model execution performance forcing the modeler to make a trade-off between exe-
cution efficiency and accuracy. If the execution performance is critical, the assertions
should be turned off but kept permanently to provide both documentation and means
for maintenance testing [35].

Beta Testing. Beta testing refers to the operational testing of the beta version of the
complete model as a "beta" user site under realistic field conditions [S I].

Bottom-Up Testing. Bottom-up testing is used in conjunction with bottom-up model
development strategy. In bottom-up development, model construction starts with the
submodels at the base level (i.e., those that are not decomposed further) and culminates
with the submodels at the highest level. As each submodel is completed, it is thor-
oughly tested. When submodels belonging to the same parent have been developed and
tested, the submodels are integrated and integration testing is performed. This process is
repeated in a bottom-up manner until the whole model has been integrated and tested.
The integration of completed submodels need not wait for all "same level" submod-
els to be completed. Submodel integration and testing can be, and often is, performed
incrementally [4 1 1.

Some of the advantages of bottom-up testing are (1) it encourages extensive testing
at the submodel level; (2) since most well-structured models consist of a hierarchy of
submodels, there is much to be gained by bottom-up testing; (3) the smaller the sub-
model and the more cohesion it has, the easier and more complete its testing will be;
and (4) it is particularly attractive for testing distributed simulation models.

Major disadvantages of bottom-up testing include (1) individual submodel testing
requires drivers, more commonly called test hurne.s.se.s, which simulate the calling of
the submodel and passing test data necessary to execute the submodel; (2) developing
harnesses for every submodel can be quite complex and difficult; (3) the harnesses may
themselves contain errors; and (4) faces the same cost and complexity problems as does
top-down testing.

Comparison Testing. Comparison testing (also known as back-to-back testing) may
be used when more than one version of a simulation model representing the same system
is available for testing [41, SO]. For example, different simulation models may have been

366 VERIFICATION, VALIDATION, AND TESTING

developed to simulate the same military combat aircraft by different organizations or
different simulation models may have been developed to represent the U.S. economy
by different economists. All versions of the simulation model built to represent exactly
the same system are run with the same input data and the model outputs are compared.
Differences in the outputs reveal problems with model accuracy.

Compliance Testing, The compliance type of testing is intended to test how accu-
rately different levels of access authorization are provided, how closely and accurately
dictated performance requirements are satisfied, how well the security requirements are
met, and how properly the standards are followed. These techniques are particularly
useful for testing the federation of distributed and interactive simulation models under
the Defense Department's high-level architecture (HLA) and distributed interactive sim-
ulation (DIS) architecture [62].

1. Authorization Testing: used to test how accurately and properly different levels
of access authorization are implemented in the simulation model and how properly they
comply with the established rules and regulations. The test can be conducted by attempt-
ing to execute a classified model within a federation of distributed models or try to use
classified input data for running a simulation model without proper authorization [33].

2. Pe$orrnance Testing: used to test whether (1) all performance characteristics are
measured and evaluated with sufficient accuracy, and (2) all established performance
requirements are satisfied [33].

3. Security Testing: used to test whether all security procedures are implemented
correctly and properly in conducting a simulation exercise. For example, the test can
be conducted by attempting to penetrate the simulation exercise while it is ongoing and
break into classified components such as secured databases. Security testing is applied
to substantiate the accuracy and evaluate the adequacy of the protective procedures and
countermeasures [33].

4. Standards Testing: used to substantiate that the simulation model is developed
with respect to the required standards, procedures, and guidelines.

Debugging. Debugging is an iterative process whose purpose it is to uncover errors
or misconceptions that cause the model's failure and to define and carry out the model
changes that correct the errors. This iterative process consists of four steps. In step 1 the
model is tested, revealing the existence of errors (bugs). Given the detected errors, the
cause of each error is determined in step 2. In step 3 the model changes believed to be
required for correcting the detected errors are identified. The identified model changes
are carried out in step 4. Step 1 is reexecuted right after step 4 to ensure successful
modification because a change correcting an error may create another one. This iterative
process continues until no errors are identified in step 1 after sufficient testing [63].

Execution Testing. The execution testing category consists of several techniques that
are used to collect and analyze execution behavior data for the purpose of revealing
model representation errors:

1. Execution Monitoring: used to reveal errors by examining low-level information
about activities and events that take place during model execution. It requires the instru-
mentation of a simulation model for the purpose of gathering data to provide activity- or

10.4 VERIFICATION, VALIDATION, AND TESTING TECHNIQUES 367

event-oriented information about the model's dynamic behavior. For example, the model
in Figure 10.10 can be instrumented to monitor the arrivals and departures of aircrafts
within a particular city and the results can be compared with respect to the official air-
line guide to judge model validity. The model can also be instrumented to provide other
low-level information, such as number of late arrivals. average passenger waiting time
at the airport, and average flight time between two locations.

2. Execution Profiling: used to reveal errors by examining high-level information
(profiles) about activities and events that take place during model execution. It requires
the instrumentation of an executable model for the purpose of gathering data to present
profiles about the model's dynamic behavior. For example, the model in Figure 10.10
can be instrumented to produce the following profiles to assist in model VV&T: (I) a
histogram of aircraft interdeparture times, (2) a histogram of arrival times, and (3) a
histogram of passenger checkout times at an airport.

3. Execution Tracing: used to reveal errors by "watching" the line-by-line execution
of a simulation model. It requires the instrumentation of an executable model for the
purpose of tracing the model's line-by-line dynamic behavior. For example, the model
in Figure 10.10 can be instrumented to record all aircraft arrival times at a particular
airport. Then the trace data can be compared against the official airline guide to assess
model validity. The major disadvantage of the tracing technique is that execution of the
instrumented model may produce a large volume of trace data that may be too complex
to analyze. To overcome this problem, the trace data can be stored in a database and
the modeler can analyze it using a query language [64, 651.

Fault/Failure Insertion Testing. This technique is used to insert a kind of fault
(incorrect model component) or a kind of failure (incorrect behavior of a model com-
ponent) into the model and observe whether the model produces the invalid behavior
as expected. Unexplained behavior may reveal errors in model representation.

Field Testing. Field testing places the model in an operational situation for the pur-
pose of collecting as much information as possible for model validation. It is especially
useful for validating models of military combat systems. Although it is usually diffi-
cult, expensive, and sometimes impossible to devise meaningful field tests for complex
systems, their use wherever possible helps both the project team and decision makers
to develop confidence in the model [lo, 451.

Functional Testing. Functional testing (also known as black-box testing) is used to
assess the accuracy of model input-output transformation. It is applied by beeding inputs
(test data) to the model and evaluating the corresponding outputs. The concern is how
accurately the model transforms a given set of input data into a set of output data.

It is virtually impossible to test all input-output transformation paths for a reasonably
large and complex simulation model since the number of those paths could be in the
millions. Therefore, the objective of functional testing is to increase our confidence in
model input-output transformation accuracy as much as possible rather than trying to
claim absolute correctness.

Generation of test data is a crucially important but a very difficult task. The law of
large numbers does not apply here. Successfully testing the model under 1000 input
values (test data) does not imply high confidence in model input-output transformation
accuracy just because 1000 is a large number. Instead, the number 1000 should be com-

368 VERIFICATION, VALIDATION, AND TESTING

pared with the number of allowable input values to determine what percentage of the
model input domain is covered in testing. The more the model input domain is cov-
ered in testing, the more confidence we gain in the accuracy of the model input-output
transformation [48, 661.

In the case study, confidence intervals are constructed for each of the 14 perfor-
mance measures by using actual observations collected on the vehicle waiting times.
Confidence intervals are also constructed by using the simulation output data under the
currently used traffic light timing. The actual and simulated confidence intervals with a
confidence level of 95% are plotted corresponding to each performance measure. Lack
of or little overlap between the actual and simulated confidence intervals revealed inva-
lidity.

Graphical Comparisons. Graphical comparisons is a subjective, inelegant, and
heuristic, yet quite practical approach, especially useful as a preliminary approach to
model VV&T. The graphs of values of model variables over time are compared with the
graphs of values of system variables to investigate characteristics such as similarities in
periodicities, skewness, number and location of inflection points, logarithmic rise and
linearity, phase shift, trend lines, and exponential growth constants [67-701.

Interface Testing. The interface testing (also known as integration testing) cate-
gory consists of several techniques that are used to assess the accuracy of data use,
(sub)model-to-(sub)model interface, and user-model interface:

1. Data Integace Testing: conducted to assess the accuracy of data inputted into the
model or outputted from the model during execution. All data interfaces are examined
to substantiate that all aspects of data input-output are correct. This form of testing is
particularly important for those simulation models whose inputs are read from a database
and/or the results of which are stored into a database for later analysis. The model's
interface to the database is examined to ensure correct importing and exporting of data
[511.

2. Model Interface Testing: conducted to detect model representation errors created
as a result of (sub)model-to-(sub)model interface errors or invalid assumptions about
the interfaces. It is assumed that each model component (submodel) or a model in dis-
tributed simulation is individually tested and found to be sufficiently accurate before
model interface testing begins.

This form of testing deals with how well the (sub)models are integrated with each
other and is particularly useful for object-oriented and distributed simulation models.
Under the object-oriented paradigm (see Chapter l l) , objects (1) are created with public
and private interfaces, (2) interface with other objects through message passing, (3) are
reused with their interfaces, and (4) inherit the interfaces and services of other objects.

Model interface testing deals with the accuracy assessment of each type of four inter-
faces identified by Sommerville [41]:

a. Parameter InteI$uces: pass data or function references from one submodel
to another.

b. Shared Memory Integaces: enable submodels to share a block of memory
where data are placed by one submodel and retrieved from there by other
submodels.

c. Procedural Interjtaces: used to implement the concept of encapsulation under

10.4 VERIFICATION, VALIDATION, AND TESTING TECHNIQUES 369

the object-oriented paradigm. An object provides a set of services (proce-
dures) that can be used by other objects and hides (encapsulates) how a ser-
vice is provided to the outside world.

d. Message-Passing Interfaces: enable an object to request the service of
another by way of message passing.

Sommerville [41] classifies interface errors into three categories:

a. Inte@ace Misuse: occurs when a submodel calls another and uses its inter-
face incorrectly. For submodels with parameter interfaces, a parameter being
passed may be of the wrong type, may be passed in the wrong order, or the
wrong number of parameters may be passed.

b. Inteface Misunderstanding: occurs when submodel A calls submodel B
without satisfying the underlying assumptions of submodel B's interface. For
example, submodel A calls a binary search routine by passing an unordered
list to be searched when in fact the binary algorithm assumes that the list is
already sorted.

c. Timing Errors: occur in real-time, parallel, and distributed simulations that
use a shared memory or a message-passing interface.

3. User Inteface Testing: conducted to detect model representation errors created
as a result of user-model interface errors or invalid assumptions about the interfaces.
This form of testing is particularly important for testing human-in-the-loop, interactive,
and training simulations. User interface testing deals with the assessment of the inter-
actions between the user and the model. The user interface is examined from low-level
ergonomic aspects to instrumentation and controls and from human factors to global
considerations of usability and appropriateness for the purpose of identifying potential
errors 137, 50, 511.

Object-Flow Testing. Object-flow testing is similar to transaction-$ow testing [23]
and thread testing [41]. It is used to assess model accuracy by way of exploring the life
cycle of an object during model execution. For example, a dynamic object (aircraft)
can be marked for testing in the VSE model shown in Figure 10.10. Every time the
dynamic object enters a model component, the visualization of that component is dis-
played. Every time the dynamic object interacts with another object within the compo-
nent, the interaction is highlighted. Examination of how a dynamic object flows through
the activities and processes and interacts with its environment during its lifetime in
model execution is extremely useful for identifying errors in model behavior.

Partition Testing. Partition testing is used for testing the model with the test data
generated by analyzing the model's functional representatives (partitions). It is accom-
plished by (1) decomposing both model specification and implementation into functional
representatives (partitions), (2) comparing the elements and prescribed functionality of
each partition specification with the elements and actual functionality of correspond-
ing partition implementation, (3) deriving test data to extensively test the functional
behavior of each partition, and (4) testing the model by using the generated test data.

The model decomposition into functional representatives (partitions) is derived
through the use of symbolic evaluation techniques that maintain algebraic expressions
of model elements and show model execution paths. These functional representations
are the model computations. Two computations are equivalent if they are defined for the

370 VERIFICATION, VALIDATION, AND TESTING

same subset of the input domain that causes a set of model paths to be executed and if
the result of the computations is the same for each element within the subset of the input
domain [71]. Standard proof techniques are used to show equivalence over a domain.
When equivalence cannot be shown, partition testing is performed to locate errors, or
as Richardson and Clarke [72] state, to increase confidence in the equality of the com-
putations due to the lack of error manifestation. By involving both model specification
and implementation, partition testing is capable of providing more comprehensive test
data coverage than other test data generation techniques.

Predictive Validation. Predictive validation requires past input and output data of the
system being modeled. The model is driven by past system input data and its forecasts
are compared with the corresponding past system output data to test the predictive ability
of the model [73].

Product Testing. Product testing is conducted by the development organization after
all submodels are successfully integrated (as demonstrated by the interface testing) and
before acceptance testing by the client. No contractor wants to be in a situation where the
product (model) fails the acceptance test. Product testing serves as a means of getting
prepared for the acceptance testing. As such, the SQA group must perform product
testing and make sure that all requirements specified in the legal contract are satisfied
before delivering the model to the client organization [41]. As dictated by principle 12,
testing each submodel successfully does not imply overall model credibility. Interface
testing and product testing must be performed to substantiate overall model credibility.

Regression Testing. Regression testing is used to substantiate that correcting errors
and/or making changes in the model do not create other errors and adverse side effects.
It is usually accomplished by retesting the modified model with the previous test data
sets used. Successful regression testing requires planning throughout the model devel-
opment life cycle. Retaining and managing old test data sets are essential for the success
of regression testing.

Sensitivity Analysis. Sensitivity analysis is performed by systematically changing
the values of model input variables and parameters over some range of interest and
observing the effect on model behavior [lo]. Unexpected effects may reveal invalidity.
The input values can also be changed to induce errors to determine the sensitivity of
model behavior to such errors. Sensitivity analysis can identify those input variables and
parameters to the values of which model behavior is very sensitive. Then model validity
can be enhanced by assuring that those values are specified with sufficient accuracy [36,
45, 74, 751.

Special Input Testing. The special input testing category consists of the following
techniques that are used to assess model accuracy by way of subjecting the model to a
variety of inputs:

1. Boundary Value Testing: employed to test model accuracy by using test cases
on the boundaries of input equivalence classes. A model's input domain can usually be
divided into classes of input data (known as equivalence classes) which cause the model
to function the same way. For example, a traffic intersection model might specify the
probability of left turn in a three-way turning lane as 0.2, the probability of right turn as

10.4 VERIFICATION, VALIDATION, AND TESTING TECHNIQUES 371

0.35, and the probability of traveling straight as 0.45. This probabilistic branching can
be implemented by using a uniform random number generator that produces numbers
in the range 0 5 RN 5 1. Thus three equivalence classes are identified: 0 5 RN 5 0.2,
0.2 < RN 5 0.55, and 0.55 < RN 5 1 . Each test case from within a given equivalence
class has the same effect on the model behavior (i.e.. produces the same direction of
turn). In boundary analysis, test cases are generated just within, on top of, and just
outside the equivalence classes [48]. In the example above, the following test cases are
selected for the left turn: 0.0, + 0.000001, 0.199999, 0.2, and 0.200001. In addition
to generating test data on the basis of input equivalence classes, it is also useful to
generate test data that will cause the model to produce values on the boundaries of
output equivalence classes [48]. The underlying rationale for this technique as a whole
is that the most error-prone test cases lie along the boundaries [76]. Notice that invalid
test cases used in the example above will cause the model execution to fail; however,
this failure should be as expected and meaningfully documented.

2. Equivalence Partitioning Testing: partitions the model input domain into equiv-
alence classes in such a manner that a test of a representative value from a class is
assumed to be a test of all values in that class [33, 41, 50, 511.

3. Extreme lnput Testing: conducted by running/exercising the simulation model by
using only minimum values, only maximum values, or arbitrary mixture of minimum
and maximum values for the model input variables.

4. Invalid lnput Testing: performed by running/exercising the simulation model
under incorrect input data and cases to determine whether the model behaves as
expected. Unexplained behavior may reveal model representation errors.

5. Real-Time Input Testing: particularly important for assessing the accuracy of sim-
ulation models built to represent embedded real-time systems. For example, different
design strategies of a real-time software system to be developed to control the operations
of the components of a manufacturing system can be studied by simulation modeling.
The simulation model representing the software design can be tested by way of running
it under real-time input data that can be collected from the existing manufacturing sys-
tem. Using real-time input data collected from a real system is particularly important
to represent the timing relationships and correlations between input data points.

6 . Self-Driven Input Testing: conducted by running/exercising the simulation model
under input data randomly sampled from probabilistic models representing random
phenomena in a real or futuristic system. A probability distribution (e.g., exponential,
gamma, Weibull) can be fit to collected data or triangular and beta probability distri-
butions can be used in the absence of data to model random input conditions (Chapter
3; [I l , 121). Then, using random variate generation techniques, random values can be
sampled from the probabilistic models to test the model validity under a set of observed
or speculated random input conditions.

7. Stress Testing: intended to test the model validity under extreme workload con-
ditions. This is usually accomplished by increasing the congestion in the model. For
example, the model in Figure 10.10 can be stress tested by increasing the number of
flights between two locations to an extremely high value. Such increase in workload
may create unexpected high congestion in the model. Under stress testing, the model
may exhibit invalid behavior; however, such behavior should be as expected and mean-
ingfully documented [48, 631.

8. Trace-Driven Input Testing. conducted by running/exercising the simulation

372 VERIFICATION, VALIDATION, AND TESTING

TABLE 10.3 Statistical Techniques Proposed for
Validation

Analysis of variance
Confidence intervals/regions
Factor analysis
Hotelling's tests
Multivariate analysis of variance

Standard MANOVA
Permutation methods
Nonparametric ranking methods

Nonparametric goodness-of-fit tests
Kolmogorov-Smirnov test
Cramer-Von Mises test
Chi-square test

Nonparametric tests of means
Mann-Whitney-Wilcoxon test
Analysis of paired observations

Regression analysis
Theil's inequality coefficient
Time-series analysis

Spectral analysis
Correlation analysis
Error analysis

t-Test

model under input trace data collected from a real system. For example, a computer
system can be instrumented by using software and hardware monitors to collect data
by tracing all system events. The raw trace data is then refined to produce the real input
data for use in testing the simulation model of the computer system.

Statistical Techniques. Much research has been conducted in applying statistical
techniques for model validation. Table 10.3 presents the statistical techniques proposed
for model validation and lists related references. The statistical techniques listed in the
table require that the system being modeled be completely observable (i.e., all data
required for model validation can be collected from the system). Model validation is
conducted by using the statistical techniques to compare the model output data with
the corresponding system output data when the model is run with the "same" input
data that derive the real system. As dictated by principle 11, a comparison of model
and system multiple outputs must be carried out by using a multivariate statistical tech-
nique to incorporate the correlations among the output variables. A recommended vali-
dation procedure based on the use of simultaneous confidence intervals is presented be-
low.

Validation Procedure Using Simultaneous Confidence Intervals. The behavioral
accuracy (validity) of a simulation model with multiple outputs can be expressed in
terms of the differences between the corresponding model and system output variables
when the model is run with the same input data and operational conditions that drive the
real system. The range of accuracy of the jth model output variable can be represented
by the jth confidence interval (CI) for the differences between the means of the jth model

10.4 VERIFICATION, VALIDATION, AND TESTING TECHNIQUES 373

and system output variables. The simultaneous confidence intervals (SCIs) formed by
these CIS are called the model range of accuracy (MRA) [30] .

Assume that there are k output variables from the model and k output variables from
the system, as shown in Figure 10.6. Let

be the k-dimensional vectors of the population means of the model and system output
variables, respectively. Basically, there are three approaches for constructing the SCI to
express the MRA for the mean behavior.

In approach I, the MRA is determined by the 100(1 - y)% SCI for p" - p' as

where S' = [61, 6 2 , . . . , 6 %] representing lower bounds and T' = [T I , 72, . . . , r k] rep-
resenting upper bounds of the SCI. We can be 100(1 - y) % confident that the true
differences between the population means of the model and system output variables are
simultaneously contained within (3).

In approach 11, the 100(1 - ym)% SCI are first constructed for pm as

[Sm> ~~1 (4)

where (Sm)' = [6:, 6 7 , . . . , 6?] and (7")' = [r:, r; , . . . , T?]. Then the 100(1 - y.')%
SCIs are constructed for pr as

where

(F")' = [6", ,6;, . . . , 6 i] and (7")' = [T; , r; , . . . , T ;]

Finally, using the Bonferroni inequality, the MRA is determined by the following SCI
for p m I*.J with a confidence level of at least (1 - ym - y ") when the model and system
outputs are dependent and with a level of at least (1 - y " y " + y m y 5) when the outputs
are independent [95]:

In approach 111 the model and system output variables are observed in pairs and
the MRA is determined by the 100(1 - y) % SCI for p.", the population means of the
differences of paired observations, as

[s", T"] (7)

where (sd)' = [6 f , 6;, . . . , $1 and (7')' = [T:, r:, . . . , ~ $ 1 .
The approach for constructing the MRA should be chosen with respect to the way the

model is driven. The MRA is constructed by using the observations collected from the
model and system output variables by running the model with the "same" input data and
operational conditions that drive the real system. If the simulation model is self-driven,
"same" indicates that the model input data are coming independently from the same pop-
ulations or stochastic process of the system input data. Since the model and system input

374 VERIFICATION, VALIDATION, AND TESTING

data are independent of each other but coming from the same populations, the model
and system output data are expected to be independent and identically distributed. Hence
approach I or I1 can be used. The use of approach I11 in this case would be less efficient.
If the simulation model is trace driven, "same" indicates that the model input data are
exactly the same as the system input data. In this case the model and system output data
are expected to be dependent and identical. Therefore, approach I1 or 111 should be used.

Sometimes, the model sponsor, model user, or a third party may specify an acceptable
range of accuracy for a specific simulation study. This specification can be made for
the mean behavior of a stochastic simulation model as

where L' = [L I , L2, . . . , Lk] and U' = [U , , U2 , . . . , U k] are the lower and upper bounds
of the acceptable differences between the population means of the model and system
output variables. In this case, the MRA should be compared against (6) to evaluate
model validity.

The shorter the lengths of the MRA, the more meaningful is the information they
provide. The lengths can be decreased by increasing the sample sizes or by decreasing
the confidence level. However, such increases in sample sizes may increase the cost of
data collection. Thus a trade-off analysis may be necessary among the sample sizes,
confidence levels, half-length estimates of the MRA, data collection method, and cost
of data collection. For details of performing the trade-off analysis, see ref. 30. The
confidence interval validation procedure is presented in Figure 10.11.

Structural Testing. The structural testing (also known as white-box testing) category
consists of the six techniques discussed below. Structural (white-box) testing is used to
evaluate the model based on its internal structure (how it is built), whereas functional
(black-box) testing is intended for assessing the input-output transformation accuracy of
the model. Structural testing employs data flow and control flow diagrams to assess the
accuracy of internal model structure by examining model elements such as statements,
branches, conditions, loops, internal logic, internal data representations, submodel inter-
faces, and model execution paths.

1. Branch Testing: conducted to run/exercise the simulation model under test data
so as to execute as many branch alternatives as possible, as many times as possible,
and to substantiate their accurate operations. The more branches are tested successfully,
the more confidence we gain in model's accurate execution with respect to its logical
branches [23].

2. Condition Testing: conducted to run/exercise the simulation model under test
data so as to execute as many (compound) logical conditions as possible, as many times
as possible, and to substantiate their accurate operations. The more logical conditions
are tested successfully, the more confidence we gain in model's accurate execution with
respect to its logical conditions.

3. Data Flow Testing: uses the control flow graph to explore sequences of events
related to the status of data structures and to examine data-flow anomalies. For example,
sufficient paths can be forced to execute under test data to assure that every data element
and structure is initialized prior to use or every declared data structure is used at least
once in an executed path 1231.

4. Loop Testing: conducted to run/exercise the simulation model under test data so

10.4 VERIFICATION, VALIDATION, A N D TESTING TECHNIQUES 375

(START 1 +
Determine the set of experimental conditions under which the validity of the simulation model is to be tested.

trace-driven
Choose approach I or II.

I

Determine an appropriate statistical procedure tor constructing
the model range of accuracq with respect to rhe approach choxn.

No
and conf~dence levels.

I

I I

Yes
I

Examine the tradeoffs and make judgment decisionc to select the sample sires u i th appropriate
collrction neth hod and budget, and an overall confidence level to prduce

satistactory estimated lenghts for the model range ot accuracy.

I 111 Determine the model range
of accuracy b) constructing

the IOO(l-y)% s.c.i.
I l I r ad. 1'J I

Determine the model range o f Determine the model range of accuracy by construct-
accuracy by constructing the ing the at least 100(I -y)% s.c.i. [h'" -I\, I" - 6'1

lOO(1-y)% S.C.I. SetH=Hn' and^=^"'-^'.
[&I1

Sety =yn' +y ' sycteln outpots Sety ='pn + y' - y'"y'

independent?

A

Not given

No

Rev~se the model by considering the response variahlrs
whose ranges of accuracy are not satisfactory.

Figure 10.11 Validation procedure using simultaneous confidence intervals

376 VERIFICATION, VALIDATION, AND TESTING

as to execute as many loop structures as possible, as many times as possible, and to
substantiate their accurate operations. The more loop structures are successfully tested,
the more confidence we gain in the model's accurate execution with respect to its loop
structures [SO].

5. Path Testing: conducted to run/exercise the simulation model under test data so
as to execute as many control flow paths as possible, as many times as possible, and
to substantiate their accurate operations. The more control flow paths are tested suc-
cessfully, the more confidence we gain in model's accurate execution with respect to
its control flow paths. However, 100% path coverage is impossible to achieve for a
reasonably large simulation model [23].

Path testing is performed in three steps [71]. In step 1 the model control structure is
determined and represented in a control flow diagram. In step 2 test data are generated
to cause selected model logical paths to be executed. Symbolic execution can be used to
identify and group together classes of input data based on the symbolic representation of
the model. The test data are generated in such a way as to (1) cover all statements in the
path, (2) encounter all nodes in the path, (3) cover all branches from a node in the path,
(4) achieve all decision combinations at each branch point in the path, and (5) traverse
all paths [96]. In step 3, by using the generated test data, the model is forced to proceed
through each path in its execution structure, thereby providing comprehensive testing.

In practice, only a subset of all possible model paths are selected for testing, due
to budgetary constraints. Recent work has sought to increase the amount of coverage
per test case or to improve the effectiveness of the testing by selecting the most critical
areas to test. The path prefix strategy is an "adaptive" strategy that uses previous paths
tested as a guide in the selection of subsequent test paths. Prather and ~ i e r s [96] prove
that the path prefix strategy achieves total branch coverage.

The identification of essential paths is a strategy that reduces the path coverage
required by nearly 40% [97]. The basis for the reduction is the elimination of nonessen-
tial paths. Paths that are overlapped by other paths are nonessential. The model con-
trol flow graph is transformed into a directed graph whose arcs (called primitive arcs)
correspond to the essential paths of the model. Nonessential arcs are called inheritor
arcs because they inherit information from the primitive arcs. The graph produced dur-
ing the transformation is called an inheritor-reduced graph. Chusho 1971 presents algo-
rithms for efficiently identifying nonessential paths and reducing the control graph into
an inheritor-reduced graph and for applying the concept of essential paths to the selec-
tion of effective test data.

6. Statement Testing: conducted to run/exercise the simulation model under test data
so as to execute as many statements as possible, as many times as possible, and to
substantiate their accurate operations. The more statements are tested successfully, the
more confidence we gain in the model's accurate execution with respect to its statements
W I .

Submodel/Module Testing. Submodel/module testing requires a top-down model
decomposition in terms of submodels/modules. The executable model is instrumented
to collect data on all input and output variables of a submodel. The system is simi-
larly instrumented (if possible) to collect similar data. Then each submodel behavior
is compared with corresponding subsystem behavior to judge submodel validity. If a
subsystem can be modeled analytically (e.g., as an M/M/l model), its exact solution
can be compared against the simulation solution to assess validity quantitatively.

Validating each submodel individually does not imply sufficient validity for the

10.4 VERIFICATION, VALIDATION, AND TESTING TECHNIQUES 377

entire model as dictated by principle 12; each submodel is found sufficiently valid with
some allowable error and the allowable errors can accumulate to make the entire model
invalid. Therefore, after individually validating each submodel, the entire model itself
must be subjected to overall testing.

Symbolic Debugging. Symbolic debugging assists in model VV&T by employing
a debugging tool that allows the modeler to manipulate model execution while viewing
the model at the source code level. By setting 'breakpoints" the modeler can interact
with the entire model one step at a time, at predetermined locations, or under specified
conditions. While using a symbolic debugger, the modeler may alter model data values
or cause a portion of the model to be "replayed," that is, executed again under the same
conditions (if possible). Typically, the modeler utilizes the information from execution
history generation techniques, such as tracing, monitoring, and profiling, to isolate a
problem or its proximity. Then the debugger is employed to understand how and why
the error occurs.

Current state-of-the-art debuggers (or interactive run-time controllers) allow viewing
the run-time code as it appears in the source listing, setting "watch" variables to monitor
data flow, viewing complex data structures, and even communicating with asynchronous
I/O channels. The use of symbolic debugging can greatly reduce the debugging effort
while increasing its effectiveness. Symbolic debugging allows the modeler to locate
errors and check numerous circumstances that lead up to the errors [42].

Top-Down Testing. Top-down testing is used in conjunction with top-down model
development strategy. In top-down development, model construction starts with the sub-
models at the highest level and culminates with the submodels at the base level (i.e.,
the ones that are not decomposed further). As each submodel is completed, it is tested
thoroughly. When submodels belonging to the same parent have been developed and
tested, the submodels are integrated and integration testing is performed. This process
is repeated in a top-down manner until the whole model has been integrated and tested.
The integration of completed submodels need not wait for all "same level" submod-
els to be completed. Submodel integration and testing can be, and often is, performed
incrementally [41].

Top-down testing begins with testing the global model at the highest level. When
testing a given level, calls to submodels at lower levels are simulated using submodel
stubs. A stub is a dummy submodel that has no other function than to let its caller
complete the call. Fairley [65] lists the following advantages of top-down testing: (I)
model integration testing is minimized, (2) early existence of a working model results,
(3) higher-level interfaces are tested first, (4) a natural environment for testing lower
levels is provided, and (5) errors are localized to new submodels and interfaces.

Some of the disadvantages of top-down testing are (1) thorough submodel testing
is discouraged (the entire model must be executed to perform testing), (2) testing can
be expensive (since the whole model must be executed for each test), (3) adequate
input data are difficult to obtain (because of the complexity of the data paths and con-
trol predicates), and (4) integration testing is hampered (again, because of the size and
complexity induced by testing the whole model) [651.

Visualization/Animation. Visualization/animation of a simulation model greatly
assists in model VV&T [24, 981. Displaying graphical images of internal (e.g., how
customers are served by a cashier) and external (e.g., utilization of the cashier) dynamic
behavior of a model during execution enables us to discover errors by seeing. For exam-

378 VERIFICATION, VALIDATION, AND TESTING

Figure 10.12 Traffic intersection simulation model animation.

ple, in the case study, we can observe the arrivals of vehicles in different lanes and
their movements through the intersection as the traffic light changes, as shown in Fig-
ure 10.12. Seeing the animation of the model as it executes and comparing it with the
operations of the real traffic intersection can help us identify discrepancies between the
model and the system. In the case study, the animation was extremely useful for iden-
tifying bugs in the model logic. Many errors were reflected in the animation and were
easily noticed.

Seeing the model in action is very useful for uncovering errors; however, seeing is
not believing in visual simulation [99]. Observing that the animation of model behavior
is free of errors does not guarantee the correctness of the model results.

10.4.4 Formal VV&T Techniques

Formal VV&T techniques are based on mathematical proof of correctness. If attain-
able, proof of correctness is the most effective means of model VV&T. Unfortunately,
"if attainable" is the overriding point with regard to formal VV&T techniques. Current
state-of-the-art proof of correctness techniques are simply not capable of being applied
even to a reasonably complex simulation model. However, formal techniques serve as
the foundation for other VV&T techniques and the most commonly known eight tech-
niques are described briefly below: (1) induction, (2) inductive assertions, (3) inference,
(4) X-calculus, (5) logical deduction, (6) predicate calculus, (7) predicate transformation,
and (8) proof of correctness [42, 1001.

10.5 CREDIBILITY ASSESSMENT STAGES 379

Induction, inference, and logical deduction are simply acts of justifying conclusions
on the basis of premises given. An argument is valid if the steps used to progress from
the premises to the conclusion conform to established rules of inference. Inductive rea-
soning is based on invariant properties of a set of observations (assertions are invariants
since their value is defined to be true). Given that the initial model assertion is correct,
it stands to reason that if each path progressing from that assertion can be shown to be
correct and subsequently each path progressing from the previous assertion is correct,
and so on, the model must be correct if it terminates. Formal induction proof techniques
exist for the intuitive explanation just given.

Birta and 0zmizrak [I01 j present a knowledge-based approach for simulation model
validation based on the use of a validation knowledge base containing rules of infer-
ence.

Inductive assertions are used to assess model correctness based on an approach that
is very close to formal proof of model correctness. It is conducted in three steps. In step
1 input-to-output relations for all model variables are identified. In step 2 these relations
are converted into assertion statements and are placed along the model execution paths
in such a way as to divide the model into a finite number of "assertion-bound" paths,
that is, an assertion statement lies at the beginning and end of each model execution
path. In step 3 verification is achieved by proving that for each path: If the assertion
at the beginning of the path is true and all statements along the path are executed, the
assertion at the end of the path is true. If all paths plus model termination can be proved,
by induction, the model is proved to be correct [102. 1031.

The h-calculus [I041 is a system for transforming the model into formal expressions.
It is a string-rewriting system and the model itself can be considered as a large string.
The h-calculus specifies rules for rewriting strings (i.e., transforming the model into
h-calculus expressions). Using the A-calculus, the modeler can formally express the
model so that mathematical proof of correctness techniques can be applied.

The predicate calculus provides rules for manipulating predicates. A predicate is
a combination of simple relations, such as completed-jobs > steadystate-length. A
predicate will either be true or false. The model can be defined in terms of predicates
and manipulated using the rules of the predicate calculus. The predicate calculus forms
the basis of all formal specification languages [105].

Predicate transformation [106, 1071 provides a basis for verifying model correctness
by formally defining the semantics of the model with a mapping that transforms model
output states to all possible model input states. This representation provides the basis
for proving model correctness.

Formal prooj'of correctness corresponds to expressing the model in a precise notation
and then mathematically proving that the executed model terminates and it satisfies
the requirements specification with sufficient accuracy [37, 1051. Attaining proof of
correctness in a realistic sense is not possible under the current state of the art. However,
the advantage of realizing proof of correctness is so great that when the capability is
realized, it will revolutionize the model VV&T.

10.5 CREDIBILITY ASSESSMENT STAGES

It is very important to understand the 15 principles of VV&T presented in Section 10.3
when applying more than 75 VV&T techniques described in Section 10.4 throughout

380 VERIFICATION, VALIDATION, AND TESTING

the entire life cycle of a simulation study given in Figure 10.1. The principles help
the researchers, practitioners, and managers better understand what VV&T is all about.
These principles serve to provide the underpinnings for the VV&T techniques. Under-
standing and applying the principles is crucially important for the success of a simulation
study.

Table 10.4 marks the VV&T techniques that are applicable for each major credibility
assessment stage of the life cycle of a simulation study. The rows of Table 10.4 list the
VV&T techniques in alphabetical order. The column labels correspond to the major
credibility ass&sment stages in the life cycle:

Formulated problem VV&T

Feasibility assessment of simulation

System and objectives definition VV&T

Model qualification

Communicative model VV&T

Programmed model VV&T

Experiment design VV&T

Data VV&T

Experimental model VV&T

Presentation VV&T

It should be noted that the list above shows only the major credibility assessment stages
and that many other VV&T activities exist throughout the life cycle.

10.5.1 Formulated Problem VV&T

Formulated problem VV&T deals with substantiating that the formulated problem con-
tains the actual problem in its entirety and is sufficiently well structured to permit the
derivation of a sufficiently credible solution [9]. Failure to formulate the actual problem
results in a type 111 error. Once a type 111 error is committed, regardless of how well the
problem is solved, the simulation study will either end unsuccessfully or with a type 11
error. Therefore, the accuracy of the formulated problem greatly affects the credibility
and acceptability of simulation results.

In the case study, type I11 error may be committed if the problem domain boundary
excludes the adjacent traffic intersections. It is possible that the traffic light timings of
the adjacent intersections are set in such a way that they all turn green at the same
time for the traffic traveling toward the intersection under study. Such light timings
may be the root cause of congestion. Correcting the light timings at the adjacent traffic
intersections may very well solve the congestion problem at the traffic intersection under
study. Failure to identify such a cause may result in type 111 error.

Audit, causeeeffect graphing, desk checking, face validation, inspections, reviews,
and walkthroughs can be applied for conducting formulated problem VV&T. In applying
cause-effect graphing, a causality network is created to analyze the potential root causes
of the communicated problem [9]. The questionnaire developed by Balci and Nance
[9] with 38 indicators can be used in applying audit, inspections, reviews, and walk-
throughs.

TABLE 10.4 Applicability of the VV&T Techniques for the Credibility Assessment Stages

FP FA of S&OD Model CM PM ED Data EM Presentation
VV&T Simulation VV&T Qualification VV&T VV&T VV&T VV&T VV&T VV&T

Acceptance testing
Alpha testing
Assertion checking
Audit
Authorization testing
Beta testing
Bottom-up testing
Boundary value testing
Branch testing
Calling structure analysis
Cause-effect graphing
Comparison testing
Concurrent process analysis
Condition testing
Control flow analysis
Data dependency analysis
Data flow analysis
Data flow testing
Data interface testing
Debugging
Desk checking
Documentation checking
Equivalence partitioning testing
Execution monitoring
Execution profiling

W
03

") TABLE 10.4 (Continued)

FP FA of S&OD Model CM PM ED Data EM Presentation
VV&T Simulation VV&T Qualification VV&T VV&T VV&T VV&T VV&T VV&T

Execution tracing
Extreme input testing
Face validation
Faultlfailure analysis
Fault/failure insertion testing
Field testing
Functional testing
Graphical comparisons
Induction
Inductive assertions
Inference
Inspections
Invalid input testing
Lambda calculus
Logical deduction
Loop testing
Model interface analysis
Model interface testing
Object-flow testing
Partition testing
Path testing
Performance testing
Predicate calculus
Predicate transformation
Predictive validation
Product testing
Proof of correctness
Real-time input testing

Regression testing x x
Reviews x x x x x x x
Security testing x
Self-driven input testing x x
Semantic analysis x x x
Sensitivity analysis x x x
Standards testing x x
State transition analysis x x x x
Statement testing x x x
Statistical techniques (Table 10.3) x x
Stress testing x x
Structural analysis x x x x
Submodel/module testing x x x
Symbolic debugging x x x
Symbolic evluation x x x x
Syntax analysis x x x
Top-down testing x x x
Trace-driven input testing x x
Traceability assessment x x x
Turing test x
User interface analysis x x x
User interface testing x x
Visualization/animation x x x x x
Walkthroughs x x x x x x x x x x

384 VERIFICATION, VALIDATION, AND TESTING

10.5.2 Feasibility Assessment of Simulation

Audit, desk checking, face validation, inspections, reviews, and walkthroughs can be
applied for assessing the feasibility of simulation with the use of indicators such as: (1)
Are the benefits and cost of simulation solution estimated correctly? (2) Do the potential
benefits of simulation solution justify the estimated cost of obtaining it? (3) Is it possible
to solve the problem using simulation within the time limit specified? (4) Can all of the
resources required by the simulation project be secured? and (5) Can all of the specific
requirements (e.g., access to pertinent classified information) of the simulation project
be satisfied?

10.5.3 System and Objectives Definition VV&T

For the purpose of generality, the term system is used to refer to the entity that contains
the formulated problem. System and objectives definition VV&T deals with assessing
the credibility of the system investigation process in which system characteristics are
explored for consideration in system definition and modeling.

Audit, desk checking, face validation, inspections, reviews, and walkthroughs can be
applied for conducting system and objectives definition VV&T by using indicators such
as: (1) Since systems and objectives may change over a period of time, will we have the
same system and objectives definition at the conclusion of the simulation study (which
may last from six months to several years)? (2) Is the system's environment (boundary)
identified correctly? (3) What counterintuitive behavior may be caused within the system
and its environment? (4) Will the system significantly drift to low performance requir-
ing a periodic update of the system definition? and (5) Are the interdependency and
organization of the system characterized accurately? The objective here is to substan-
tate that the system characteristics are identified and the study objectives are explicitly
defined with sufficient accuracy. An error made here may not be caught until very late
in the life cycle resulting in a high cost of correction or an error of type I1 or 111.

10.5.4 Model Qualification

Model qualification is intended for assessing the credibility of the model formulation
process. A model should be conceptualized under the guidance of a structured approach
such as the conical methodology [S] . One key idea behind the use of a structured
approach is to control the model complexity so that we can verify and validate the
model successfully. The use of a structured approach is an important factor determin-
ing the success of a simulation project, especially for large-scale and complex models.

During the conceptualization of the model, one makes many assumptions in abstract-
ing reality. Each assumption should be explicitly specified. Model qualification deals
with the justification that all assumptions made are appropriate and the conceptual model
provides an adequate representation of the system with respect to the study objectives.
Audit, desk checking, face validation, inspections, reviews, and walkthroughs can be
applied for conducting model qualification.

In the case study, many assumptions including the following, are made in abstracting
the traffic intersection operation: (1) pedestrians are excluded; (2) bicycles and emer-
gency vehicles are excluded; (3) the light timing cycle length is assumed constant and
the sensor in lane 9 is ignored; (4) the yellow light is included in the green since most
drivers pass on yellow; (5) all drivers obey the traffic laws; and (6) all vehicles have the

10.5 CREDIBILITY ASSESSMENT STAGES 385

same size. These assumptions were justified to be appropriate under the study objectives
in the model qualification credibility assessment stage.

10.5.5 Communicative Model VV&T

Communicative model VV&T deals with confirming the adequacy of the communica-
tive model to provide an acceptable level of agreement for the domain of intended
application. Domain of intended upplication [25] is the prescribed conditions for which
the model is intended to match the system under study. Level ofagreement [25] is the
required correspondence between the model and the system, consistent with the domain
of intended application and the study objectives.

In the case study, the graphical model design specification, shown in Figure 10.3,
is justified to be sufficiently accurate. Inspections are conducted to substantiate that all
vehicle movements in the model design specification represent the real-life movements
with sufficient accuracy. Specifications of all classes is found to be appropriate.

10.5.6 Programmed Model VV&T

Programmed model VV&T deals with the assessment of programmed (executable)
model accuracy. Most of the techniques in Table 10.4 are applicable for conducting
programmed model VV&T. In the case study, many of the applicable techniques in
Table 10.4 were used to assess the executable model accuracy. Specifically, the ani-
mation was very helpful. In addition, tracing of message passing was instrumental in
revealing some of the bugs.

10.5.7 Experiment Design VV&T

Experiment design VV&T deals with substantiating the sufficient accuracy of the design
of experiments. The techniques marked in Table 10.4 can be applied for conducting
experiment design VV&T with the use of indicators such as: (1) Are the algorithms
used for random variate generation theoretically accurate? (2) Are the random variate
generation algorithms translated into executable code accurately'? (Error may be induced
by computer arithmetic or by truncation due to machine accuracy, especially with order
statistics (e.g., X = - log,(l - U)) [1081); (3) How well is the random number generator
tested? (using a generator that is not rigorously shown to produce uniformly distributed
independent numbers with sufficiently large period may invalidate the entire experiment
design); (4) Are uppropriate statistical techniques implemented to design and analyze
the simulation experiments? How well are the underlying assumptions satisfied'? (see ref.
109 for several reasons why output data analyses have not been conducted in an appro-
priate manner); (5) Is the problem of the initial transient (or the startup problem) [I 101
appropriately addressed? and (6) For comparison studies, are identical experimental con-
ditions replicated correctly for each of the alternative operating policies compared?

10.5.8 Data VV&T

Data VV&T involves input data model VV&T and deals with substantiating that all
data used throughout the model development phases of the life cycle in Figure 10.1 are
accurate, complete, unbiased, and appropriate in their original and transformed forms.
An input data model is the characterization of an input process (e.g., characterization

386 VERIFICATION, VALIDATION, AND TESTING

of an arrival process by Poisson probability distribution). U.S. GAO [I l l] emphasizes
the importance of input data model validation in credibility assessment of simulations.
In those cases where data cannot be collected, data values may be determined through
calibration. Calibration is an iterative process in which a probabilistic characterization
for an input variable or a fixed value for a parameter is tried until the model is found
to be sufficiently valid.

The techniques marked in Table 10.4 can be applied for conducting data VV&T
with the use of indicators such as: (1) Does each input data model possess a sufficiently
accurate representation? (2) Are the parameter values identified, measured, or estimated
with sufficient accuracy? (3) How reliable are the instruments used for data collection
and measurement? (4) Are all data transformations done accurately? (e.g., are all data
transformed correctly into the same time unit of the model?) (5) Is the dependence
between the input variables, if any, represented by the input data model(s) with sufficient
accuracy? (blindly modeling bivariate relationships using only correlation to measure
dependency is cited as a common error by Schmeiser [108]); and (6) Are all data up to
date?

10.5.9 Experimental Model VV&T

Experimental model VV&T deals with substantiating that the experimental model has
sufficient accuracy in representing the system under study consistent with the study
objectives. All of the techniques listed in Table 10.4 can be applied for conducting
experimental model VV&T. The applicability of the VV&T techniques depends on the
following cases, where the system being modeled is (1) completely observable-all
data required for model VV&T can be collected from the system, (2) partially
observable-some required data can be collected, or (3) nonexistent or completely unob-
servable. The statistical techniques in Table 10.3 are applicable only for case 1.

In the case study, many of the applicable techniques in Table 10.4 were used to assess
the experimental model accuracy. Some of the statistical techniques in Table 10.3 were
also used.

10.5.10 Presentation VV&T

Presentation VV&T deals with justifying that the simulation results are interpreted, doc-
umented, and communicated with sufficient accuracy. Since all simulation models are
descriptive, simulation results must be interpreted. A descriptive model describes the
behavior of a system without any value judgment on the "goodness" or "badness' of
such behavior. In the simulation of an interactive computer system, for example, the
model may produce a value of 20 seconds for the average response time. But it does
not indicate whether the value 20 is a "good" result or a " b a d one. Such a judgment
is made by the simulation analyst depending on the study objectives. Under one set of
study objectives the value 20 may be too high; under another, it may be reasonable. The
project team should review the way the results are interpreted in every detail to evalu-
ate interpretation accuracy. Errors may be induced due to the complexity of simulation
results, especially for large-scale and complex models.

Gass [I121 points out that "we do not know of any model assessment or modeling
project review that indicated satisfaction with the available documentation." Nance [5]
advocates the use of standards in simulation documentation. The documentation prob-
lem should be attributed to the lack of automated support for documentation genera-

10.6 CONCLUDING REMARKS 387

tion integrated with model development continuously throughout the entire life cycle.
The model development environment [16, 29, 113, 114) provides such computer-aided
assistance for documenting a simulation study with respect to the phases, processes, and
credibility assessment stages of the life cycle in Figure 10.1.

The simulation project team must devote sufficient effort in communicating tech-
nical simulation results to decision makers in a language they will understand. They
must pay more attention to translating from the specialized jargon of the discipline into
a form that is meaningful to the nonsimulationist and nonmodeler. Simulation results
may be presented to the decision makers as integrated within a decision support system
(DSS). With the help of a DSS, a decision maker can understand and utilize the results
much better. The integration accuracy of simulation results within the DSS must be
verified. If results are directly presented to the decision makers, the presentation tech-
nique (e.g., overheads, slides, films, etc.) must be ensured to be effective enough. The
project management must make sure that the team members are trained and possess suf-
ficient presentation skills. Audit, desk checking, face validation, inspections, reviews,
visualization/animation, and walkthroughs can be applied for conducting presentation
VV&T.

10.6 CONCLUDING REMARKS

The life-cycle application of VV&T is extremely important for successful completion
of complex and large-scale simulation studies. This point must be clearly understood
by the sponsor of the simulation study and the organization conducting the simulation
study. The sponsor must furnish funds under the contractual agreement and require the
contractor to apply VV&T throughout the entire life cycle of a simulation study.

Assessing credibility throughout the life cycle is an onerous task. Applying the
VV&T techniques throughout the life cycle is time consuming and costly. In practice,
under time pressure to complete a simulation study, the VV&T and documentation are
sacrificed first. Computer-aided assistance for credibility assessment is required to alle-
viate these problems. More research is needed to bring automation to the application of
VV&T techniques.

Integration VV&T with model development is crucial. This integration is best
achieved within a computer-aided simulation model development environment [16, 29,
113, 1141. More research is needed for this integration. The question of which of the
applicable VV&T techniques should be selected for a particular VV&T activity in the
life cycle should be answered by taking the following into consideration: (1) model
type, (2) simulation type, (3) problem domain, and (4) study objectives.

How much to test or when to stop testing depends on the study objectives. The testing
should continue until we achieve sufficient confidence in credibility and acceptability
of simulation results. The sufficiency of the confidence is dictated by the study objec-
tives. Establishing a simulation quality assurance (SQA) program within the organiza-
tion conducting the simulation study is extremely important for successful credibility
assessment. The SQA management structure goes beyond VV&T and is also responsible
for assessing other model quality characteristics such as maintainability, reusability, and
usability (human-computer interface). The management of the SQA program and the
management of the simulation project must be independent of each other and neither
should be able to overrule the other [37].

Subjectivity is, and always will be, part of the credibility assessment for a reasonably

388 VERIFICATION, VALIDATION, AND TESTING

complex simulation study. The reason for subjectivity is twofold: modeling is an art and
credibility assessment is situation dependent. A unifying approach based on the use of
indicators measuring qualitative as well as quantitative aspects of a simulation study
should be developed.

REFERENCES

1. oren, T. I. (1981). Concepts and criteria to assess acceptability of simulation studies: a frame
of reference, Communications of the ACM, Vol. 24, No. 4, pp. 180-189.

2. oren, T. 1. (1986). Artificial intelligence in quality assurance of simulation studies, in Mod-
elling and Simulation Methodology in the Artijcial Intelligence Era, M. S. Elzas, T. I. Oren,
and B. P. Zeigler, eds., North-Holland, Amsterdam, pp. 267-278.

3. &en, T. 1. (1987). Quality assurance paradigms for artificial intelligence in modelling and
simulation," Simulation, Vol. 48, No. 4, pp. 149-151.

4. Balci, 0 . (1990). Guidelines for successful simulation studies, in Proceedings of the 1990
Winter Simulation Conference, 0 . Balci, R. P. Sadowski, and R. E. Nance, eds., IEEE, Pis-
cataway, N.J., pp. 25-32.

5. Nance, R. E. (1994). The conical methodology and the evolution of simulation model devel-
opment, Annals of Operations Research, Vol. 53, pp. 1 4 6 .

6. Banks, J., D. Gerstein, and S. P. Searles (1987). Modeling processes, validation, and verifica-
tion of complex simulations: a survey, in Methodology and Validation, 0 . Balci, ed., Society
for Computer Simulation, San Diego, Calif., pp. 13-18.

7. Knepell, P. L., and D. C. Arangno (1993). Simulation validation: a confidence assessment
methodology, Monograph 3512-04, lEEE Computer Society Press, Los Alamitos, Calif.

8. Woolley, R. N., and M. Pidd (1981). Problem structuring: a literature review, Journal of the
Operational Research Society, Vol. 32, No. 3, pp. 197-206.

9. Balci, O., and R. E. Nance (1985). Formulated problem verification as an explicit requirement
of model credibility," Simulation, Vol. 45, No. 2, pp. 76-86.

10. Shannon, R. E. (1975). Systems Simulation: The Art and Science, Prentice Hall, Upper Saddle
River, N.J.

11. Law, A. M., and W. D. Kelton (1991). Simulation Modeling and Analysis, 2nd ed., McGraw-
Hill, New York.

12. Banks, J., J. S. Carson, and B. L. Nelson (1996). Discrete-Event System Simulation, 2nd ed.,
Prentice Hall, Upper Saddle River, N.J.

13. Vincent, S., and A. M. Law (1995). ExpertFit: total support for simulation input modeling,"
in Proceedings of the 1995 Winter Simulation Conjerence, C. Alexopoulos, K. Kang, W. R.
Lilegdon, and D. Goldsman, eds., IEEE, Piscataway, N.J., pp. 395400.

14. Overstreet, C. M., and R. E. Nance (1985). A specification language to assist in analysis
of discrete event simulation models, Communications of the ACM, Vol. 28, No. 2, pp. 190-
201.

15. Martin, J., and C. McClure (1985). Diagramming Techniques for Analysts and Programmers,
Prentice Hall, Upper Saddle River, N.J.

16. Balci, O., A. I. Bertelrud, C. M. Esterbrook, and R. E. Nance (1995). A picture-based object-
oriented visual simulation environment, in Proceedings of the 1995 Winter Simulation Con-
ference, C . Alexopoulos, K. Kang, W. R. Lilegdon, and D. Goldsman, eds., IEEE, Piscataway,
N.J., pp. 1333-1 340.

17. Orca Computer (1996). Visual Simulation Environnzent User k Guide, Orca Computer, Inc.,
Blacksburg, Va.

REFERENCES 389

18. Orca Computer (1996). Visual Simulation Environment Reference Manual, Orca Computer,
Inc., Blacksburg, Va.

19. Banks, J. (1996). Software for Simulation, in Proceedings of the 1996 Winter Simulation Con-
ference, J. M. Chames, D. J. Morrice, D. T. Brunner, and J. J. Swain, eds., IEEE, Piscataway,
N.J., pp. 31-38.

20. Balci, 0 . (1988). The implementation of four conceptual frameworks for simulation modeling
in high-level languages, in Proceedings of the 1988 Winter Simulurion Conference, M . A.
Abrams, P. L. Haigh, and J. C. Comfort, eds., IEEE, Piscataway, N.J., pp. 287-295.

21. Fishman, G. S. (1978). Principles of Discrete Event Simulation, Wiley-Interscience, New
York.

22. Hetzel, W. (1984). The Complete Guide to Software Testing, QED Information Sciences,
Wellesley, Mass.

23. Beizer, B. (1990). Sofmare Testing Techniques, 2nd ed., Van Nostrand Reinhold, New York.

24. Sargent, R. G. (1996). Verifying and validating simulation models, in Proceedings ofthe 1996
Winter Simulation Conference, J. M. Charnes, D. J. Morrice, D. T. Brunner, and J. J. Swain,
eds., IEEE, Piscataway, N.J., pp. 55-64.

25. Schlesinger, S., et al. (1979). Terminology for model credibility, Simulation, Vol. 32, No. 3,
pp. 103-104.

26. Balci, O., and R. G. Sargent (1981). A methodology for cost-risk analysis in the statistical
validation of simulation models, Communications of the ACM, Vol. 24, No. 4, pp. 190-197.

27. Nance, R. E., and C. M. Overstreet (1987). Diagnostic assistance using digraph representa-
tions of discrete event simulation model specifications, Transactions of the SCS, Vol. 4, No.
1, pp. 33-57.

28. Balci, O., and R. E. Nance (1992). The simulation model development environment: an
overview, in Proceedings of the 1992 Winter Simulation Conference, J. J. Swain, D. Golds-
man, R. C. Crain, and J. R. Wilson, eds., IEEE, Piscataway, N.J., pp. 726-736.

29. Derrick, E. J., and 0 . Balci (1995). A visual simulation support environment based on the
DOMINO conceptual framework, Journal of Systems and Software, Vol. 3 1, No. 3, pp.
215-237.

30. Balci, 0. . and R. G. Sargent (1984). Validation of simulation models via simultaneous con-
fidence intervals, American Journal ofMathematica1 and Management Sciences, Vol. 4, No.
3 4 , pp. 375406.

31. Johnson, M. E., and M. Mollaghasemi (1994). Simulation input data modeling, Annals of
Operations Research, Vol. 53, pp. 47-75.

32. Watson, C. E. (1976). The problems of problem solving, Business Horizons, Vol. 19, No. 4,
pp. 88-94.

33. Perry, W. (1995). Effective Methods for Software Testing, Wiley, New York

34. Hollocker, C. P. (1987). The standardization of software reviews and audits, in Handbook
oj'Software Quality Assurance, G. G. Schulmeyer and J. I. McManus, eds., Van Nostrand
Reinhold, New York, pp. 21 1-266.

35. Adrion, W. R., M. A. Branstad, and J. C. Cherniavsky (1982). Validation, verification, and
testing of computer software, Computing Surveys, Vol. 14, No. 2, pp. 159-192.

36. Hermann, C. F. (1967). Validation problems in games and simulations with special reference
to models of international politics, Behavioral Science, Vol. 12, No. 3, pp. 216-231.

37. Schach, S. R. (1996). Sofmare Engineering, 3rd ed., Richard D. Irwin, Homewood, Ill.

38. Ackerman, A. F., P. J. Fowler, and R. G. Ebenau (1983). Software inspections and the indus-
trial production of software, in Software Validation: Inspection, Testing, Verijcation, Alternu-
tives, Proceedings ($the Symposium on Software Validation, Darmstadt, Germany, September
25-30, H.-L. Hausen, ed., pp. 1340 .

390 VERIFICATION, VALIDATION, AND TESTING

39. Dobbins, J. H. (1987). Inspections as an up-front quality technique. in Handbook of Software
Quality Assurance, G. G. Schulmeyer and J. I. McManus, eds., Van Nostrand Reinhold, New
York, pp. 137-177.

40. Knight, J. C., and E. A. Myers (1993). An improved inspection technique, Communications
of the ACM, Vol. 36, No. 11, pp. 51-61.

41. Sommerville, I. (1996). Software Engineering, 5th ed., Addison-Wesley, Reading, Mass.

42. Whitner, R. B., and 0 . Balci (1989). Guidelines for selecting and using simulation model veri-
fication techniques, in Proceedings of the 1989 Winter Simulation Conference, E. A. MacNair,
K. J. Musselman, and P. Heidelberger, eds., IEEE, Piscataway, N.J., pp. 559-568.

43. Schruben, L. W. (1980). Establishing the credibility of simulations, Simulation, Vol. 34, No.
3, pp. 101-105.

44. Turing, A. M. (1963). Computing machinery and intelligence, in Computers and Thought, E.
A. Feigenbaum and J. Feldman, eds., McGraw-Hill, New York, pp. 11-15.

45. Van Horn, R. L. (1971). Validation of simulation results, Management Science, Vol. 17, No.
5, pp. 247-258.

46. Deutsch, M. S. (1982). Software Verijication and Validation: Realistic Project Approaches,
Prentice Hall, Upper Saddle River, N.J.

47. Myers, G. J. (1978). A controlled experiment in program testing and code walkthroughs/
inspections, Communications of the ACM, Vol. 21, No. 9, pp. 760-768.

48. Myers, G. J. (1979). The Art of Software Testing, Wiley, New York.

49. Yourdon, E. (1985). Structured Walkthroughs, 3rd ed., Yourdon Press, New York.

50. Pressman, R. S. (1996). Software Engineering: A Practitioner's Approach, 4th ed., McGraw-
Hill, New York.

51. Miller, L. A,, E. H. Groundwater, J. E. Hayes, and S. M. Mirsky (1995). Survey and
assessment of conventional software verification and validation methods, Special Publica-
tion NUREGICR-6316, Vol. 2, U.S. Nuclear Regulatory Commission, Washington, DC.

52. Rattray, C., ed. (1990). Spec~jication and Veri3cation of Concurrent Systems, Springer-Verlag,
New York.

53. Moose, R. L., and R. E. Nance (1989). The design and development of an analyzer for discrete
event model specifications, in Impacts of Recent Computer Advances on Operations Research,
R. Sharda, B. L. Golden, E. W a d , 0. Balci, and W. Stewart, eds., Elsevier, New York, pp.
407-42 1.

54. Dunn, R. H. (1984). Soffware Defect Removal, McCraw-Hill, New York.
55. Allen, F. E., and J. Cocke (1976). A program data flow analysis procedure, Communications

of the ACM, Vol. 19, NO. 3, pp. 137-147.

56. Yiicesan, E., and S. H. Jacobson (1992). Building correct simulation models is difficult, in
Proceedings of the 1992 Winter Simulation Conference. J. J. Swain, D. Goldsman, R. C.
Crain, and J. R. Wilson, eds., IEEE, Piscataway, N.J., pp. 783-790.

57. Yiicesan, E., and S. H. Jacobson (to appear). Computational issues for accessibility in discrete
event simulation, ACM Transactions on Modeling and Computer Simulation, Vol. 6, No. 1,
pp. 53-75.

58. King, J. C. (1976). Symbolic execution and program testing, Communications of the ACM,
Vol. 19, No. 7, pp. 385-394.

59. Dillon, L. K. (1990). Using symbolic execution for verification of Ada Tasking programs,
ACM Transactions on Programming Languages and Systems, Vol. 12, No. 4, pp. 643-669.

60. Ramamoorthy, C. V., S. F. Ho, and W. T. Chen (1976). On the automated generation of
program test data, IEEE Transactions on Software Engineering, Vol. SE-2, No. 4, pp. 293-
300.

61. Stucki, L. G. (1977). New directions in automated tools for improving software quality, in

REFERENCES 391

Current Trends in Programming Methodology, Vol. 2, R. Yeh, ed., Prentice Hall, Upper Sad-
dle River, N.J., pp. 80-1 11.

62. Department of Defense (1995). Modeling and simulation (M&S) master plan, DoD 5000.59-
P, October.

63. Dunn, R. H. (1987). The quest for software reliability, in Handbook of Software Q u a l i ~
Assurance, G. G. Schulmeyer and J. I. McManus, eds., Van Nostrand Reinhold, New York,
pp. 342-384.

64. Fairley, R. E. (1975). An experimental program-testing facility, IEEE Transactions on Soft-
ware Engineering, Vol. SE-1, No. 4, pp. 350-357.

65. Fairley, R. E. (1976). Dynamic testing of simulation software, in Proceedings of the 1976
Summer Computer Simulation Conference, Washington, D.C., July 12-14, Simulation Coun-
cils, La Jolla, Calif., pp. 708-710.

66. Howden, W. E. (1980). Functional program testing, IEEE Transactions on Software Engi-
neering, Vol. SE-6, No. 2, pp. 162-1 69.

67. Cohen, K. J., and R. M. Cyert (1961). Computer models in dynamic economics, Quurterly
Journal of Economics, Vol. 75, No. 1, 1 12-127.

68. Forrester, J. W. (1961). Industrial Dynamics, MIT Press, Cambridge, Mass

69. Miller, D. K. (1975). Validation of computer simulations in the social sciences, in Procred-
ings ofrhe 6th Annual Conference on Modeling and Simulation, Pittsburgh, Pa., pp. 743-746.

70. Wright, R. D. (1972). Validating dynamic models: an evaluation of tests of predictive power,
in Proceedings of the 1972 Summer Computer Simulation Conference, San Diego, Calif., July
14-16, Simulation Councils, La Jolla, Calif., pp. 1286-1296.

71. Howden, W. E. (1976). Reliability of the path analysis testing strategy, IEEE Transactions
on S($tware Engineering, Vol. SE-2, No. 3, pp. 208-214.

72. Richardson, D. J., and L. A. Clarke (1985). Partition analysis: a method combining testing
and verification, IEEE Transactions on Software Engineering, Vol. SE-I I, No. 12, pp. 1477-
1490.

73. Emshoff, J. R., and R. L. Sisson (1970). Design and Use of Computer Simulation Models,
Macmillan, New York.

74. Miller, D. R. (1974). Model validation through sensitivity analysis, in Proceedings of the 1974
Summer Computer Simulation Conference, Houston, Texas, July 9-1 1, Simulation Councils,
La Jolla, Calif., pp. 91 1-914.

75. Miller, D. R. (1974). Sensitivity analysis and validation of simulation models, Journal of
Theoretical Biology, Vol. 48, No. 2, pp. 345-360.

76. Ould, M. A., and C. Unwin (1986). Testing in Software Development, Cambridge University
Press, Cambridge.

77. Naylor, T. H., and J. M. Finger (1967). Verification of computer simulation models, Man-
agement Science, Vol. 14, No. 2, pp. B92-B 101.

78. Balci, O., and R. G. Sargent (1982). Some examples of simulation model validation using
hypothesis testing, in Proceedings oj'the 1982 Winter Simulation Conference, H. J. Highland,
Y. W. Chao, and 0. S. Madrigal, eds., IEEE, Piscataway, N.J., pp. 620-629.

79. Balci, O., and R. G. Sargent (1982). Validation of multivariate response models using
Hotelling's two-sample T 2 test, Simulation, Vol. 39, No. 6, pp. 185-192.

80. Balci, O., and R. G. Sargent (1983). Validation of multivariate response trace-driven simu-
lation models, in Performance '83, A. K . Agrawala and S. K. Tripathi. eds., North-Holland,
Amsterdam. pp. 309-323.

81. Garratt, M. (1974). Statistical validation of simulation models, in Proceedings of the 1974
Summer Computer Simulation Conference, Houston, Texas, July 9-1 1, Simulation Councils,
La Jolla, Calif., pp. 915-926.

392 VERIFICATION, VALIDATION, AND TESTING

82. Gafarian, A. V., and J. E. Walsh (1969). Statistical approach for validating simulation models
by comparison with operational systems, in Proceedings of the 4th International Conference
on Operations Research, Wiley, New York, pp. 702-705.

83. Aigner, D. J. (1972). A note on verification on computer simulation models, Management
Science, Vol. 18, No. 1 1, pp. 6 15-6 19.

84. Howrey, P., and H. H. Kelejian (1969). Simulation versus analytical solutions, in The Design
of Computer Simulation Experiments, T. H . Naylor, ed., Duke University Press, Durham,
N.C., pp. 207-231.

85. Kheir, N. A,, and W. M. Holmes (1978). On validating simulation models of missile systems,
Simulation, Vol. 30, No. 4, pp. 117-128.

86. Rowland, J. R., and W. M. Holmes (1978). Simulation validation with sparse random data,
Computers and Electrical Engineering, Vol. 5, No. 3, pp. 3 7 4 9 .

87. Theil, H. (1961). Economic Forecasts and Policy, North-Holland, Amsterdam

88. Fishman, G. S., and P. J. Kiviat (1967). The analysis of simulation generated time series,
Management Science, Vol. 13, No. 7, pp. 525-557.

89. Gallant, A. R., T. M. Gerig, and J. W. Evans (1974). Time series realizations obtained accord-
ing to an experimental design, Journal of the American Statistical Association, Vol. 69, No.
347, pp. 639-645.

90. Hunt, A. W. (1970). Statistical evaluation and verification of digital simulation models
through spectral analysis, Ph.D. dissertation, University of Texas at Austin, Austin, Texas.

91. Watts, D. (1969). Time series analysis, in The Design of Computer Simulation Experiments,
T. H. Naylor, ed., Duke University Press, Durham, N.C., pp. 165-179.

92. Damborg, M. J., and L. F. Fuller (1976). Model validation using time and frequency domain
error measures, ERDA Report 76-152, NTIS, Springfield, Va.

93. Tytula, T. P. (1978). A method for validating missile system simulation models, Technical
Report E-78-11, U.S. Army Missile R&D Command, Redstone Arsenol, Ala., June.

94. Teorey, T. J. (1975). Validation criteria for computer system simulations, Simuletter, Vol. 6,
No. 4, pp. 9-20.

95. Kleijnen, J. P. C. (1975). Statistical Techniques in Simulation, Vol. 2, Marcel Dekker, New
York.

96. Prather, R. E., and J. P. Myers, Jr. (1987). The path prefix software testing strategy, IEEE
Transactions on Software Engineering, Vol. SE-13, No. 7, pp. 761-766.

97. Chusho, T. (1987). Test data selection and quality estimation based on the concept of essential
branches for path testing, IEEE Transactions on Software Engineering, Vol. SE-13, No. 5,
pp. 509-5 17.

98. Bell, P. C., and R. M. O'Keefe (1994). Visual interactive simulation: a methodological per-
spective, Annals of Operations Research, Vol. 53, pp. 321-342.

99. Paul, R. J. (1989). Visual simulation: seeing is believing? in Impacts of Recent Computer
Advances on Operations Research, R. Sharda, B. L. Golden, E. Wasil, 0 . Balci, and W.
Stewart, eds., Elsevier, New York, pp. 422432.

100. Khanna, S. (1991). Logic programming for software verification and testing, The Computer
Journal, Vol. 34, No. 4, pp. 350-357.

101. Birta, L. G., and F. N. Ozmizrak (1996). A knowledge-based approach for the validation of
simulation models: the foundation, ACM Transactions on Modeling and Computer Simula-
tion, Vol. 6, No. 1, pp. 76-98.

102. Manna, Z., S. Ness, and J. Vuillemin (1973). Inductive methods for proving properties of
programs, Communications of the ACM, Vol. 16, No. 8, pp. 491-502.

103. Reynolds, C., and R. T. Yeh (1976). Induction as the basis for program verification, IEEE
Transactions on SoSnyare Engineering, Vol. SE-2, No. 4, pp. 244-252.

REFERENCES 393

Barendregt, H. P. (1981). The Lambda Calcu1u.r: Its Syntax and Semuntics, North-Holland,
New York.

Backhouse, R. C. (1986). Program Construction and Verificution, Prentice Hall International,
London

Dijkstra, E. W. (1975). Guarded commands, non-determinacy and a calculus for the derivation
of programs, Communications o f the ACM, Vol. 18, No. 8, pp. 4 5 3 4 5 7 .

Yeh, R. T. (1977). Verification of programs by predicate transformation, in Current Trends
in Programming Methodology, Vol. 2, R. Yeh, ed., Prentice Hall, Upper Saddle River, N.J.,
pp. 228-247.

Schmeiser, B. (1981). Random variate generation, in Proceedings of'tlze 1981 Winter Simu-
lation Conference, T. I . oren, C. M. Delfosse, and C. M. Shub, eds. IEEE, Piscataway, N.J.,
pp. 227-242.

Law, A. M. (1983). Statistical analysis of simulation output data, Operations Research, Vol.
31, No. 6, pp. 983-1029.

Wilson, J. R., and A. A. B. Pritsker (1978). A survey of research on the simulation startup
problem, Simulation, Vol. 31, No. 2, pp. 55-58.

U.S. GAO (1987). DOD simulations: improved assessment procedures would increase the
credibility of results, GAOIPEMD-88-3, U.S. General Accounting Office, Washington, D.C.,
Dec.

Gass, S. 1. (1983). Decision-aiding models: validation, assessment, and related issues for
policy analysis, Operations Reseurch, Vol. 3 1, No. 4, pp. 603-63 1 .

Balci, 0 . (1986). Requirements for model development environments, Computers und Oper-
ations Reseurch, Vol. 13, No. 1, pp. 53-67.

Balci, 0.. and R. E. Nance (1987). Simulation model development environments: a research
prototype, Journal of the Operational Research Society, Vol. 38, No. 8, pp. 753-763.

PART Ill

RECENTADVANCES

CHAPTER 11

Object-Oriented Simulation

JEFFREY A. JOINES AND STEPHEN D. ROBERTS
North Carolina State University

11.1 INTRODUCTION

An Object-Oriented Simulation (0 0 s) models the behavior of interacting objects over
time. Object collections, called classes, encapsulate the characteristics and functionality
of common objects. A set of object classes has been written in C++ which can be used
to create simulation models and simulation packages. The simulations built with these
tools possess the benefits of an object-oriented design, including the use of encapsu-
lation, inheritance, polymorphism, run-time binding, and parameterized typing. These
concepts are illustrated by creating a set of object frames to describe various simula-
tion requirements. Simulation modeling is encapsulated within a set of modeling frame-
works. From this set of modeling frameworks, a network queueing simulation language
is developed which has several notable features not available in other non-OOS simu-
lation languages. The extensibility and reusability of the simulation modeling concepts
are demonstrated with examples. Object-oriented simulations provide full accessibility
to the base language, faster executions, portable models and executables, a multi-vendor
implementation language, and a growing variety of complementary development tools.

The idea of an object-oriented simulation has great intuitive appeal because it is very
easy to view the real world as being composed of objects. In a manufacturing cell, the
physical objects include the machines, the workers, the parts, the tools, and the convey-
ors. However, the part routings, the schedule, the work plan, and other information items
could be also viewed as objects. All these objects interact to produce system behavior.
A simulation simply viewed manipulates these objects over time.

It is quite easy to describe many existing simulation languages using object termi-
nology. A simulation language or simulation package provides a user with a set of pre-
defined object classes from which the simulation modeler can create needed objects.
For example, a network-based queueing language will typically view a system as hav-
ing entity objects that travel through a network of queue objects, being served by
resource objects. Using the simulation language (object classes), the modeler would

Hundbook of Sirnularion, Edited by Jerry Banks.
ISBN 0-471-13403-1 O 1998 John Wiley & Sons, Inc

398 OBJECT-ORIENTED SIMULATION

declare the network by defining the node objects and their connecting branch objects.
The node objects would be described as sources (where entities arrive to the network),
queues (where entities wait) and activities (where entities are served), with and without
resources, and sinks (where entities leave the network). Predefined entity objects, some-
times called transactions, can be made to arrive to the network through source nodes.
Most languages allow attributes to be assigned to the transactions. Resource objects
and their behavior may be defined. Simulation support objects would include probabil-
ity distributions, global variables, and statistical tables and histograms. The simulation
modeler creates objects and specifies their behavior through the parameters available.
The objects communicate with each other through messages and functions. The inte-
gration of all the objects into a single package provides the complete simulation model.

Some simulation packages/languages provide for special functionality, such as that
needed for manufacturing simulations. Object classes may be defined for machines,
conveyors, transporters, cranes, robots, and so on. These special objects have direct
usefulness in particular situations. Simulation packages centered around such objects
may be directed at specific vertical application areas such as automated guided vehicles,
robots, flexible manufacturing systems, finite-capacity planning, and so on.

In this chapter we describe an object-oriented simulation platform and show how
the platform is implemented and subsequently used. Although the description will con-
centrate on one platform in one programming language, its discussion should be suffi-
ciently general to be representative of the greater interest in object-oriented simulation.
We focus initially on the fundamental class structure (Section 11.2) and the design of a
complete object-oriented simulation system (Section 11.3). A network simulation lan-
guage is then developed within the context of this design as an illustration (Section 11.4).
Finally, we demonstrate the reusability and extensibility of an object-oriented simula-
tion through examples (Section 11.5). Everything is implemented in C++ which affects
the implementation of the object-oriented simulation package. C++ is an object-oriented
extension to the C programming language [I].

11 .I .1 Object-Oriented Thinking

The general conceptual design of an object-oriented simulation could employ the hier-
archical approach illustrated in Figure 11.1. At the outer-level users, specific simulation
models can be directly parameterized by model. At some point during the simulation
study the specific model may be insufficient for the application and the modeler will
need to resort to more fundamental modeling and simulation concepts and features. At
the inner level in the hierarchy (i.e., the inside circle), the user can employ the C++ gen-
eral programming language to implement any programming concept or feature. Thus in
an object-oriented simulation environment, the user can relate to the design in differ-
ent ways. The common notion of a simulation language falls somewhere in the middle
of this design with limited opportunity to travel in or out. Most simulation languages
simply provide a programming interface when the simulation concepts and features are
insufficient.

Users may relate to an object-oriented simulation design at several design levels and
in several ways. Persons interested only in the simulation results may simply execute
the various simulation models, while very knowledgeable persons may employ raw C++
and develop new features. The concepts at each level are encapsulated so that simulation
model users, for instance, need not be concerned about the concepts at a lower level. The
more sophisticated user, however, can delve deeper into the design, eventually reaching

11 . I INTRODUCTION 399

Figure 11.1 General conceptual OOS design

the C++ level. Implicit in this design is a hierarchy of information, ranging from specific
behavior of specific models to general program and simulation behavior.

In comparison, general computer users vary in their use of computer software. Many
computer users simply execute software applications, like a spreadsheet or word pro-
cessor, without paying much attention to the details. Some users may write computer
programs or develop add-ins that perform important needed tasks which other people
may execute. More knowledgeable persons may write fundamental software like com-
pilers that other programmers use. Sometimes, those who write software for others are
called system software programmers while those who write programs to solve specific
problems are called application programmers. In contrast, simulation users are gener-
ally confined to be application users and only people in the vendor organizations can
do simulation software development.

Thus one perspective on the contribution of object-oriented simulation to the gen-
eral area of simulation is that simulation software engineering is now being added to
simulation applications engineering. This addition provides some simulation users not
only with a full array of simulation tools but with also the means to add new tools.
Previously, the addition of new tools or new products rested solely in the domain of
vendor organizations.

11.1.2 Appeal of Object-Oriented Simulation

The object-oriented simulation (00s) concept has great intuitive appeal in applications
because the notion of objects interacting with each other exhibits behavior similar to
real-world experiences. It is also easy to accept the visual interpretation of objects and
understand their potential for computer animation of simulations. Since object-oriented
simulations focus on objects, there is the possibility of dividing the simulation com-
putation among objects. Objects provide a natural means of organizing the simulation
and offer the potential of delegating portions of the execution to different processors,

400 OBJECT-ORIENTED SIMULATION

either parallel or distributed (as shown in Chapter 12). Finally, since objects are often
themselves made up of other objects, it is natural to decompose a system by its objects
and view its behavior in terms of interacting objects.

Why Extensibility and Re-use. Because many simulation languages offer prespec-
ified functionality produced in another language (assembly language, C, FORTRAN,
etc.), the user cannot access the internal mechanisms within the language. Instead, only
the vendor can make modifications to the internal functionality. Reusing language fea-
tures requires that the user code any new features as though they were a completely
separate package. Therefore, full integration with the existing language is not possible.

Also, users have only limited opportunity to extend an existing language feature.
Some simulation languages allow for certain programminglike expressions or state-
ments, which are inherently limited. Most languages allow the insertion of procedural
routines written in other general-purpose programming languages. None of these pro-
cedures can, in any way, become an inherent part of the preexisting language.

Thus none of these approaches is fully satisfactory because, at best, any procedure
written cannot use and change the behavior of a preexisting object class. Also, any
new object classes defined by a user in a general programming language do not coexist
directly with vendor code. The Arena software 123 provides some compositional exten-
sibility by a template approach to representing collections of SIMAN statements (which
may include the graphical representation). SLX [3] will provide extensibility within a
general-purpose simulation language. However, neither of these approaches should be
considered object oriented, due to lack of true extensibility (inheritance and parameter-
ization). These topics are discussed in Section 11.2.

Simulation Software Engineering. Object-oriented simulation deals directly with
the limitation of extensibility by permitting full data abstraction as well as procedural
abstraction. Data abstraction means that new data types with their own behavior can be
added arbitrarily to the programming language (abstract data types). When a new data
type is added, it can assume a role as important as any implicit data types. For exam-
ple, a user-defined data type that manages complex numbers can be as fundamental to
a user's language ("first class") as the implicitly defined integer data type. In the simu-
lation language context, a new user-defined robot class can be added to a language that
contains standard resources without compromising any aspect of the existing simulation
language and the robot may be used as a more complex resource.

11.1.3 Object-Oriented Simulation Software

Much of the interest in object-oriented programming was stimulated by the Simula lan-
guage [4]. It introduced many of the object-oriented concepts including classes, inher-
itance, polymorphism, and run-time binding, all in the context of discrete-event sim-
ulation. These concepts are described in the next section. Although Simula was never
fully appreciated as a simulation language, it was the basis for many of the promi-
nent object-oriented programming languages that followed, such as Smalltalk [5] , Eif-
fel [6], and C++. A sometimes overlooked fact is that Smalltalk continued the sim-
ulation heritage and contains an entire framework for simulation [7]. The growth of
general object-oriented software and any attempt at enumerating them is well beyond
the scope of this chapter; however, it is fair to observe that object orientedness has
permeated almost every area of computer software development. In the broad spec-

11.2 OBJECTS AND CLASSES: FUNDAMENTAL CONCEPTS 401

trum of software development, computer simulation is a fairly narrow interest. Simula-
tion developers are, however, discovering (or rediscovering) the benefits of the object-
oriented approach and incorporating many object-oriented concepts into their simula-
tion languages and packages. In the noncommercial arena, SimPack [8] and C++SIM
[9] are two C++-based simulation packages; commercial packages include ModSimIIIa
[lo], Sim++ [l l] , C++/CSIM17 [12], and Simple++ [13]. Just how much and in what
way object-oriented concepts are included depends on the developer's point of view
and acceptance of the concepts. Suffice it to say, the claim of being object-oriented has
many meanings, and users need to be alert to the various differences. In this chapter
we attempt to clarify some of the fundamental points of view in object-oriented simula-
tion.

11.2 OBJECTS AND CLASSES: FUNDAMENTAL CONCEPTS

The class concept is fundamental to object-oriented software. A class provides a pattern
for the content of objects and defines their type. An example (as it appears in C++) is the
Exponential class in Table 11.1, which is used to obtain exponential random variates
(objects). The class definition determines the object's characteristics or properties. Table
1 1 . 1 is explained in the context of the following subsections.

11.2.1 Class Properties

The class definition specifies the object's properties, namely the data objects and the
member functions that manipulate. These properties are generally grouped into public
and private sections (C++ also permits another grouping). When the object is created,
the public properties can be accessed from outside the object. The private properties are
information kept strictly locked within an object and are available only to the object's
member functions. For example, the object mu (exponential mean) is declared as a pri-
vate data member of type double and cannot be directly accessed. However, a public
function called getMu () does return the value of m, while setMu () allows the user

TABLE 11.1 Exponential Class

/* expon.hcontains Class Exponential. This class describes an
inverse transformationgenerator for Exponentialvariables. */

class Exponential: public Random{
private:
double mu;

public :
Exponential (doublemean, unsignedint control=O, long seed=O) ;

Exponential (intmean, unsignedintcontrol=O, long seed=O 1 ;
virtual double sample();
voidsetMu (double initMu) (m u = initMu; }
double getMu0 { returnmu; 1

1;

402 OBJECT-ORIENTED SIMULATION

to change the value of mu. Making a property private restricts unauthorized use and
encapsulates the object's properties.

11.2.2 Inheritance

The Exponential class was not defined from scratch. For instance, it doesn't say
anything about the use or origin of random numbers. Because the random number gen-
erator establishes the source of randomness for all random processes, it is defined in its
own class to provide reusability. Hence, the Exponential class is derived from the
Random class so that the Exponential class has access to all the public properties
of the Random class without having to recode them.

This use of previously developed classes is called inheritance; for example, EXPO-

nential inherits the random generator properties from Random. In fact, this inheri-
tance makes the Exponential class a kind of Random class, and in object-oriented
terminology a "kind of" is considered an "is-a" relationship. The other major type of
relationship between two classes is the "has-a" relationship. In the case of the expo-
nential class, the Exponential has an object called mu of type double. A "has-a"
relationship is the result of rather than inheritance (it is used to compose the object).
The Arena software only provides the means to produce compositions and therefore has
limited extensibility. The ability to inherit or specialize/extend objects is a fundamental
feature of a true object-oriented language.

11.2.3 Construction and Initialization of Objects

When a class object is needed, the creation and initialization of it is provided by a special
member function called a constructor. Constructors are member functions whose name
is the same as the class. C++ will provide one if it isn't included in the class definition.
In the case of the Exponential class, there are two constructors. One constructor
requires a parameter of type double while the other needs an integer. Notice that some
of the arguments have specified defaults, so the user doesn't have to specify all the
potential features of an exponential object (these additional arguments pertain to the
control of the random number stream). Within the constructors (details not shown),
space is allocated for the Exponential object and data members are assigned.

Although not used in the Exponential class, C++ permits user-specified destruc-
tors. A destructor will clean up any object responsibilities (e.g., collecting statistics) and
deallocate any acquired memory.

11.2.4 Run-Time Binding

The sample () function is specified as a virtual function in both the Random (not
shown) and Exponential class so that at run time the program will decide from which
random variate to sample. This approach of tying the variate to the sample at run time
is also called delayed or run-time binding. Run-time binding may extract a small run-
time computational penalty but makes this entire specification of sampling from variates
much easier to write, maintain, and use. With run-time binding, new variate types can
be added through inheritance without altering the existing simulation code. Without run-
time binding, the object designer must anticipate every potential combination of future
uses.

11.3 SIMULATION CLASS HIERARCHY AND FRAMES FOR OOS 403

11.2.5 Polymorphism

The Exponential class has two constructors, so users may specify either floating-
point or integer arguments for the mean interarrival time. Although it is not neces-
sary in this case (C++ will make the right conversion), it does illustrate the use of
polymorphism-where the same property applies to different objects. Thus the expo-
nential object is appropriately specified, regardless of whether an integer or double pre-
cision is given. This encapsulation of the data makes the addition of new types for
parameters very easy and localized. Under other circumstances, polymorphism allows
users to produce the same behavior with different objects. For example, one message
"request" can be used for AGV or Trucks rather than a message for each type; or spec-
ifying a resource requirement at an activity where this requirement might be a single
resource, a team of resources, or a group of resources.

11.3 SIMULATION CLASS HIERARCHY AND FRAMES FOR 00s

A key to the creation of a fully integrated simulation package is the use of a class
inheritance hierarchy (introduced in Section 11.2). With C++ being the most abstract
form (lowest level) of a simulation package, more concrete elements are added so that
at the highest level, the final product may be a specific simulation model. A specific
simulation is also a kind of simulation model, which is a kind of simulation, which is
a kind of programming project, which is a kind of C++ program.

An inheritance hierarchy can be viewed as a tree. The base of the tree is the most
abstract class and the leaves present the most specific class. Thus the convention is that
the base is known as the lower level, whereas the leaves are considered the higher level.
In the figures that follow, we adopt the standard convention that the base is given at the
top of the hierarchy and the leaves are at the bottom (opposite to the way that a real
tree grows).

In order to collect classes into levels of abstraction, we introduce the notion of object-
based frames. A frame is a set of classes that provide a level of abstraction in the
simulation and modeling platform. A frame is not a C++ construct and therefore must
be viewed conceptually. It is a convenient means for describing various levels within
the simulation class hierarchy.

11 .3.l Foundation Frame

The foundation classes provide a base structure from which more simulation-specific
classes may be created. These foundation classes are not simulation specific. The hier-
archy for the foundation classes used in the simulation package is given in Figure 11.2.
Classes in Figure 11.2 provide a variety of general support which are useful in build-
ing simulation languages and simulation packages. Although not specific to simulation,
they provide a foundation framework from which more simulation-specific classes may
be created. Many of these support classes can now be found in the standard template
library (STL).

Abstract Objects. The ~ b s t rac t ~ b j ec t forms the fundamental base class for the
entire design and all other classes are derived from this base class. The Abstract
Object class defines and characterizes all the essential properties every class in this

404 OBJECT-ORIENTED SIMULATION

I I

I teratof lype 1 String I (~ollection<Type> Linkqype >
I

Figure 11.2 Hierarchy for foundation classes.

design should possess. No instances or objects of Abstractobject can be created
since its primary purpose is to ensure that all classes have the same basic form. Such
a common form gives uniform character to the design and allows all classes to share
common desirable properties.

The AbstractObj ect class provides for the following general common properties
in all derived classes, making them nice classes (see Carroll and Ellis [14]):

1 . Default Constructor: constructs objects without user-specified parameters.

2. Copy Constructor: establishes a mechanism for creating a new object as a copy
of another within this class.

3. Assignment Operator: allows objects to be the target of an assignment using the
assignment operator.

4. Equality Operator: tests the "equality" of one object with another using the
equality operators.

5. Destructor: provides for the orderly destruction of an object.

Nice classes promote reusability and classes derived from AbstractOb j ect will need
to either inherit these properties or provide them within the class.

Foundation Support Classes. The foundation support classes provide useful
classes for the general manipulation of objects important in the creation of simula-
tion languages/packages. These include the classes for strings, arrays, and linked lists.
Arrays may be dynamically dimensioned and may have their index range checked auto-
matically.

These classes augment the C++ language with container classes (e.g., linked lists,
dynamic arrays) that hold multiple objects. Similar classes are now widely available in
the new standard template library (STL) [IS]. These libraries make quick work of many
other elements that may be needed to build a simulation language or package.

11.3.2 Simulation Frame

The simulation frame classes provide basis simulation functionality, including random
number and random variate generation, statistics collection, and base simulation ele-

11.3 SIMULATION CLASS HIERARCHY AND FRAMES FOR OOS 405

Exponential d
Weighted TimeWeighted Batcheype > I--

Figure 11.3 Simulation frame.

ments. The simulation class hierarchy is shown in Figure 11.3. As can be seen, all
the classes are derived from Abstractobject to maintain a common class design
throughout any simulation project.

Random Numbers and Random Variates. Random number generation is obtained
from the Random class. Random variate generators are derived from the Random class
so that each source of variate generation has its own random number generator (or gen-
erators). This design has two benefits: it facilitates the use of inverse transform method
of random variate generation, and by associating each variate generator with its own
random number stream, variance reduction through correlated sampling is possible. Ran-
dom number and random variate generation properties include (1) setting and getting
generator parameters, (2) obtaining random numberslvariates, and (3) creating antithetic
sampling.

Statistics Collection. Basic statistics can be collected on Weighted, Unweighted,
and TimeWeighted variables. Also, statistics may be batched from any of the basic
statistic types. Tables, plots, and histograms may be displayed for basic or batched statis-
tics. Statistics collection properties include (1) stopping and starting statistics collection,
(2) clearing the statistics, and (3) reporting statistics. Basic statistics are collected during
the simulation and provide (1) observation base of (weighted) observations or time, (2)
mean and standard deviation, and (3) minimum and maximum observations. Batched
statistics are also collected during the simulation and provide both overbatch and current
batch results. Batches can be based on time intervals or numbers of observations.

%77~lati0n Component Classes. Simula t ionElement contains the simulation
time and manages the event calendar. It provides for event and time management by
being capable of (1) scheduling events, (2) getting the next event, and (3) getting and
setting the current time. This class provides an important base class from which mod-
eling classes are derived.

The simulation class has the run control properties which manage the complete
simulation and include (I) getting the current replication number, (2) setting the number
of replications, (3) setting the length of the run, (4) stopping the simulation or current
replication, and (5) printing summary and individual output reports.

406 OBJECT-ORIENTED SIMULATION

Events K Process Entities Choices

BranchingChoice

Figure 11.4 Simulation modeling frame.

11.3.3 Simulation Modeling Frame

To aid in the construction of simulation languages and packages, several simulation
modeling classes have been designed and implemented. The components of the mod-
eling frame are events, entities, processes, nodes, and choices. These components are
derived from both the SimulationElement and the Link classes (see Figure 11.4).
In Figure 11.4 and subsequent figures, the solid lines are inherited relationships ("is-a")
while the dashed lines are composition relationships ("has-a").

Entities provide active elements for the simulation, whether permanent or tempo-
rary. The properties of entities include (1) getting the entity's creation time, (2) obtain-
ing its status, (3) getting its current location, (4) obtaining the entry time of the entity's
current state, and (5) getting the entity's time in the system. TransactionBase and
ResourceBase classes are derived from Entities and extend the entities for use in
general networks. The TransactionBase class provides entities that may need ser-
vice and has properties for (1) getting and setting the node entry time, (2) getting the
creation node, and (3) getting and setting the identification number. The Resource-
Base class provides entities that can provide service and has properties for (1) getting
and setting the resource name, (2) getting and setting resource states, and (3) defining
the resource states.

Processes provide an encapsulated means for describing simulation processes (not
computer tasks) such as seizing and releasing resources and reneging at queues. The
process class is generally used to provide a means of decomposing a complex simulation
activity, such as preempting a resource, and is a form of helper class for the simulation.

Nodes are used for network modeling and contain properties which include (1) get-
ting and setting the node count, (2) getting node identification number, (3) obtaining
the node type, (4) accessing a list of all nodes in the network, and (5) finding the
entities at the current node. Nodes are derived from the Destination and Depar-
ture nodes. A destination node can be entered while a departure node may be exited.
Often, departure nodes have branches connected to them and therefore need a means to
choose one among several branches. These departure nodes are called BranchingDe-
parture nodes, and means of choosing the branch for the departure is its branching
choice. The properties of the destination node incIude the entering process, while the
departure nodes provide the exiting process. The BranchingDeparture nodes obtain
their branching choice and related branching functions through the class parameters

11.3 SIMULATION CLASS HIERARCHY AND FRAMES FOR 00s 407

found within the <>brackets (parameterized classes are described in more detail in Sec-
tion 11.4). These specifications help to compose the node and provide a parameterized
"has-a" relationship.

The properties of the destination node include the entering process, while the depar-
ture nodes provide the exiting process. These two activities are handled through the
virtual functions executeEntering () and executeLeaving (I), respectively. All
destination nodes need to either provide the executeEntering () function or inherit
this property from a base class. This same is required of the DepartureNodes and
the executeLeaving () function. This mechanism allows for new node types to be
added directly and used with the existing simulation language.

Choices are used to give the simulation model "intelligence." Routes, rules, and
policies may be modeled through the various choices. Of direct relevance to the
BranchlngDeparture node is the branching decision made upon exit from the node.

Events contain the properties related to simulation event management and pro-
vide (1) the means for setting and getting the event time, (2) setting and getting other
event information (e.g., the transaction associated with the event), and (3) processing
the event. Node, Process, and Monitor events provide specialized properties that
are needed when events occur within a node, a process, or are independently specified.
When Events are pulled off the event calendar, the virtual function processEvent (j

is invoked. Therefore, at run time, the program decides which type of event to process.
This allows for other types of events not yet envisioned. NodeEvents are associated
with DepartureNodes (e.g., an arrival event occurs at a source node, while an end-
of-service event occurs at an activity). In both instances, transactions are leaving or
departing from the particular node. When processing a NodeEvent (i.e., invoking the
processEvent () function), the event invokes the departure nodes executeleav-
ing (j function. Since the executeLeaving () is virtual, it allows for the addition
of new types of departure node events without altering existing code.

11.3.4 Frames and Frameworks

While frames provide a convenient means to describe the levels of abstraction within
the entire object-oriented simulation platform, another means of encapsulation is needed
to deal with the broad simulation modeling concepts and features contained within the
design. In a sense, the frames are quite similar to class libraries which can be called upon in
the development of an actual simulation modeling language or package. However, for the
higher-level modeling classes, these librarylike collections of classes are too complexly
interrelated to be represented simply as a single level of abstraction. At the lower levels,
users exercise complete control over the "flow of control" and direct the interaction among
objects. At the higher level, more of the flow of control exists among the classes and users
tend to finish the implementation details rather than providing the complete design. A bet-
ter approach to the description of these higher-level complex interactions is the notion
of frameworks. For our purposes, frameworks are used to describe those collections of
classes that provide a set of specific modeling facilities. The frameworks may consist of
one or more class hierarchies. These collections make the use and reuse of simulation mod-
eling features more intuitive and provide for greater extensibility.

There are three important distinctions between frameworks and class libraries: (I)
class libraries embody behavior while frameworks not only embody behavior but also
specify the rules or protocol that govern how the behaviors are to be used; (2) class
libraries are used to instantiate and call member functions, but depend fundamentally

408 OBJECT-ORIENTED SIMULATION

Choices 52

Figure 11.5 Resource framework.

on an external flow of control, whereas frameworks not only perform the same functions
as libraries but also manage the flow of control among objects; and (3) class libraries
largely incorporate reuse of design implementation, whereas frameworks provide for
design reuse. It is in the spirit of these concerns that we provide a set of frameworks
for simulation modeling.

To illustrate the development of a framework with the simulation modeling frame,
consider the resources framework. The class hierarchy within the resource framework
is shown in Figure 11.5. Notice that, again, the choices are used in composition rather
than in inheritance. The resource framework, like all frameworks, provides two inter-
faces. The first and most common interface [also called an applications programmer
interjiace (API)] is the direct use of the resource framework. Using the resource frame-
work, the user can create individual resources, resource teams, and arbitrary resource
groups. These "resources" make decisions about what to do (through resource decisions)
and become targets for requests for service (by resource selections) to satisfy a service
requirement. Modeling with the resource framework, the user simply instantiates and
manipulates resource objects through various prespecified functions. This use is similar
to what a typical user of a simulation language would do, except that the object base
provides a simpler and more consistent use.

The second interface is the extension inteqace to the resource framework, which
is needed for extensibility. For example, the resource selection may require some type
of "look ahead" feature that selects resources based on how busy they are expected to
become. If a means to look ahead in the network is needed, a new kind of resource
selection may be designed that "extends" those currently available. Such extendibility
is essential if users are to exploit the framework fully. There are several frameworks
that compose the modeling frame. These include:

1. Transaction Framework: establishes the basic properties of the transaction and
provides a means to create transactions, to bring them into the network, to branch
them from node to node in the network, to cause them to exit the network, and
to destroy them.

2. Resource Framework: establishes the basic properties of resources, provides for
resource teams and resource groups, provide for preemption of resources, seize
resources, and release resources.

3. Queuing Framework: stores transactions awaiting resources, ranking transactions
in queue, conditional and unconditional reneging from queues, and gating trans-
actions in queues until conditions are appropriate for their future movement.

11.4 CREATING A SPECIFIC OBJECT-ORIENTED SIMULATION 409

4. Activiv Framework: delays transactions for some specified time, may free
resources and chose resource alternatives, and abort transactions from the activity.

More will be said about the various frameworks during the development of the exam-
ple simulation language (Section 11.4) and its embellishments (Section 11.5).

11.4 CREATING A SPECIFIC OBJECT-ORIENTED SIMULATION

Special simulation languages and packages may be created from the object classes
within modeling frameworks. In this section we present the YANSL network queue-
ing simulation language. YANSL is an acronym for "Yet Another Network Simulation
Language." YANSL is not intended to be another network queuing simulation language.
Instead, it is just one instance of the kind of simulation capability that can be developed
within an object-oriented simulation environment.

11.4.1 Basic Concepts and Objects in YANSL

YANSL was developed to illustrate the importance of object-oriented simulation.
YANSL is a network queueing simulation package similar to the style of GPSS/H [16],
SLAM [I 71, SIMAN [I 81, or INSIGHT [I 91, but without the "bells and whistles." Users
familiar with any of these languages should recognize, however, that it is a very pow-
erful alternative.

Classes Used to Create YANSL. Several classes are chosen from the model-
ing frameworks to create the YANSL modeling package. These classes are collected
together to form a simple modeling/simulation language. In the next section (Section
11 S), we will show how to use other classes to create more complicated features and
we will extend the language. The general simulation support classes, such as the variate
generation, statistics collection, and time management, are used indirectly through the
modeling frameworks. The network concepts are somewhat enhanced, but taken from
the modeling framework. A choices class is introduced.

The YANSL network consists of transaction and resource entities moving through
a network of nodes. The transactions are the entities that flow through the network
while resources serve transactions at activities. What transactions and resources repre-
sent depends on the system being modeled. Both the transactions and resources are used
directly from the modeling framework. The YANSL network nodes are used largely
from the modeling framework but are specialized as follows:

1 . Source Node: creates transactions and branches them into the network.

2. Queue Node: causes transactions to wait until resources are available at the asso-
ciated activity.

3. Activity Node: place where transactions are delayed or possibly serviced by one
or more required resources.

4. Sink Node: where transactions leave the network.

The YANSL node derivation hierarchy is shown in Figure 11.6. The higher-level
nodes (Assign, Activity, Queue, Source, and Sink) are used directly by the

41 0 OBJECT-ORIENTED SIMULATION

p y i L q P e l *'T QueueNodeBase SinkNodeBase

DepameNodes

Figure 11.6 YANSL node derivation hierarchy.

DestinationNodes

YANSL modeler. Lower-level nodes provides abstractions where are less specific, thus
allowing specialization for other simulation constructs (e.g., the QueueNodeBase class
excludes ranking and statistics). Sink and queue nodes can have transactions branched
to them and are therefore destination nodes. A delay node is both a departure and a
destination node, so it inherits from both the departure and destination node classes. This
inheritance from several parents (base classes in C++) is called multiple inheritance. An
activity node is a kind of delay node that contains resource requirements. The properties
of the YANSL nodes allow transactions to be created at source nodes, wait at queue
nodes, be delayed at activity nodes, and exit the network at sink nodes.

Resources may service transactions at activity nodes. The resource hierarchy for
YANSL uses the resource framework shown in Figure 11.5. The resource classes allow
resources to be identified as individuals, as members of alternative groupings at an activ-
ity, or as members of teams. When there is a choice of resources at an activity, a resource
selection method is employed. The ability to request a resource choice at run time with-
out specifying it explicitly is another example of polymorphism.

The Choices available in YANSL extend those in the modeling frameworks and are
given in Figure 11.7. The choices available add broad flexibility to the decision-mak-
ing functions in the simulation without needing different extra classes for each differ-
ent extra function. Instead, classes are parameterized with these choice classes and the
choices consist of several methods. Parameterized types provide for another basic exten-
sibility characteristic necessary for true object-oriented simulation language. Specifically
in YANSL, they allow for the selection of alternative branches from a departure node,
selection among alternative resources in requirements at an Activity, as well as pro-
viding the decision-making ability for resources to choose what to do next, and ranking
choices among transactions at a Queue. The choices are used to represent the time-
dependent and changing decisions that need to be modeled.

Modeling with YANSL. When modeling with YANSL, the modeler views the model
as a network of elemental queueing processes (graphical symbols could be used). Build-
ing the simulation model requires the modeler to select from the predefined set of node
types and integrate these into a network. Transactions flow through the network and
have the same interpretation they have in the other simulation languages. Transactions

11.4 CREATING A SPECIFIC OBJECT-ORIENTED SIMULATION 41 1

p h i q p z i q
Figure 11.7 YANSL choices hierarchy.

may require resources to serve them at activities and thus may need to queue to await
resource availability. Resources may be fixed or mobile in YANSL, and one or more
resources may be required at an activity. Unlike some network languages, resources in
YANSL are active entities, like transactions, and may be used to model a wide vari-
ety of real-world items (notice that this feature is, by itself, more powerful than some
existing languages).

11.4.2 Case Study: TV Inspection and Repair

As a portion of their production process, TVs are sent to a final inspection station (refer
to refs. 20 to 22 for more information as well to the harbor problem in ref. 23). Some
TVs fail inspection and are sent for repair. After repair they are returned for reinspection.
Transactions are used to represent the TVs. The resources needed are the inspector and
the repairperson. The network is composed of a source node that describes how the
TVs arrive, a queue for possible wait at the inspect activity, the inspect activity and
its requirement for the inspector, a sink where good TVs leave, a queue for possible
wait at the repair activity, and the repair activity. Figure 11.8 displays a visual network
interpretation.

Figure 11.9 displays an updated hierarchy of Figure 11.1. Notice that YANSL is just
one of many modeling languages that could be developed and that the TV inspection
model is just one many models that can be created. Transactions branch from the source
to the inspect queue, are served at the inspect activity, branch to either the sink or to the
repair queue, are possibly served at the repair activity, and return to the inspect queue.
The data used in the simulation is that the interarrival time of TVs is exponentially
distributed with a mean interarrival time of 5.0 minutes, the service time is exponentially
distributed with a mean of 3.5 minutes, the probability that a TV is good after being
inspected in 0.85, and a repair time that is exponentially distributed with a mean of 8.0
minutes.

11.4.3 YANSL Model

The YANSL network has all the graphical and intuitive appeal of any network-based
simulation language. A graphical user interface could be built to provide convenient
modeling with error checking and help offered to the user. Whatever the modeling sys-
tem used, the ultimate computer readable representation of the model might appear as
shown in Table 11.2. The model in Table 1 1.2 has the character of many network simu-

41 2 OBJECT-ORIENTED SIMULATION

Arriving
Tv's ---+

Inspector

pb Good
Tv's

Faulty
Tv's

Figure 11.8 Extending the transaction framework.

lation languages. There is almost a one-to-one correspondence between the model com-
ponent and the problem elements. No more information is specified than necessary. The
statements are highly readable and follow a simple format. The predefined object classes
grant the user wide flexibility. While the statements in the YANSL model are very sim-
ilar to those in SIMAN, SLAM, or INSIGHT, they are all legitimate C++ code. Also,
this model runs in dramatically less time than a similar SIMAN V model runs on the
same machine! But the real advantage of YANSL is its extensibility.

Figure 11.9 Assignment node in YANSL.

11.4 CREATING A SPECIFIC OBJECT-ORIENTED SIMULATION 41 3

TABLE 11.2 YANSL Statement Model

#-include "simulation. h"

main() [
//SIMULATION INFORMATION
S i r n u l a t i o n t v S i m u l a t i o n (1) ; //One replication

//DISTRIBUTIONS
Exponential interarrival(5) ,

inspectTime(3.5 1 ,
repairTime(8.0) ;

// RESOURCES
R e s o u r c e < P R I O R I T Y > i n s p e c t o r , repairperson;

// NETWORK NODES

/ * * Transactions Arrive * * / / / B e g i n a t O . O a n d q u i t a t 4 8 0
Source<Transaction, DETERMINISTIC > tvSource("TVSource",

interarrival, 0.0, 480

Queue<FIFO>inspectQueue ("InspectionQueue") ;
inspector.addNextDecision(inspectQueue) ;

Activity<RequirementSet, PROBABILITY>inspect
("Inspection Station", inspectTime) ;

inspect.addRequirement(inspector) ;

inspectQueue.addActivity(inspect) ;

/**Repair * * /
Queue<FIFO>repairQueue("Repair Queue") ;

repairperson.addNextDecision(repairQueue) ;

Activity<RequirementSet, DETERMINISTIC>repair("Repair Station",
repairTime) ;

repair.addRequirement(repairperson) ;

repairQueue.addActivity(repair) ;

/ * * Transact ions Leave * * /
Sink finish ("Leave") ;

//NETWORK BRANCHES
tvSource.addNexBranch(inspectQueue) ;

inspect.addNextBranch(finish, .85) ; // 85% are good and leave
inspect.addNextBranch(repairQueue, .15) ; // 15%need repair
repair.addNextBranch(inspectQueue) ;

//RUN the Simulation
tvSimulation.run() ;

1

41 4 OBJECT-ORIENTED SIMULATION

11.4.4 Objects and Their Specification

Lets take a closer look at the YANSL statements in Table 11.2. The model is enclosed
in a recognizable C/C++ format, namely having a #include statement that includes
all the simulation objects, a main () function header, and (} which enclose the block
of code (YANSL statements). This format is left only to reveal it is C++ code. This
format could be eliminated by the C preprocessor commands that would take a Begin
and End and Start Simulat ion for the conventional C tokens. Also, the clever pro-
grammer could accept other more intuitive information and convert it to the YANSL
(C++) format.

There are two types of YANSL statements. The first is the declaration of objects in
the model. These statements describe the elements in the simulation. The second type
of statement is member function calls or messages to structure the model. The same
division of statements occurs in existing simulation languages. The only order require-
ment for statements is that an object must be declared before it is used (determined by
C++). Thus the statements are ordered by declaring first the general information needed
(like the distributions) and then we specify the network entities (resources, nodes, and
branches).

Object Declarations. The objects in YANSL are declared in a form consistent with
C++. The object class is specified first, then the objects are named. Initialization of
specific objects is done in parentheses. For instance,

Exponential interarrival (5).
inspect Time (3 .5) ,
repairTime (8.0) ;

creates three exponential distributions whose names are int erarr ival, inspect -
Time, and repairTime and whose initialization parameters are given in parentheses.
It is important to note that the mean interarrival time is specified as an integer 5, but
in fact it is assumed to be a floating point 5.0 (recall discussion in Section 11.2). This
illustrates a simple case of overloading. Here, initialization of the interarrival object
can take either an integer or a floating-point parameter. In object-oriented terminology,
exponential objects are initialized by either an integer or floating-point object.

Some object declarations appear more complex because the object class is also
parameterized by information in o. In object-oriented terminology, these are called
parameterized types. Parameterized types are created by class templates so that the ulti-
mate specification of a class is not known until that class is declared in the model to
create the object (both the class and the object are created). Templates make it easy
for a user to specify a kind of class rather than having a whole bunch of classes whose
similarities are greater than their differences. Thus they provide for another form exten-
sibility. A parameterized type is used when the object class needs some information.
Class parameterization should not be confused with initialization of objects where the
object needs some information. As an example, consider

Queue <FIFO> inspectQueue ("Inspect Queue");

where the Queue class needs some ranking choice class called FIFO, while the object
inspectQueue is initialized with the string "Inspect Queue," the name of the queue.

Because all queues are similar except for the ranking of the transaction, this eliminates
the need to have different queue class for each kind of ranking. Notice that a class
will be parameterized with another class, while an object is parameterized with another
object.

Because YANSL is really C++, all the built-in classes from C++ are directly avail-
able to the YANSL user. These include integer, float, char, and so on. Because
an object-oriented language does not distinguish any differently between these C++
classes and the ones we have added, use of all the classes is very similar. In the pro-
gramming language literature, this property of having user objects treated like built-in
objects means everything is treated as a first-class object.

Using the Objects. The other statements in YANSL provide direct use of the objects.
These are actual member function calls in C++. In general object-oriented terminology,
it is also called message passing. For example, the message addNextDecision ()

with inspectQueue object as a parameter is sent to the inspector object, as fol-
lows:

In C++ terminology, the addNextDecision () member function for the inspector
object is passed the inspectQueue object. The purpose of this message/function is
to allow the inspector to service the queue of the inspection activity when this inspector
is free to choose what to do next.

Notice the encapsulation of functionality. The resource class obviously has the ability
to accept information about what a resource is to do when it is available. All this is
contained in the resource class. If you want some different functionality of resource
behavior, all the changes would be confined to the code in the resource class.

The YANSL functions are used to specify the behavior of the objects in the simu-
lation. The addNextDecisi on () message specifies what queues the resources serve,
the addNextBranch () specifies how transactions branch from the departure nodes,
the addActivity () associates the activity with the queue, and the addRequire-
ment () specifies the resource requirements at the activities. Finally, the tvsimula-
tion. run () causes the simulation execution to begin. The simulation will continue
until no events remain to be processed or some other criterion satisfied.

11.4.5 Running the Simulation

The prior model is compiled under a C++ compiler (a compiler should be AT& T version
3.0-compatible), linked with the YANSL simulation library, and executed. Currently,
the YANSL simulation Iibrary has been compiled under Borland C++ 4.0 [24]. C++ is
strongly typed, so error checking is very good. The current version of the software may
be obtained via anonymous FTP from ftp.eos.ncsu.edu/pub/simul.

Also, the simulation is easily linked into other C++ libraries which may be used for
graphics and statistical analysis. In a sense, YANSL has the same relationship to C++
that GASP IV [25] has to FORTRAN. The major difference is that whereas GASP was
a set of FORTRAN functions (a library) that the model builder called, YANSL is both
a set of data and the functions that manipulate these data organized into simulation
objects (rather than simulation functions). As such, YANSL is a modeling language
more like SLAM but fully compatible with the entire C++ language. Thus YANSL is

41 6 OBJECT-ORIENTED SIMULATION

fully extensible and not limited simply to permit general procedures to be "inserted
into a specific simulation structure.

11.4.6 Embellishments

There is no distinction between the base features of YANSL and its extensions, illus-
trating the seamless nature of user additions. Many embellishments are simply parallel
application of the approaches used in the prior sections. For example, the embellish-
ments shown in the earlier papers [20,22,23] could be applied here. These embellish-
ments can be added for a single use or they can be made a permanent part of YANSL,
say YANSL 11. In fact, a different kind of simulation language, say for modeling and
simulating logistics systems, might be created and called LOG-YANSL for those special
users. Perhaps the logistics users would get together and share extensions and create a
more general LOG-YANSL 11. And so it goes! For those familiar with some existing
network simulation language, consider the difficulty of doing the same.

11.5 EXPLORING REUSE AND EXTENSIBILITY WITHIN OOS

The interface to an object-oriented simulation provides for both the use and extension to
the existing simulation code. In this section we explore some of the use and the exten-
sion of the simulation/modeling framework in expanding YANSL to a wider variety of
modeling situations. These embellishments are intended to demonstrate the fundamental
contributions of an object-oriented simulation. Initially, we use the existing modeling
framework to demonstrate some very powerful simulation features. The later examples
extend the modeling concepts and incorporate new features into the language in a way
that appears to extend the original language.

11.5.1 Working at More Than One Activity

The resource framework (see Figure 11.5) is capable of representing resources that can
service more than one activity. To illustrate this feature, suppose that we add a third
worker who can inspect TVs and in addition will repair TVs when there is nothing to
inspect. The additions and changes in Table 11.3 are made to the original model in Table
11.2 which adds the worker, specifies the worker's decision process when the worker
finishes a job, and specifies the selection among alternative resources at the activity
nodes (inspection and repair stations).

A new resource called inspectRepairperson is now declared and the
addNext Decision () function states that this person will serve, in PRIORITY order,
the inspectQueue and then the repairQueue. PRIORITY is a resource selec-
tion choice. Since both the inspection and the repair activities now have a choice of
resources, two resource group objects called the inspect is t and the repairLis t
are created which will be used to specify how the activity requirement is chosen from
the alternatives. In this case the resource is selected on the basis of ORDER, which is a
resource decision choice. Finally, at the two activities, the addRequirement () func-
tion specifies the resource selection object rather than the resource object. This over-
loading of the addRequirement () function argument is another example of poly-
morphism applied to the user-defined classes. Therefore, a user of YANSL now may

11.5 EXPLORING REUSE AND EXTENSIBILITY WITHIN OOS 417

TABLE 11.3 Floating Resources Example

//AddthenewResource, specify servedqueues
Resource< PRIORITY> inspectRepairperson;
inspectRepairperson.addNextDecision(inspectQueue) ;

inspectRepairperson.addNextDecision(repairQueue) ;

//AddtheResourceGroup for activities
ResourceGroup<ORDER> inspectlist;
inspectList.addRequirementAlternative(inspector) ;
inspectList.addRequirementA1ternative

(inspectRepairperson) ;

ResourceGroup<ORDER> repairlist;
repairList.addRequirementAlternative(repairperson) ;
repairList.addRequirementA1ternative

(inspectRepairperson) ;

//Add at the 1nspectActivity
inspection.addRequirement(inspect~ist 1 ;

//Add at the Repair Activity
repair.addRequirement(repairList) ;

specify a requirement using several resource alternatives with the exact same form used
to specify a single resource and new decision rules may be easily included.

Smarter Resources. Resources within YANSL actually inherit more intelligent
behavior. Suppose that we add a third queue by separating the repaired TVs from the
ones newly arriving. Now the inspectRepairperson has a choice of three queues
to service. Instead of choosing directly among them, suppose that we consider a more
complex ("smarter") decision process. Lets assume that inspection is preferred to repair
but that the choice among the two repair queues will be based on the length of wait
for the TVs who are first in their respective queues. The additional YANSL statements
necessary to achieve this result are given in Table 11.4.

First the new queue, repairedInspectQueue, is declared and added to the
inspectActivity. The branch from the repairActivi ty is now directed to
this new queue. In addition, we declared a new node from the resource framework
called the Dee i s ionNode. Dec i s ionNodes model the +decision choices of the
resources. The first decision node, called the inspectNode, is used to choose at
the inspection station. The choice is LONGESTWAIT and the repairedInspect
Queue and the inspectQueue are the choice objects. The next decision node, called
the serviceNode, is a decision choice based on ORDER with the repairQueue and
the inspectNode decision node as the choice objects. Again the polymorphism of
the language permits the choice objects to be either a queue or another decision node.
Finally, the inspect Repairperson now uses a DECISIONNODE as the primary deci-
sion choice mechanism and begins the choice with the serviceNode.

Working in Teams. A further inherited feature of the resource framework is the abil-
ity to model combinations of resource requirements at activities. One of the more inter-
esting uses is the notion of resource teams. A resource team is a specific combination
of resources that can satisfy a resource requirement. In this case the notion of a require-

41 8 OBJECT-ORIENTED SIMULATION

TABLE 11.4 Resource Decision Nodes in YANSL

//AddthedifferentQueues for repairedTVs at the inspection
Queue<SORT>repairedInspectQueue("Repaired 1nsp.Q");
repairedInspectQueue.addActivity(inspect) ;

//BranchtotheQueue fromthe repair Stationreplacesprevious
repair.addNextBranch(repairedInspectQueue)

/ / ~ d d t h e n e w D e c i s i o n N o d e s , specify servedqueues
DecisionNode< LONGESTWAIT> inspectNode;
inspectNode.add~extDecision(repairedInspe~tQueue);
inspectNode.addNextDecision(inspectQueue) ;

. . . Include the Previous Two ResourceGroups inTable11.3

ment is extended from individual resources to a specific set of groupings. With respect
to the TV example, suppose that the inspection activity also requires an inspection tool
in addition to either the inspector or the inspectRepairperson. There are two
inspect tools, inspectToolA and inspectToolB. However, while the inspector can
work with either of the two inspect tools, the inspectRepairperson can only work
with inspectToolB. Now the choice of resources at the inspect activity must be the
inspector using either inspectToolA or inspectToolB or the inspectRe-
pairperson using inspectToolB. These constitute two teams, either of which can
satisfy the resource requirement at the inspect activity. Table 11.5 provides the new
additional statements.

We return the inspectRepairperson to servicing the inspectQueue and the
repairgueue. Next we add the two inspection tools, inspectToolA and inspect -
ToolB, and specify that they serve the inspectgueue. A toolList is created
as a resource group (a resource group is a feature within the resource framework).
The toolList consists of the two inspect tools. Now the two teams are declared,
the inspectTeam and the inspectRepairTeam. The inspector and the tool-
List is added as requirement alternatives for the inspectTeam and the inspectRe-
pairperson and the inspectToolA is added as the requirement alternatives for the
inspectRepairTeam. Next the resource groups are formed for the inspectList
and the repairlist. Notice that the list for the inspect consists of the two teams,
whereas the lists for the repair consists of the two resources.

11.5.2 Deriving a New Type of Transaction

So far we have used the transaction class to represent TVs but now we would like some
way to distinguish the TVs that are newly arrived from those that have been inspected to
those that have been repaired. In a network simulation language, this distinction would be
obtained by assigning attributes to the transaction. The same can be done by extending the
transaction framework in YANSL (seen in Figure 11.10 and described in Section 11.4).

11.5 EXPLORING REUSE AND EXTENSIBILITY WITHIN OOS 419

TABLE 11.5 Using Resource Teams

//Add the newResource, specify servedqueues
Resource<PRIORITY> inspectRepairperson;
inspectRepairperson.addNextDecision(inspectQueue) ;
inspectRepairperson.addNextDecision(repairQueue) ;

//Add the two inspection tools, specify servedqueues
Resource< PRIORITY> inspectToolA, inspectToolB;
inspectToolA.add~extDecision(inspectQueue) ;
inspectToolB.add~ext~ecision(inspectQueue) ;

//AddtheResource Group List for selectionamong the tools
ResourceGroup<ORDER> toollist;
toolList.addRequirementAlternative(inspectToolA 1 ;
toolList.addRequirementAlternative(inspectToolB) ;

//AddtheTwo Resource Teams
ResourceTeam inspectTeam, inspectRepairTeam;
inspectTearn,add~e~uirementAlternative(in~pect~r);
inspectTeam.add~e~uirementAlternative(too~List);
inspectRepairTearn.addRequirementAlternative
(inspectRepairperson);

inspectRepairTeam.add~equirementAlternative(inspe~tTo~~A);

//Addthe ResourceGroups forthevarious Activities
ResourceGroup<ORDER> inspectlist;
inspectList.add~equirement~lternative(inspectorTeam) ;
inspectList.add~equirernent~lternative(inspect~epairTeam) ;

ResourceGroup<ORDER> repairlist;
repairList.addRequirementAlternative(repairperson) ;

repairList.addRequirement~lternative(inspectRepairperson) ;

//Add at the Inspect Activity
inspection.addRequirement(inspectList) ;

//Add at the Repair ~ctivity
repair.addRequirement(repairList) ;

First, we derive a new type of transaction called a "TV" (see Table 11.6) and give
the TV two private properties corresponding to the number of repairs and the color of
the TV. The public functions set the value of color, increment repairs, and get the value
of the private data containing the number of repairs. Although this is a small change,
the TV could be given more complex properties, such as some kind of repair order

Figure 11.10 YANSL queueing framework

420 OBJECT-ORIENTED SIMULATION

TABLE 11.6 New Type of Transaction

#include "transact.hn

class TV : public Transaction{
private:
int numRepairs;
boolcolor;

public:
TV() { numRepairs = 0; color = TRUE}
void setcolor(boolcr) { color=cr; }
voidincrementRepairs() } numRepairs++;)
intgetNumRepairs() { returnnumRepairs;]
int compare(TV *) ;

1;

object (a "has-a" relationship). TV is a derived class from Transaction (an "is-a" rela-
tionship) as seen in the transaction framework in Figure 11.10. The Transact ion class
extends the characteristics of the Transact ionBase class (described in Section 11.3)
with the ability to store and capture resources and has properties for getting and setting
these captured resources. The captured resources are stored inside the CapturedRequire-
ments class, which has properties that include (1) getting and setting these resources,
(2) changing the state of these resources, and (3) telling any released resources to look
for work or make a service decision. Because a TV is a kind of transaction, all the
things transactions can do, TVs can do. Thus there is no need to write any special code
or do anything special for TVs as they inherit all the functionality of the transactions.

Add an Assignment Node. Now that there are attributes associated with TVs des-
ignating their repairs and color, there needs to be some kind of assignment node that
can cause the attribute to be changed. Thus we need to add a new node to YANSL.
Node classes are formed in a class hierarchy, as shown in Figures 11.4 and 11.6. This
hierarchy starts with a broad division of nodes and defines more specific nodes higher
in the hierarchy. Nodes higher in the hierarchy inherit the properties of the nodes above
them. A portion of that hierarchy is given in Figure 11.1 1.

In the hiearchy, nodes are broadly defined as departure and destination nodes. Depar-
ture nodes may have branches connected to them and therefore need a branching choice
(BC). Recall that sink, queue, and activity nodes can have transactions branched to them
and are therefore destination nodes. An assign node is both a departure and a destination

Figure 11.11 Extension of the activity framework in YANSL.

11.5 EXPLORING REUSE AND EXTENSIBILITY WITHIN 00s 421

TABLE 11.7 Assignment Node in YANSL

#include "node. h"

template< class BC, class TransactionType>
class Assign : virtual public DestinationNode,

virtual public BranchingDepartureNode<BC > (
protected:
void (TransactionType : : *ptrFun) () ;

pub1 ic :
Assign(string str, void (TransactionType : : *pFun) () ,

bool statis=FALSE) ;
virtual bool executeEntering(Transaction* tptr) {

(((TransactionType*) (tptr))->*ptrFun) () ;
executeLeaving(tptr);
return true;

J
virtual void executeLeaving(Transaction* tptr) {
branch.nextNode()->executeEntering(tptr 1 ;

I
1;

node, so it inherits from both the departure and branching destination node classes. This
inheritance from multiple parents is another example of multiple inheritance. Note that
the delay node is also derived through multiple inheritance, since it is also a destination
node. Not all object-oriented languages permit multiple inheritance like C++. Portions
of the new assignment node class are shown in Table 11.7. The assignment node is also
parameterized with the type of transaction.

Multiple inheritance is specified in the header of the class definition. The exe-
cuteEntering () and executeLeaving () are virtual functions in departure and
destination classes that act as placeholders, permitting the assignment node special func-
tionality as transactions enter and leave (remember that TVs are simply a kind of trans-
action and thus they can use the assignment node). The following statement declares a
TV assignment node (tvAssign) that will increment the number of repairs.

Assign<DETERMINISTIC, TV>tvAssign("TVAssignNode",
TV: :incrementRepairs);

In this case the assign node simply increments the number of repairs. Other assignments
could be handled similarly.

Add a New Queue Ranking Choice. Now that TV objects remember their repairs,
let us show how to extend the queueing framework (seen in Figure 11.12) to rank TVs
according to the number of times that they have been repaired. Since transactions branch
to queue nodes, the QueueNodeBase is a "kind of" DestinationNode. The Queue
NodeBase class provides destination nodes with the ability to be associated with an
activity and has properties for getting and setting the activity node that services the
queue. YANSL queues can be associated with only one activity, while activities can be
served by many different queues. The QueueNode provides the basic means for stor-
ing and ranking transactions awaiting resource requirements. Recall from the original

422 OBJECT-ORIENTED SIMULATION

QueueNodeBase Rankingchoice

QueueNode<RankC> SORT FIFO

Figure 11.12 YANSL queueing framework.

model that queue nodes are parameterized by a RankingChoice that specifies how
transactions are ranked at the queue.

So far, all that has been specified is the FIFO class. Because the queue class is param-
eterized, we can easily add a new ranking choice. Ranking choices are encapsulated as
classes so that they can easily be modified. The new ranking choice class (SORT) seen
in Table 11.8 uses the comparison function o f the transaction class (compare) as seen
in Table 11.6 for the TV class). The virtual functions in this class must be completed to
perform the sort. The rankInQueue () member function would use the transaction's
comparison function to determine its rank in the queue. Now the queue at the inspection
activity would be specified by

Parameterized types create templates for classes so that the ultimate specification o f a
class is not known until that class is declared to create the object. Templates make it
easy for a user to specify a kind o f class rather than having a whole bunch o f classes
whose similarities are greater than their differences. Some network simulation languages
approach this issue by having more general node types, like an "operation" node, but
these general types cannot, in general, yield specific objects--only their subtypes create
objects (in C++, such a class would be a pure virtual class).

Make Activity Time Depend on Transaction. Another interesting change in the
basic model is to make the inspection time depend on whether or not it has been repaired.
In Table 11.9 we add a new type o f TV inspection activity to the activity framework
shown in Figure 11.13. The activity framework provides for the basic means o f delay-
ing transactions and the ability to seize and release resources. The DelayNode, both a

TABLE 11.8 New Queue Ranking Choice

class SORT : virtual public Rankingchoice{
public :
virtualvoidaddtoQueue(Transaction *tptr) ;
virtual Transaction* removeFromQueue() ;
virtual int rankInQueue(Transaction *tptr) ;

1;

11.5 EXPLORING REUSE AND EXTENSIBILITY WITHIN OOS 423

TABLE 11.9 Inspection Time Based on the Number of Repairs

template<class REQ, class BC>
class InspectionActivity : public virtual Activity<REQ, BC>{
public:
InspectionActivity(string str, Random*, Random *) ;
virtual BOOLexecuteEntering(Transaction *) ;

protected:
Random *repairVariate;

1;

template<class REQ, class BC>
InspectionActivity<REQ, BC>::InspectionActivity(Random

*actTime, Random *repairTime) : Activity< BC >
(actTime) (

repairVariate= repairTime;
I
template<class REQ, class BC>
boo1 InspectionActivity<REQ, BC>::

executeEntering(Transaction *tptr)(
//.. . same as activity class

/* If the TVhas been repaired Inspection
time is different*/

double eventTi.me = (! ((TV*) tptr)->getNumRepairs ()) ?
currentTime+actVariate->sample () :

currentTime+repairVariate->sample() ;

scheduleEvent(newNodeEvent(tptr,eventTime, this,
N0DEEVENT::ENDOFSERVICE));

returnTRUE;
I

departure and destination node, causes transactions to be delayed for a specified amount
of time and has properties that include getting and setting a random service or delay-
time variate. The Act ivityNodeBase class extends the properties of the DelayNode
by allowing transactions to capture and release resources. This procedure is provided by
specifying two process classes, Seizeprocess and Releaseprocess. As stated in
Section 11.3, Processes provide an elegant way to define various simulation proce-
dures. These process classes provide the activity with the basic ability to allow transac-
tions to seize and capture resource requirements and a means for these resources to be
released upon completion of the activity. The Requirement Set class, a helper class,
contains the requirement alternatives specified for an activity and includes the properties
for (I) setting and getting the various requirements, and (2) determining which require-
ments are available and necessary. The ~ c t ivity class is extended in Table 11.9 to
allow for the determination of the service times depending on whether or not the TV
set has been repaired. This new kind of activity, called the InspectionActivity,
uses all the properties of the activity but provides a different activity time if the TV
has been repaired. Notice that only a placeholder for the new time variate is needed,
along with a definition of the executeEntering () function which determines the

424 OBJECT-ORIENTED SIMULATION

Choices I

Figure 11.13 Extension of the activity framework in YANSL.

time of the event and schedules this end of service NodeEvent to happen. The only
changes to the original model (see Table 11.2) is the inspect activity is now declared
as an InspectionActivity type. Also, a new random variate associated with the
inspection time if a TV has been repaired is created and passed to the inspect ob-
ject.

Exponential inspectRepairTime(2.5);
InspectionActivity<RequirementSet,PROBABILITY>
inspect ("Inspection Station", inspectTime, inspectRepairTime);

Now the new InspectionActivity is used just like the original activity within the
YANSL network.

11.5.3 Grouping Transactions Together

Suppose that good TVs are accumulated on a conveyor in front of a palletizer where
eight are gathered into a group and palletized. Now a single pallet leaves the palletizing
activity rather than eight TVs. This problem requires that we specifically accumulate
and then combine eight TVs into a single object. Also, the activity should not process
eight objects but only one, and only one object should leave the palletizer. A new kind of
node for grouping and managing transactions may be defined, as in Table 11.10. C++
provides a simple means to create and destroy objects through its new and delete
memory management operators. These operators can be overloaded to apply to specific
objects, if needed.

11.6 CONCLUSIONS

Modeling and simulation in an object-oriented language possess many advantages. We
have shown how internal functionality of a language now becomes available to a user

11.6 CONCLUSIONS 425

TABLE 11.10 Grouping Node in YANSL

template< class TransactionGroupType, class BC >
class Group : virtualpublicDestinationNode,

virtual public BranchingDepartureNode<BC>{
private:
inttarget;
int current;

public:
Group (int max) (current = 0; target = max;]
virtual boolexecuteEntering(Transaction* tptr) (
if(++current==target) (
TransactionGroupType* tnew= new TransactionGroupType;
current= 0;
executeLeaving(tnew) ;

I
delete tptr;
returnTRUE;

I
v i r t u a l v o i d e x e c u t e L e a v i n g (Transaction* tptr) {
branch.nextNode()->executeEntering(tptr) ;

1
1;

(at the discretion of the class designer). Such access means that existing behavior can be
altered and new objects with new behavior introduced. Furthermore, users may benefit
directly from the work of others through inheritance and polymorphism. The object-
oriented approach provides a consistent means of handling these problems (other general
object-oriented languages in addition to C++ include Smalltalk [5] and Eiffel [6].

The user of a simulation in C++ is granted lots of speed in compilation and execution.
The C language has been the language of choice by many computer users and now C++
is supplanting it. With the C++ standard [26] adopted, all C++ compilers are expected to
accept the same C++ language. We can build an executable simulation on one machine
and run it on another only as long as the operating systems are compatible-you don't
need a C++ compiler on both machines. Most commercial simulation languages require
some proprietary executive.

Because C++ has many vendors, the price of compilers is low while the program
development environments are excellent. For example, the Borland package includes
a optimizing compiler, a fully interactive debugger, an object browser, a profiler, and
an integrated environment that allows you to navigate between a code editor and the
other facilities. Also numerous class libraries for windowing, graphics, and so on, are
appearing that are fully compatible with C++. Graphical user interfaces for simulation
modeling, animation of simulation, and statistical analysis of simulation results could
be offered by individual vendors. Their interoperability would be ensured by their use
of a common means for defining and using objects.

The object-oriented framework offers great potential because of its extensibility. To
take full advantage of object-oriented simulation will require more skill from the user.
However, that same skill would be required of any powerful simulation modeling pack-
age, but with greater limitations.

426 OBJECT-ORIENTED SIMULATION

REFERENCES

1. Lippman, S. B. (1991). C + + Primer, 2nd ed., Addison-Wesley, Reading, Mass.

2. Hammann, J. E., and N. A. Markovitch (1995). Introduction to Arena, in Proceedings of
the 1995 Winter Simulation Conference, C. Alexopoulos, K . Kang, W. R. Lilegdon, and D.
Goldsman, eds., IEEE, Piscataway, N.J.

3. Henriksen, J. 0 . (1995). An introduction to SLX, in Proceedings of the 1995 Winter Simu-
lation Conference, C. Alexopoulos, K . Kang, W. R. Lilegdon, and D. Goldsman, eds., IEEE,
Piscataway, N.J.

4. Birtwistle, G. M., et al. (1973). SlMULA Begin, Petrocelli/Charter, New York.

5. Goldberg, A,, and D. Robson (1989). Smalltalk-80: The Language, Addison-Wesley, Reading,
Mass.

6. Meyer, B. (1992). Eiffel: The Language, Prentice Hall, Upper Saddle River, N.J.

7. Fleishman, E. A,, and W. E. Hemple (1994). Design of object oriented simulations in
SmallTalk, Simulation, Vol. 49, pp. 239-252.

8. Fishwick, P. A. (1995). Simulation Model Design and Execution, Prentice Hall, Upper Saddle
River, N.J.

9. Little, M. C., and D. L. McCue (1994). Construction and use of a simulation package in C++,
C User's Journal, Vol. 12, No. 3.

10. Belanger, R., and A. Mullarney (1990). Modsim 11 Tutorial, CACI Products Company, La
Jolla, Calif.

11. Lomow, G., and D. Baezner (1991). A tutorial introduction to object-oriented simulation
and Sim++, in Proceedings of the 1991 Winter Simulation Conference, B. L. Nelson, W. D.
Kelton, and G. M. Clark, eds. IEEE, Piscataway, N.J.

12. Schwetman, H. (1995). Object-oriented simulation modeling with C++/CSIM17, in Proceed-
ings of the 1995 Winter Simulation Conference, C. Alexopoulos, K . Kang, W. R. Lilegdon,
and D. Goldsman, eds., IEEE, Piscataway, N.J.

13. Geuder, D. (1995). Object-oriented modeling with Simple++, in Proceedings of the 1995
Winter Simulation Conference, C. Alexopoulos, K. Kang, W. R. Lilegdon, and D. Goldsman,
eds., IEEE, Piscataway, N.J.

14. Carroll, M. D., and M. A. Ellis (1995). Designing and Coding Reusable C + + , Addison-
Wesley, Reading, Mass.

15. Plauger, P. (1995). The Draft C++ Library, Prentice Hall, Upper Saddle River, N.J.

16. Schriber, T. J. (1991). An Introduction to Simulation Using GPSSIH, Wiley, New York.
17. Pritsker, A. A. B. (1995). Introduction to Simulation and SLAM 11, 4th ed., Halsted Press,

New York.

18. Pegden, C. D., R. E. Shannon, and R. P. Sadowski (1995). Introduction to Simulation Using
Siman, 2nd ed., McGraw-Hill, New York.

19. Roberts, S. D. (1983). Modeling and Simulation with INSIGHT Regenstrief Institute, Indi-
anapolis, Ind.

20. Joines, J. A,, K. A. Powell, and S. D. Roberts (1992). Object-Oriented Modeling and Simu-
lation with C++, in Proceedings of the 1992 Winter Simulation Conference, J. J. Swain, D.
Goldsman, R. C. Crain, and J. R. Wilson, eds., IEEE, Piscataway, N.J.

21. Joines, J. A,, and S. D. Roberts (1994). Design of object-oriented simulations in C++, in
Proceedings of the 1994 Winter Simulation Conference, J. D. Tew, S. Manivannan, D. A.
Sadowski, and A. F. Seila, eds., IEEE, Piscataway, N.J.

22. Joines, J. A,, and S. D. Roberts (1995). Design of object-oriented simulations in C++, in
Proceedings of the 1995 Winter Simulation Conference, C. Alexopoulos, K . Kang, W. R.
Lilegdon, and D. Goldsman, eds., IEEE, Piscataway, N.J.

REFERENCES 427

23. Joines, J . A,, K. A. Powell, and S. D. Roberts (1993). Building object-oriented simulations
with C++, in Proceedings of the 1993 Winter Simulation Conference, G . W. Evans, M. Mol-
laghasemi, E. C. Russell, and W. E. Biles, eds., IEEE, Piscataway, N.J.

24. Borland (1993). Borland C++ Version 4.0, Borland International, Scotts Valley, Calif.

25. Pritsker, A. A. B. (1974). The GASP IV Simulation Language, Wiley, New York.

26. Koenig, A. (1995). Working Paper for the Drafr Proposed International Standard,for Infor-
mation Systems-Programming Language C++, NIST, Springfield, Va.

CHAPTER 12

Parallel and Distributed Simulation

RICHARD M. FUJIMOTO

Georgia Institute of Technology

12.1 INTRODUCTION

Any simulation tool will be of limited value if each run requires many days or weeks to
complete. Unfortunately, many simulations of complex systems require this much time,
greatly restricting the number and scale of experiments that can be performed. For exam-
ple, simulations of modest-sized telecommunication networks may require processing
10" or more simulated events, typically requiring a day or more of CPU time with
existing simulation tools executing on a high-performance workstation. Simulations of
large networks simply cannot be performed because the computation time is prohibitive.

The high-performance discrete-event simulation community has been developing
technologies to execute large simulation programs in as little time as possible, thereby
improving the productivity of engineers and scientists using these tools. Specifically, a
considerable amount of attention has been focused on utilizing multiple processors, each
working on a different portion of the simulation computation, to reduce model execution
time. Researchers in the parallel and distributed simulation (PADS)* community have
demonstrated orders-of-magnitude reductions in execution time for large-scale simula-
tion problems using parallel computers.

Simultaneously, the needs of the military establishment to have more effective and
economical means to train personnel has driven a large body of work in developing vir-
tual environments where geographically distributed participants can interact with each
other as if they were in actual combat situations. For example, tank commanders in
Texas might be fighting helicopter pilots in California in simulated military exercises,
with each operating in a virtual environment providing realistic imagery of a battlefield
in Iraq. Work in the distributed interactive simulation (DIS) community has expanded to
encompass other uses in the military [e.g., testing and evaluation (T&E) of new weapons
systems to identify potential problems before the systems are deployed]. Application of
distributed simulation to commercial applications, such as entertainment, air traffic con-

*We adopt the acronym PADS, borrowing from the name of the annual workshop that publishes much of the
research results produced in this field.

Hundhook of Sirnularion, Edited by Jerry Banks.
ISBN 0-47 1 - 13403- 1 O I998 John Wiley & Sons, Inc.

430 PARALLEL AND DISTRIBUTED SIMULATION

troller training, and emergency planning exercises to prepare for earthquakes or other
disasters are also increasing. In contrast to PADS research, the principal goal of DIS
work has historically been to develop cost-effective, realistic virtual environments uti-
lized by geographically distributed personnel to prepare them for situations they could
encounter later on the battlefield.

Although their motivations and techniques are different, both PADS and DIS
research share one common theme: execution of simulation programs on multiple CPUs
interconnected through a network. This chapter is concerned with technologies to enable
a single discrete-event simulation, possibly composed of many autonomous simulation
programs, to be executed on platforms containing, potentially, thousands of computers.
Distributed execution of discrete-event simulation programs has spawned a considerable
amount of interest over the last two decades, with interest in this technology rapidly
growing in recent years.

The remainder of the chapter is organized as follows. First, the hardware platforms
commonly used for parallel and distributed simulation are surveyed and contrasted,
emphasizing the distinctions that have the greatest impact on parallel/distributed execu-
tion. Second, techniques used to achieve high performance through parallel/distributed
execution are described, with particular emphasis on synchronization, which is at the
core of much of the work in this area. The two principal approaches, termed conserva-
tive and optimistic synchronization, are described. Next, an approach to achieving high
performance using a completely different technique called time parallel execution is
described and illustrated through examples in simulating caches and queues. In the last
section we describe work in the DIS community and basic underlying principles used in
these distributed simulation systems. The objectives and approaches used in this work
are contrasted with that used in PADS research.

12.2 HARDWARE PLATFORMS

The most prevalent multiple-processor hardware platforms for executing parallel or dis-
tributed simulations today are:

1 . Shared Memory Multiprocessors. The distinguishing characteristic of these ma-
chines is that the computing platform supports memory (program variables) that may
be shared among software executing on different processors. Thus one can define a
variable X that can be read or modified autonomously by one processor without the
intervention of another. In nonuniform memory access (NUMA) multiprocessors the
machine differentiates between local and nonlocal memory and provides faster access
to variables stored in local memory. This is typically realized by attaching memory com-
ponents to each processor and providing the ability of one processor to read or write
into the memory attached to another processor. Another approach is to provide sepa-
rate hardware modules to hold the memory that are not associated with any particular
processor and to provide local "cache memory" with each processor to hold frequently
accessed instructions and data. This provides a simpler programming model than the
NUMA approach because programmers need not distinguish between local and non-
local memory in writing their programs. The shared memory approach contrasts with
message-passing machines, where processors communicate only by exchanging mes-
sages. Message passing can be implemented using shared memory by defining shared
data structures (queues) to hold incoming and outgoing messages for each processor.

12.2 HARDWARE PLATFORMS 431

2. Distributed Memory Multicomputers. These machines do not support shared vari-
ables, but rather, all communications between processors must occur via message pass-
ing. Unlike shared memory machines, a processor cannot directly access memory that
belongs to another processor. In principle, shared memory operations could be imple-
mented in software on these machines (e.g., by sending and receiving "read" and "write"
messages); however, the overheads associated with these operations may be prohibitive.
Like shared memory multiprocessors, all processors in distributed memory machines are
in close physical proximity, typically within a single cabinet and almost always within
a single room.

3. SIMD Machines. SIMD stands for single instruction stream, multiple data stream.
The central characteristic of these machines is that all processors must execute the same
instruction (but using different data) at any instant in the program's execution. Typically,
these machines execute in "lock step," synchronous to a global clock; that is, all pro-
cessors must complete execution of the current instruction (some may choose not to
execute that instruction) before any is allowed to proceed to the next instruction. Lock-
step execution and the constraint that all processors must execute the same instruction
distinguishes these machines from the other types of machines that are described here.

4. LAN-Based Distributed Computers. LAN stands for local area network. These
machines consist of a collection of workstations or personal computers in a limited
geographic area (e.g., within a single building or a university campus) interconnected
through a high-speed network.

5. Geographically Distributed Computers. These machines are similar to LAN-
based machines except that the machines are distributed over much larger geographic
distances (e.g., a metropolitan area, across a nation, or even worldwide). The intercon-
nection network is referred to as a MAN (metropolitan area network) if the extent is a
city, or a WAN (wide area network) if the extent is national or global.

Important characteristics distinguishing these platforms are the latency associated
with communications between processors and the degree of heterogeneity among
the processors in the system. Shared memory machines, multicomputers, and SIMD
machines have low communication latency (typically, a few tens of microseconds or
less to transmit a message from one processor to another) and utilize processors from
the same manufacturer. LAN-based machines typically have communication latencies
on the order of a millisecond, although this is gradually being reduced to approach
multiprocessor performance with new switching techniques that bypass traditional com-
munication protocols. Geographically distributed machines typically have latencies of
tens or hundreds of milliseconds or more; the speed of light (approximately 5 ms per
1000 km in optical fiber, or about the time to access a mass storage device such as a
moving head disk in today's technology) places a fundamental lower bound on com-
munication latency in these machines. LAN- and WAN-based machines often contain
computers from different manufacturers. Communication latency is important because it
has a large impact on performance; if latencies are large, the computers may spend much
of their time waiting for messages to be delivered. A modem personal computer can
execute tens to hundreds of thousands of machine instructions (e.g., simple arithmetic
operations) in 1 ms. Heterogeneity is important if one is interconnecting federations of
existing simulations that execute on machines from different manufacturers (e.g., DIS).

The distinction between shared memory multiprocessors and multicomputers is
important because the common address space provided by shared memory machines

432 PARALLEL AND DISTRIBUTED SIMULATION

allows global data structures referenced by more than one processor to be used; these
are not so easily implemented in distributed memory multicomputers. Also, different
memory management techniques may be used in shared memory machines. For exam-
ple, it is possible to define memory management protocols in shared memory comput-
ers that use, to within a constant factor, the same amount of memory as a sequential
execution of the program; however, such techniques have not yet been developed for
distributed memory machines.

Simulations that execute on shared memory multiprocessors, multicomputers, or
SIMD machines are typically referred to as parallel discrete-event simulation (PDES)
(or simply parallel simulation) programs. Simulations executing on LAN-, MAN-, or
WAN-based distributed computers (which may include one or more multiprocessors,
multicomputers, and/or SIMD machines) are usually referred to as distributed simula-
tions.

The focus here is on the execution of a single simulation model on multiple com-
puters. An alternative approach using parallel and distributed computers is when many
independent runs of a simulation program are required, where each run uses (for exam-
ple) different parameter settings or random number generator seeds. The latter approach
is often referred to as the replicated trials method. Replicate trials is a simple, effective
approach that can be used when the entire simulation program fits into the memory of
a single machine and the execution time of each run is not an issue.

12.3 BASIC CONCEPTS AND AN EXAMPLE

In the next sections we focus on techniques developed in the PADS community to
speed up the execution of discrete-event simulation programs. To date, most of this
work has focused on parallel computers (multiprocessors, multicomputers, and SIMD
machines) and LAN-based platforms. Basic concepts and terminology used in discrete-
event simulation are first reviewed and then extended for parallel/distributed execution.

In a discrete-event simulation program the system is modeled as if the state of the
system changes only at discrete points in simulated time. The simulation model "jumps"
from one state to another upon the occurrence of an event. For example, a simulation
of a store-and-forward communication network might include state variables to indicate
the length of message queues, the status of communication links (busy or idle), and so
on. Typical events might include arrival of a message at some node in the network,
forwarding a message to another network node, component failures, and so on.

Sequential simulation programs typically utilize three data structures: (1) the state
variables that describe the state of the system, (2) an event list containing all pending
events that have been scheduled but havenot yet taken effect, and (3) a global clock
variable to denote how far the simulation has progressed. Each event contains a time
stamp and usually denotes some change in the state of the system being simulated.
The time stamp indicates when this change occurs in the actual system. The main loop
of the simulation program repeatedly removes the smallest time-stamped event from
the list and processes that event. Processing an event involves executing software (an
event procedure) to effect the appropriate change in state and scheduling zero or more
new events into the simulated future to model causal relationships in the system under
investigation. Modern simulation languages often contain higher-level constructs such as
processes where a set of events defining the behavior of a particular entity is represented
as a sequence of actions in the simulation code (e.g., the aircraft took off, then flew to

12.3 BASIC CONCEPTS AND AN EXAMPLE 433

its next destination, then waited to land, etc.) rather than as a set of separate event
procedures. Process abstractions are usually built on top of the event list mechanism
described above, however, so they are not discussed further here.

For example, consider a simulation of air traffic in the United States. Only three
airports-SF0 in San Francisco, ORD in Chicago, and JFK in New York-will be con-
sidered. A (simplified) model for the operation of these airports might include two types
of events: (1) an arrival event denoting an aircraft arriving at an airport and (2) a depar-
ture event denoting an aircraft leaving to travel to another airport. Upon arrival, each
aircraft must (I) wait for a runway and land the aircraft (assume that the aircraft uses
the runway for R units of time), (2) travel to the gate and unload and load new pas-
sengers (assume that this requires G units of time), and (3) depart and travel to another
airport (assume that this requires F units of time). This scenario is repeated with the
aircraft moving successively from one airport to another. The time at which the aircraft
lands depends on the number that are waiting to use the runway. Assume that aircraft
land in the order in which they arrive at the airport and R, G, and F are fixed, known
quantities. Queueing at the runway for departing aircraft will not be considered here.

The simulation program for this system utilizes two different types of events: an
arrival event denotes the arrival of a new aircraft at an airport, and a departure event
denotes the departure of an aircraft destined for another airport. The simulation program
modeling a single airport (SFO) in this system is shown in Figure 1 2 . 1 ~ . A procedure
is defined for each type of event. This procedure is executed each time an event of
this type is removed from the pending event list for processing. Here Now indicates
the time stamp of the event being processed. A variable called RunwayYree indicates
when the runway will become available for the next aircraft to land and is used to
determine when the aircraft may begin to land. If RunwayYree is smaller than Now,
the aircraft may begin to land immediately. After landing, the aircraft moves to the
gate and schedules a departure event (G time units after landing) at the airport where
it landed. The second procedure for the departure event then schedules a new arrival
event F time units into the future at the next airport that the aircraft visits. An actual air
transportation model would be more complex, as it would include queueing departing
aircraft and other effects, such as weather affecting the mean time between aircraft;
however, this simple model will suffice here.

Now consider a distributed simulation program to model this system. The system
being simulated, referred to as the physical system, is viewed as a collection of physi-
cal processes (here, airports) that interact by "sending" aircraft between each other. An
actual air traffic system would also include other interactions, such as radio transmis-
sions between aircraft and airports, but these interactions will be ignored here to simplify
the discussion. In the distributed simulation program, the physical system is represented
by a collection of logical processes (or LPs), each modeling a single physical process.
Thus in the air traffic control example, each airport is represented by a single logical
process (see Figure 12.lb). Interactions in the physical system are represented by time-
stamped messages (or events; we use these two terms synonymously here), exchanged
between the logical processes.

For example, an event with time stamp 9.0 might be sent from the JFK to the S F 0
process to represent an aircraft flying from New York to San Francisco, arriving at
S F 0 at 9 : 00 A.M. Upon receiving this event, the S F 0 process would then schedule a
departure event for itself, as described earlier in the sequential simulation. When this
departure event is processed, it sends a new arrival event to (say) the ORD LP to model
a flight from S F 0 to ORD. An extension of this approach is to model each aircraft as

434 PARALLEL AND DISTRIBUTED SIMULATION

/*
* Now = current simulation time
* R = time runway in use to land aircraft (constant)
* G = time required at gate (constant)
* F = time to fly to next airport (constant)
*
* Runway-Free = time runway becomes free (state variable, initialized to 0)
*/

Arrival Event at SFO:
/* compute time aircraft done using runway */
Runway-Free = max(now,Runway-Free) + R;
Schedule Departure Event at SF0 at time Runway-Free + G;

Departure Event at SFO:
Schedule Arrival Event at next destination at time now + F;

ORD

b JFK

Figure 12.1 Air traffic simulation example: (a) simulation program for a single airport (SFO);
(b) networked distributed simulator.

a logical process; however, we will not pursue this approach here. In this example the
distributed simulation program is identical to that shown in Figure 1 2 . 1 ~ except that
"scheduling an event" is replaced by sending a message to the relevant logical process.

To summarize, a parallel simulation program may be viewed as a collection of
sequential simulation programs (logical processes) that communicate by scheduling
time-stamped events (sending time-stamped messages) to each other. It will be seen
momentarily that it is important that all interactions must occur via this message-pass-
ing mechanism.

12.4 SYNCHRONIZATION

Recall that in the sequential simulation it is crucial that one always select the smallest
time-stamped event (say E l o) from the event list as the one to be processed next. This
is because if one were to select some other event containing a larger (later) time stamp,
say EZ0, it would be possible for EZ0 to modify state variables used by Elo. This would
amount to simulating a system where the future could affect the past! This is clearly

12.4 SYNCHRONIZATION 435

unacceptable; errors of this nature are called causali@ errors. Although it is easy to
avoid causality errors in sequential simulation programs by using a centralized list of
unprocessed events, this is much more problematic in distributed simulations, as will
be discussed momentarily. This gives rise to the synchronization problem.

Consider parallelization of a simulation program that is based on the foregoing
paradigm using logical processes. The greatest opportunity for parallelism arises from
processing events concurrently on different processors. However, a direct mapping of
this paradigm onto (say) a shared memory multiprocessor quickly runs into difficulty.
Consider the concurrent execution of two arrival events, E l o at the LP for ORD and
E20 at SFO, with time stamps 10 and 20, respectively. If E l o writes into a state variable
that is read by EZ0, then Elo must be executed before E20 to ensure that no causal-
ity error occurs.* In other words, for the computation to be correct, certain sequencing
constraints must be maintained.

To avoid scenarios such as this, the restriction is made that there cannot be any state
variables that are shared between logical processes (exceptions that do allow shared
states are described in refs. 1 to 3). The state variables of the entire simulation program
must be partitioned into state vectors, with one state vector per LP. Each logical process
contains a portion of the state corresponding to the physical process it models, as well
as a local clock that denotes how far the process has progressed.

One can ensure that no causality errors occur if one adheres to the following con-
straint:

Local Causality Constraint A discrete event simulation, consisting of logical pro-
cesses (LPs) that interact by exchanging time-stamped messages, obeys the local causal-
ity constraint if and only if each LP processes events in nondecreasing time-stamp
order.

Assuming that LPs interact exclusively by exchanging messages, this constraint is
sufficient to guarantee that no causality errors occur. It is not a necessary constraint,
however, because two events within a single LP may be independent of each other,
in which case processing them out of time-stamp sequence does not lead to causality
errors.

Although the exclusion of shared state in the logical process paradigm helps prevent
many types of causality errors, by itself it does not guarantee adherance to the local
causality constaint. Again consider two events, E l o at logical process LPoRD with time
stamp 10 and E20 at LPsFo with time stamp 20 (see Figure 12.2). If E l o schedules a new
event E l s for LPsFo which contains the time stamp 15, E I S could affect E20, necessitat-
ing sequential execution of all three events. If one had no information regarding what
events could be scheduled by what other events, one would be forced to conclude that
the only event that is "safe" to process is the one containing the smallest time stamp,
limiting concurrent execution to events containing the same time stamp.

Consider this situation from the perspective of the physical system. There, the
"cause" must always precede the "effect." These cause-and-effect relationships in the
physical system become sequencing constraints in the ~ i m u l a t i o n . ~ It is the simulation

'To simplify the discussion, ignore concurrent execution of portions of El0 and E20 that still satisfy this
sequencing constraint.
'The simulation may actually have more constraints that arise as an artifact of the way it was programmed
(e g , constraints arising from updating statistics variables).

436 PARALLEL AND DISTRIBUTED SIMULATION

20 simulated
time

Figure 12.2 Event El0 affects E20 by scheduling a third event, E15. which modifies a state
variable used by E20. This necessitates sequential execution of all three events.

mechanism's responsibility to ensure that these sequencing constraints are not violated
when the simulation program is executed on the parallel computer.

Operationally, one must decide whether or not Elo can be executed concurrently with
EZ0. But how does the simulation determine whether or not E l o affects EZ0 without
actually performing the simulation for Elo? This is the fundamental dilemma that must
be addressed. The scenario in which Elo affects E20 can be a complex sequence of
events and is critically dependent on event time stamps.

Thus a synhronization mechanism is required to ensure that event computations are
performed in time-stamp order. This is nontrivial because the sequencing constraints
that dictate which computations must be executed before which others are, in general,
quite complex and highly data dependent. This contrasts sharply with other areas where
parallel computation has had a great deal of success (e.g., vector operations on large
matrices of data). There, much is known about the structure of the computation at com-
pile time.

Synchronization mechanisms broadly fall into two categories: conservative and
optimistic.* A more detailed taxonomy of simulation mechanisms is described in ref. 4.
Conservative approaches strictly avoid the possibility of any causality error ever occur-
ring. These approaches rely on some strategy to determine when it is safe to process an
event (i.e., they must determine when all events that could affect the event in question
have been processed). On the other hand, optimistic approaches use a detection and
recovery approach: Causality errors are detected, and a rollback mechanism is invoked
to recover. The following sections describe details and the underlying concepts behind
several conservative and optimistic simulation mechanisms that have been proposed.

Assume that the simulation consists of N logical processes, LPo, . . . , L P N 1 . Clocki
refers to the simulated time up to which LPi has progressed: when an event is processed,
the process's clock is advanced automatically to the time stamp of that event. If LPi
may send a message to LPj during the simulation, a link is said to exist from LPi to
LPj .

'It may be noted that this taxonomy applies more broadly to other areas of parallel and distributed computing
(e.g., transaction processing systems).

12.5 CONSERVATIVE MECHANISMS 437

12.5 CONSERVATIVE MECHANISMS

Historically, the first distributed simulation mechanisms were based on conservative
approaches. As discussed earlier, the basic problem that conservative mechanisms must
solve is to determine when it is safe to process an event. More precisely, if a process
contains an unprocessed event El" with time stamp 10 (and no other with smaller time
stamp), and that process can determine that it is impossible to later receive another event
with time stamp smaller than 10, it can safely process El" because it can guarantee that
doing so will not later result in a violation of the local causality constraint. Processes
containing no safe events must block; this can lead to deadlock situations if appropriate
precautions are not taken.

12.5.1 Deadlock Avoidance

Independently, Chandy and Misra [S] and Bryant [6] developed some of the first syn-
chronization algorithms. These approaches require that one statically specify the links
that indicate which processes may communicate with which other processes. To deter-
mine when it is safe to process a message, it is required that the sequence of time
stamps on messages sent over a link be nondecreasing and that the communications
facility guarantee that messages are received in the same order in which they were sent
(software to reorder messages is necessary if the network does not guarantee this). This
guarantees that the time stamp of the last message received on an incoming link is a
lower bound on the time stamp of any subsequent message that will be received later.

Messages arriving on each incoming link are stored in first in, first out (FIFO) order,
which is also time-stamp order because of the foregoing restrictions. Each link has a clock
associated with it that is equal to the time stamp of the message at the front of that link's
queue if the queue contains a message, or the time stamp of the last message received if the
queue is empty. The process repeatedly selects the link with the smallest clock and if there
is a message in that link's queue, processes it. If the selected queue is empty, the process
blocks. This protocol guarantees that each process will only process events in nondecreas-
ing time-stamp order, thereby ensuring adherence to the local causality constraint.

For example, consider the air traffic simulation described earlier. Each airport LP
will have one queue to hold incoming messages from each of the other airports that
are simulated, as well as a queue to hold messages it has sent to itself. Again, assume
that there are only three airports: SFO, ORD, and JFK. Consider the queues in the JFK
process. Suppose that the queue holding messages from ORD contains messages with
time stamps 20, 27, and 35, and the queue for S F 0 has messages with time stamps 25,
3 1, and 32. Assume that the queue holding messages sent by JFK to itself has a single
message with time stamp 40. This implies that the next arrival event sent from ORD to
JFK must have time stamp at least 32, and the next message sent by JFK to itself must
have a time stamp of at least 40. The JFK process will now process arrival messages
in the following order, assuming that no new messages arrive: 20 (ORD), 25 (SFO),
27 (ORD), 3 1 (SFO), 32 (SFO). Assuming that no new messages have been received,
the JFK process will block at this point, even though there is an unprocessed message
with time stamp 35 from ORD. At this point there will also be several messages that it
has sent to itself, but all of these have time stamps of 40 or larger. The LP must block
because it cannot guarantee that a new message won't later arrive from S F 0 with time
stamp less than 35 (as mentioned earlier, it must have a time stamp of at least 32), so
none of the messages buffered in its queues are safe to process.

438 PARALLEL AND DISTRIBUTED SIMULATION

/ \
w a i t s / \ w a i t s

f o r / \ f o r

f o r e m p t y l

Figure 12.3 Deadlock situation. Each process is waiting on the incoming link containing the
smallest link clock value because the corresponding queue is empty. All three processes are
blocked, even though there are event messages in other queues that are waiting to be processed.
Queues holding messages sent by a process to itself are not shown in this figure.

If a cycle of empty queues arises that has sufficiently small clock values, each process
in that cycle must block and the simulation deadlocks. Figure 12.3 shows one such
deadlock situation. It can be seen that JFK is waiting for SFO, S F 0 is waiting for
ORD, and ORD is waiting for JFK. In general, if there are relatively few unprocessed
event messages compared to the number of links in the network, or if the unprocessed
events become clustered in one portion of the network, deadlock may occur very fre-
quently.

Null messages are used to avoid deadlock situations. Null messages are used only for
synchronization purposes and do not correspond to any activity in the physical system.
A null message with time stamp TnUl1 that is sent from LPA to LPB is essentially a
promise by LPA that it will not send a message to LPB carrying a time stamp smaller
than TnUII. How does a process determine the time stamps of the null messages it sends?
The clock value of each incoming link provides a lower bound on the time stamp of
the next unprocessed event that will be removed from that link's buffer. When coupled
with knowledge of the simulation performed by the process (e.g., a minimum time stamp
increment for any message passing through the logical process), these incoming bounds
can be used to determine a lower bound on the time stamp for the next outgoing message
on each output link. Whenever a process finishes processing an event, it sends a null
message on each of its outgoing links indicating this bound; the receiver of the null
message can then compute new bounds on its outgoing links, send this information on
to its neighbors, and so on. It is up to the application programmer to determine the time
stamps assigned to null messages.

In the airport example, assume that the minimum time for an aircraft to land,
exchange passengers and depart, and then fly from S F 0 to JFK is 5 units of time.
Further, suppose S F 0 is currently at simulated time 34 (i.e., the last event it processed
contained a time stamp of 34). Using the algorithm above, S F 0 would send a null mes-
sage to JFK with a time stamp of 39, indicating that it will not schedule any new arrival
events at JFK with time stamp smaller than 39. Upon receipt of this message, the JFK

12.5 CONSERVATIVE MECHANISMS 439

process can now process the arrival message from ORD with time stamp 35 without
fear of violating the local causality constraint.

The algorithm proposed by Chandy and Misra requires that each LP send a null mes-
sage on each outgoing link after processing each event.* This guarantees that processes
always have updated information on the time stamp of future messages that can be
received from each of the other processes. It can be shown that this mechanism avoids
deadlock as long as one does not have any cycles in which the collective time-stamp
increment of a message traversing the cycle could be zero. A necessary and sufficient
condition for deadlock using this scheme is that a cycle of links must exist with the
same link clock time [8]. This implies that certain types of simulations cannot be per-
formed (e.g., queueing network simulations in which the minimum service time for jobs
passing through a server is zero). One way to circumvent this problem is to assume that
a small, minimum, positive service time is always used.

12.5.2 Deadlock Detection and Recovery

One potential problem with the deadlock avoidance approach is that an excessive number
of null messages may have to be sent. Chandy and Misra [9] developed a second synchro-
nization algorithm that eliminates the use of nulr messages. The mechanism is similar to
that described above except that no null messages are created. Instead, the computation
is allowed to deadlock. A separate mechanism is used to detect when the simulation is
deadlocked, and still another mechanism is used to break the deadlock. Deadlock detection
mechanisms are described in refs. 10 and 1 I and are beyond the scope of the current discus-
sion. The deadlock can be broken by observing that the message(s) containing the smallest
time stamp is (are) always safe to process. Alternatively, one may use a distributed compu-
tation to compute lower-bound information (not unlike the distributed computation using
null messages described above) to enlarge the set of safe messages. Unlike the deadlock
avoidance approach, this mechanism does not prohibit cycles of zero time-stamp incre-
ment, although performance may be poor if many such cycles exist.

The mechanism described above only attempts to detect and recover from global
deadlocks. One can modify this approach to detect and recover from local deadlocks
(i.e., situations where only a portion of the network has deadlocked) 1101. In particular, a
preprocessing step can be used that identifies all subnetworks that are prone to deadlock,
then applying these techniques on individual subnetworks. The overhead to implement
this approach may be large, however, if the network topology contains many cycles. An
alternative approach based on detecting specific types of cycles of blocked processes is
described in ref. 12.

Several other conservative synchronization algorithms have been developed. Some
of the key ideas used by these mechanisms are described next.

12.5.3 Synchronous Operation

Several researchers have proposed algorithms where the parallel simulation as a whole
repeatedly cycles through phases of (1) determining which events are safe to process,
and (2) processing these safe events [13-161. Barrier synchronizations are used to keep
the phases from interfering with each other.

*A variation on this approach is to have processors explicitly request null messages rather than always blindly
sending them out; this can reduce the number of null messages somewhat 171.

440 PARALLEL AND DISTRIBUTED SIMULATION

It is instructive to compare the synchronous style of execution with the deadlock
detection and recovery approach described earlier. Both share the characteristic that the
simulation moves through phases of (1) processing events, and (2) performing some
global synchronization function to decide which events are safe to process. The two
methods differ in the way they enter into the synchronization phase.

In the best case, the detection and recovery strategy will never deadlock, eliminating
most of the clock synchronization overhead. In contrast, synchronous methods will con-
tinually block and restart throughout the simulation. On the other hand, the synchronous
methods do not require a deadlock detection mechanism. However, an important disad-
vantage of the detection and recovery method is that during the period leading up to a
deadlock when the computation is grinding to a halt, execution may be largely sequen-
tial. This can lead to limited speed-up, in accordance with Amdahl's law, which states
that no more than k-fold speed-up is possible if l/kth of the computation is sequen-
tial. Synchronous methods have some control over the amount of computation that is
performed during each iteration, so, at least in principle they offer a mechanism for
guarding against such behavior.

The feature that separates different synchronous approaches is principally the method
used to determine which events are safe to process. A common thread that runs through
many techniques is the minimum time-stamp increment function used in the original
deadlock avoidance approach. For example, in the air traffic example, if the minimum
time to fly between two airports is 3 units of simulated time, an event in one airport LP
must schedule a new event in another LP at least 3 units of time into the simulated future.
A simple extension of this concept leads to the notion of distance between processes;
distance provides a lower bound in the amount of simulated time that must elapse for an
unprocessed event on one process to propagate (and possibly affect) another process. It
is clear that the physical distance between airports and the maximum speed of aircraft
translate directly into the simulated time distance between the LPs modeling those air-
ports. Later, a more general principle called look-ahead is discussed that encompasses
both minimum time-stamp increments and distance between objects.

12.5.4 Conservative Time Windows

Lubachevsky proposed using a moving simulated time window to reduce the overhead
associated with determining when it is safe to process an event [15]. The lower edge
of the window is defined as the minimum time stamp of any unprocessed event. The
upper edge depends on the window size, as will be discussed momentarily. Only those
unprocessed events whose time stamp resides within the window are eligible for pro-
cessing.

The purpose of the window is to reduce the search space one must traverse in deter-
mining if an event is safe to process. For example, if the window extends from simulated
time 10 to time 20, and the application is such that each event processed by an LP gen-
erates a new event with a minimum time-stamp increment of 8 units of simulated time,
each LP need only examine the unprocessed events in neighboring LPs to determine
which events are safe to process. No unprocessed event two or more hops away can
affect one in the 10-to-20 time window because such an event would have to have a
time stamp earlier than the start of the window.

An important question is the method to be used for determining the size of the time
window. If the window is too small, there will be too few events available for concur-
rent execution. On the other hand, if the window is too large, the simulation mechanism

12.5 CONSERVATIVE MECHANISMS 441

behaves in much the same way as if no time window were used at all (such mecha-
nisms implicitly assume an infinitely large time window), implying that the overhead
to manage the window mechanism is not justified. Setting the window to an appropri-
ate size requires application specific information that must be obtained either from the
programmer, the compiler, or from monitoring the simulation at run time.

12.5.5 Improving Look-ahead by Precomputing Service Times

Look-ahead refers to the ability to predict what will happen, or more important, what
will not happen, in the simulated future. If a process at simulated time Clock can predict
with complete certainty all events it will generate up to simulated time Clock + L, the
process is said to have lookahead L. In general, a process may have different look-aheads
on links to different processes. For instance, as was seen earlier, if the minimum time
to fly from JFK to ORD is 3 units of time and the minimum time to S F 0 is 5, JFK has
a look-ahead of 3 on its link to ORD and 5 to SFO.

Nonzero minimum time-stamp increments are the most obvious form of look-ahead:
A minimum time-stamp increment of M translates directly into a look-ahead of (at least)
M because the process can guarantee that no new event messages will be created with
time stamp smaller than Clock + M. Look-ahead enhances one's ability to predict future
events, which in turn can be used to determine which other events are safe to process.
It is used in the deadlock avoidance approach to determine the time stamps that are
assigned to null messages. It is also used to some extent in the deadlock detection and
recovery algorithm because whenever a process sends a message with a time-stamp
increment of T to another process, it is guaranteeing that no other messages will follow
on that link that contain a time stamp smaller than Clock + T.

Nicol proposed improving the look-ahead ability of processes by precomputing por-
tions of the computation for future events [17]. For example, in queueing network sim-
ulation using tirst come, first served queues without preemption, one can precompute
the service time of jobs that have not yet been received. If the server process is idle and
its clock has a value of 100 and the service time of the next job has been precomputed
to be 50, the lower bound on the time stamp of the next message it will send is 150
rather than 100. If the average service time is much larger than the minimum, this will
provide a better lower bound on the time stamp of the next message.

Interestingly, the ability to use precomputation to improve look-ahead itself requires
look-ahead ability. Precomputation is possible if one can predict aspects of future event
computations without knowledge of the event message that causes that computation, or
the state of the process when that future event computation would take place. For exam-
ple, if the service time depends on a parameter in the message (e.g., a message length
for a communication network simulation), precomputation would not be so simple. Nev-
ertheless, precomputation appears to be a useful technique when it can be applied

Other conservative protocols have been proposed; however, this subject is beyond
the scope of the current discussion. See refs. 18 and 19 for surveys of work in this area.

12.5.6 Performance of Conservative Mechanisms

The degree to which processes can look ahead and predict future events plays a criti-
cal role in the performance of conservative strategies. Actually, what is more important
than predicting future events is the fact that a process with look-ahead L can guarantee
that no events other than the ones that it can predict will be generated up to time Clock +

442 PARALLEL AND DISTRIBUTED SIMULATION

simulated
time

T+Q+S

T

simulated
time

T+Q+S

departure - arrival I 1 begin
service

arrival 0

Figure 12.4 Two approaches to simulating a queueing network [18]: (a) two queues connected
in tandem, each using a first come, first served discipline and no preemption; (b) history of events
when using the classical approach that does not exploit look-ahead; (c) history for approach that
does exploit look-ahead.

L. This may enable other LPs to safely process pending event messages that they have
already received.

To illustrate this point, let us consider the simulation of a queueing network consist-
ing of two stations connected in tandem as shown in Figure 12.4~. Queueing networks are
a more abstract representation of systems such as the air traffic example developed ear-
lier, where each station models an airport and each job moving between stations models
an aircraft. The first station is modeled by logical process LP1 and the second by LP;!. Each
station contains a server and a queue that holds jobs (customers) waiting to receive service.
Assume that incoming jobs are served in first come, first served order.

The classical textbook approach to programming the simulation is to use two types
of events: (1) an arrival event denotes a job arriving at a station, and (2) a departure
event denotes a job completing service and moving on to another server. As shown in
Figure 12.4b, a job J arriving at the first station at time T will, in general, (1) spend Q
units of time (Q 2 0) in the queue, waiting to be served, and (2) an additional S units
of time being served, before it is forwarded to LP2.

The simulation program described above has poor look-ahead properties. In partic-
ular, LPI must advance its simulated time clock to T + Q + S before it can generate
a new arrival event with time stamp T + Q + S. It has zero look-ahead with regard to
generating new arrival events.

12.5 CONSERVATIVE MECHANISMS 443

-
j o i n fork

I I

Figure 12.5 Central server queueing network [211. The fork process routes incoming jc
onk of the secondary servers. Here the fork process is equally likely to select either server.

An alternative approach to programming this simulation is depicted in Figure 12.4~.
Here the departure event has been eliminated, and processing one arrival event causes a
new arrival event to be scheduled immediately. This is possible because first come, first
serve queues are used and no preemption is possible. The event at time T can predict
the arrival event at T + Q + S because both Q and S can be computed at simulated time
T. In particular, Q is the remaining service time for the job being served at time T, plus
the service times of all jobs preceding J in the queue. Similarly, S can be computed at
simulated time T because it does not depend on the state of the process at a time later
than T. The look-ahead using this alternative approach is Q + S.

Programming the simulation to exploit look-ahead can improve performance dra-
matically. Figure 12.5 shows performance measurements of simulating a central server
queueing network (shown in Figure 12.6) using Chandy and Misra's deadlock detec-
tion and recovery algorithm on a BBN Butterfly multiprocessor. Each logical process
executes on a separate processor. A closed network is simulated with a fixed number of
circulating jobs (referred to as the message population). Figure 1 2 . 5 ~ shows the average
number of messages processed between deadlocks, and Figure 12.5b shows speed-up
relative to a sequential event list implementation where the event list is implemented
using a splay tree [20]. Each graph indicates measurements of the classical approach to
programming the simulation illustrated in Figure 12.4b and the approach optimized to
exploit look-ahead (Figure 1 2 . 4 ~) . As can be seen, the version that exploits look-ahead
far outperforms the version that does not. Similar speed-up curves were observed for
the deadlock avoidance approach using null messages [21].

Before continuing we should note that the foregoing situation is one where the appli-
cation contains good look-ahead, and the simulation program could easily be modified
to exploit it. This is not always the case, however. For example, consider a queueing
network where the service time distribution has a minimum of zero (e.g., an exponential
distribution) and preemption may occur. A high-priority job that has been simulated up
to time T could (albeit very unlikely) affect every station in the network at time T, so
no station can look ahead beyond T. Exploiting look-ahead in simulations such as these
is much more challenging.

Much has been learned concerning the performance of conservative mechanisms. In
general, conservative mechanisms must be adept at predicting what will not happen in
order to be successful. It is the fact that "no smaller time-stamped event will later be
received" is the firing condition that allows an event to be safely processed. Effectively
exploiting the look-ahead properties of the simulation is the key to achieving good per-
formance with these methods.

444 PARALLEL AND DISTRIBUTED SIMULATION

Messages
per Deadlock I

// uClassicalM FCFS process

Deterministic service time
O ~ x p o n e n t i a l l ~ distributed service time

Optimized to exploit lookahead

10
ODeterministic service time
+Exponentially distributed service time

1 4 16 64 256 1024

Message Population

't 1 "Classical" FCFS process Deterministic service time
O ~ x ~ o n e n t i a l l ~ distributed service time

Optimized to exploit lookahead
ODeterministic service time
+ Exponentially distributed service time

- - - - I - -
1 - 1

n - n n
V V V V

Message Population

Figure 12.6 Performance of deadlock detection and recovery simulation program for central
server queueing network [18]: (a) average number of messages processed between deadlocks as
a function of the message population; (b) speed-up over a sequential event list implementation.

12.5.7 Critique of Conservative Mechanisms

Table 12.1 summarizes key advantages and disadvantages of conservative protocols.
The column in this table concerning optimistic protocols is discussed later. Perhaps the
most obvious drawback of conservative approaches is that they cannot fully exploit
the parallelism available in the simulation application. If it is possible that event EA
might affect EB either directly or indirectly, conservative approaches must execute EA

12.5 CONSERVATIVE MECHANISMS 445

TABLE 12.1 Comparing Conservative and Optimistic Synchronization

Conservative Optimistic

Parallelism Limited by worst-case scenario Not limited by worst case
Performance challenges Low look-ahead State saving/rollback overhead
Memory use No logs needed Need state and message logs
Protocol development Straightforward Must consider rollbacks
Application development Must exploit look-ahead Greater protocol transparency

Potentially complex/fragile code More robust to model changes
Potential for unexpected errors

and EB sequentially. If the simulation is such that EA seldom affects Ee, these events
could have been processed concurrently most of the time. In general, if the worst-case
scenario for determining when it is safe to proceed is far from the typical scenario that
arises in practice, the conservative approach will usually be overly pessimistic and force
sequential execution when it is not necessary.

Another way of stating this fact is to observe that conservative algorithms rely on
look-ahead to achieve good performance." If there were no look-ahead, the smallest
time-stamped event in the simulation could affect every other pending event, forcing
sequential execution no matter what conservative protocol is used. Characteristics such
as preemptive behavior or dependence of an output message with time stamp T on the
state of an LP at time T diminish the look-ahead properties of the simulation. Con-
servative algorithms appear to be poorly suited for simulating applications with poor
look-ahead properties, even if there is a healthy amount of parallelism available.

A related problem faced by conservative methods concerns the question of robust-
ness; it has been observed that seemingly minor changes to the application may have a
catastrophic effect on performance [22]. For example, adding short, high-priority mes-
sages that interrupt normal processing in a computer network simulation can destroy the
look-ahead properties on which the mechanism relies and lead to severe performance
degradations. This is problematic because experimenters often do not have advance
knowledge of the full range of experiments that will be required, so it behooves them to
invest substantial amounts of time parallelizing the application if an unforeseen addition
to the model at some future date could invalidate all of this work.

Most conservative schemes require knowledge concerning logical process behavior
to be explicitly provided by the simulation programmer for use in the synchroniza-
tion protocol. The deadlock detection and recovery algorithm is perhaps the only exist-
ing conservative approach that does not explicitly require such knowledge from the
user. Information such as minimum time-stamp increments or the guarantee that cer-
tain events really have no effect on others (e.g., an arrival event in a queueing network
simulation may not affect the job that is currently being serviced) may be difficult to
ascertain for complex simulations. Users would be ill advised to give overly conser-
vative estimates (e.g., a minimum time-stamp increment of zero) because very poor
performance may result. Overly optimistic estimates can lead to violations of causality
constraints and erroneous results.

Perhaps the most serious drawback with existing conservative simulation protocols
is that the simulation programmer must be concerned with the details of the synchro-

*That is, except in a few special instances such as feedforward networks that do not contain cycles

446 PARALLEL AND DISTRIBUTED SIMULATION

nization mechanism in order to achieve good performance. Proponents of optiniistic
approaches argue that the user should not have to be concerned with such complexities,
just as programmers of sequential simulations need not be concerned with the details of
the implementation of the event list. Of course, certain guidelines that apply to all paral-
lel programs must be followed when developing parallel simulation code (e.g., ensuring
there is sufficient computation between interprocessor communications to prevent mes-
sage passing overhead from severely degrading performance). However, also requiring
the programmer to be intimately familiar with the synchronization mechanism and to
program the application to maximize its effectiveness will often lead to "fragile" code
that is difficult to modify and maintain. One potential solution to this problem is to
define and utilize a simulation language where the essential information needed by the
simulation mechanism can be automatically extracted from the simulation primitives
[23,24]. It remains to be seen to what extent this approach can be effective.

Despite these drawbacks, conservative algorithms can be effective in speeding up
the execution of parallel simulation programs, and useful systems have been deployed
successfully using these techniques. It is clear that much additional work is required to
enable widespread use of this approach, however.

12.6 OPTIMISTIC MECHANISMS

Optimistic methods detect and recover from causality errors rather than strictly avoiding
them. In contrast to conservative mechanisms, optimistic strategies need not determine
when it is safe to proceed; instead, they determine when an error has occurred and
invoke a procedure to recover. One advantage of this approach is that it allows the
simulation program to exploit parallelism in situations where it is possible causality
errors might occur but in fact do not. Also, dynamic creation of logical processes can
be easily accommodated [25].

The Time Warp mechanism, based on the Virtual Time paradigm, is the best known
optimistic protocol [26]. Here virtual time is synonymous with simulated time. In Time
Warp, a causality error is detected whenever an event message is received that con-
tains a time stamp smaller than that of the process's clock (i.e., the time stamp of the
last message processed). The event causing rollback is called a straggler. Recovery is
accomplished by undoing the effects of all events that have been processed prematurely
by the process receiving the straggler (i.e., those processed events that have time stamps
larger than that of the straggler).

An event may do two things that have to be rolled back: It may modify the state of
the logical process, and/or it may send event messages to other processes. Rolling back
the state is accomplished by saving the process's state periodically and restoring an old
state vector on rollback. "Unsending" a previously sent message is accomplished by
sending a negative or antimessage that annihilates the original when it reaches its des-
tination. Messages corresponding to events in the simulation are referred to as positive
messages. If a process receives an antimessage that corresponds to a positive message
that it has already processed, that process must also be rolled back to undo the effect
of processing the soon-to-be-annihilated positive message. Recursively repeating this
procedure eventually allows all of the effects of the erroneous computation to be can-
celed. It can be shown that this mechanism always makes progress under some mild
constraints.

As noted earlier, the smallest time-stamped, unprocessed event in the simulation will

12.6 OPTIMISTIC MECHANISMS 447

always be safe to process. In Time Warp, the smallest time stamp among all unpro-
cessed event messages (both positive and negative) is called global virtual time (GVT).
No event with time stamp smaller than GVT will ever be rolled back, so storage used by
such events (e.g., saved states) can be discarded.* Also, irrevocable operations (such as
I/O) cannot be committed until GVT sweeps past the simulated time at which the opera-
tion occurred. The process of reclaiming memory and committing irrevocable operations
is referred to as fossil collection. Several algorithms have been proposed for computing
GVT. Detailed discussion of this topic is beyond the scope of the present discussion,
but is discussed elsewhere [27-291.

12.6.1 Lazy Cancellation

Optimizations have been proposed to repair the damage caused by an incorrect com-
putation rather than to repeat them completely. For instance, it may be the case that
a straggler event does not sufficiently alter the computation of rolled-back events to
change the (positive) messages generated by these events. The Time Warp mechanism
described above uses aggressive cancellation (i.e., whenever a process rolls back to time
T, antimessages are immediately sent for any previously sent positive message with a
time stamp larger than T). In lazy cancellation 1301, processes do not immediately send
the antimessages for any rolled-back computation. Instead, they wait to see if reexecu-
tion of the computation regenerates the same messages; if the same message is recreated,
there is no need to cancel the message. An antimessage created at simulated time T is
only sent after the process's clock sweeps past time T without regenerating the same
message.

Depending on the application, lazy cancellation may either improve or degrade per-
formance. Lazy cancellation does require some additional overhead whenever an event
is processed. The simulation executive must check on each message send to determine
if the message now being sent has already been transmitted; one or more message com-
parisons with antimessages may be required if one is reexecuting previously rolled back
events. Also, lazy cancellation may allow erroneous computations to spread further than
they would under aggressive cancellation, so performance may be degraded if the sim-
ulation program is forced to execute many incorrect computations. One can construct
cases where lazy cancellation executes a computation with N-fold parallelism N times
slower than aggressive when N processors are used [31].

On the other hand, lazy cancellation has the interesting property that it can allow the
computation to be executed in less time than the critical path execution time [32,33]. The
explanation for this phenomenon is that computations with incorrect or only partially
correct input may still generate correct result^!^ Therefore, one may execute some com-
putations prematurely, yet still generate the correct answer. This is not possible using
aggressive cancellation because rolled-back computations are discarded immediately,
even if they did generate the correct result. One can construct a case where lazy can-
cellation can execute a sequential computation with N-fold speed-up using N processors,
while aggressive cancellation requires the same amount of time as the sequential exe-
cution [31]. The conclusion one can make from this analysis is that while aggressive

*Actually, one state vector older than GVT is required to restore a process's state in case a rollback to GVT
occurs.
'For example, suppose that the event computes the minimum of two variables, A and B, and executes pre-
maturely using an incorrect value for A. If both the correct and incorrect values of A are greater than B, the
incorrect execution produces exactly the same result as the correct one.

448 PARALLEL AND DISTRIBUTED SIMULATION

cancellation will not perform better than the critical path execution time, lazy cancella-
tion can perform arbitrarily better or worse depending on details of the application and
the number of available processors.

Although it is instructive to construct best- and worst-case behaviors for lazy and
aggressive cancellation, it is not clear that such extreme behaviors arise in practice.
Empirical evidence suggests that lazy cancelation tends to perform as well as, or better
than, aggressive cancellation in practice [31,34].

12.6.2 Lazy Reevaluation

The lazy reevaluation optimization (also sometimes called jump forward) is somewhat
similar to lazy cancellation but deals with state vectors rather than messages [35]. Con-
sider the case where the state of the process is the same after processing a straggler
event message as it was before. If no new messages arrived, it is clear that the reexe-
cution of rolled-back events will be identical to the original execution. Therefore, one
need not reexecute the rolled-back events, but instead, "jump forward" over them. This
requires a comparison of state vectors to determine if the state has changed.

One situation where one could derive significant benefit from lazy reevaluation is
"read-only" or query events. Here lazy reevaluation avoids the expense of regenerating
states when a query event causes a rollback.* It is worth mentioning, however, that
lazy reevaluation may significantly complicate the Time Warp code, detracting from
its maintainability. It was implemented in a Time Warp executive developed at the Jet
Propulsion Laboratory [38], but later removed for this reason.

Paralleling the work in conservative protocols, a variety of other optimistic protocols
have been developed [I 8,191. Most define methods to limiting the amount of optimism
(i.e., the degree that some processes can advance ahead of others).

12.6.3 Performance of Optimistic Mechanisms

Several successes have been reported in using Time Warp to speed up real-world sim-
ulation problems. Substantial speed-ups have been reported by researchers at JPL in
simulations of battlefield scenarios [39], communication networks [40], biological sys-
tems [41], and simulations of other physical phenomena [42]. Typical speed-ups on the
JPL Mark 111 hypercube (a 68020-based, message-passing machine) ranged from 10 to
20 using 32 processors. Fujimoto also reports good performance usinganother, inde-
pendently developed version of Time Warp for queueing network simulations [43] and
various synthetic workloads [44] where speed-ups as high as 57 using a 64-processor
BBN Butterfly were reported.

We earlier observed that look-ahead appears to be essential to obtain significant
speed-ups using conservative algorithms for most problems of practical interest. Is the
same true for optimistic methods? Empirical evidence indicates that while look-ahead
improves the performance of optimistic algorithms, it is not a prerequisite for obtaining
good performance.

For example, Figure 12.7 compares the performance of Time Warp with the conser-
vative deadlock avoidance and deadlock detection and recovery algorithms for a closed
queueing network simulation. Speed-up over a sequential event list simulation program
is shown as the message density (the message population divided by the number of logi-

*See refs. 36 and 37 for a discussion of other mechanisms to handle queries.

12.6 OPTIMISTIC MECHANISMS 449

64 Processes
0 16 Processes

0
Deadlock Avoidance

0 64 Processes
+ 16 Processes

Deadlock Recovery
* 64 Processes
A 16 Processes

M e s s a g e D e n s i t y (m e s s a g e s per p r o c e s s)

Figure 12.7 Speedup of time warp and conservative algorithms for a queueing network sim-
ulation where the service time distribution is exponential (minimum service time is zero), and
preemption is allowed 1181. One percent of the jobs in the network have high priority.

cal processes) is varied. An eight-processor BBN Butterfly multiprocessor was used in
these experiments. An exponential service time distribution with a minimum value of
zero is used.* Further, some fraction of the jobs (here 1 %) are designated as high priority,
while the rest are low priority. High-priority jobs preempt service from low-priority
jobs. As noted earlier, this simulation contains very poor look-ahead characteristics and
cannot be optimized as was done earlier for the simulation program using first come,
first served queues. As can be seen, Time Warp is able to obtain a significant speed-up
for this problem, while the conservative algorithms have difficulty.

12.6.4 Critique of Optimistic Methods

Table 12.1 summarizes key advantages and disadvantages of optimistic protocols and
compares them with conservative protocols. A critical question faced by optimistic sys-
tems such as Time Warp is whether the system will exhibit thrashing behavior where
most of its time is spent executing incorrect computations and rolling them back. Here
the concern is that incorrect computations will be executed at the expense of correct
ones; indeed, if the application contains only limited parallelism relative to the number
of available processors, a significant degree of rollback is inevitable, and in fact, may
be perfectly acceptable. As discussed earlier, a variety of techniques are available to
avoid overly optimistic execution and excessive rollbacks.

A more serious problem with the Time Warp mechanism is the need to save the

*Strictly speaking, the deadlock avoidance algor~thm cannot simulate this network because cycles containing
zero look-ahead exist. A ''fortified" version of the deadlock avoidance approach was used that is supplemented
with a deadlock detection and recovery mechanism to circumvent this problem. AF mentioned earlier, minimum
service times could also have been used to solve this problem.

450 PARALLEL AND DISTRIBUTED SIMULATION

state of each logical process periodically. As mentioned earlier, state-saving overhead
can seriously degrade the performance of many Time Warp programs, even if the state
vector is relatively modest in size. The state-saving problem is further exacerbated by
applications requiring dynamic memory allocation because one may have to traverse
complex data structures to save the process's state. The amount of time in each event
to save state must be small relative to the amount of simulation computation per event
to avoid serious performance degradations. This may be difficult to achieve for certain
applications. Incremental state-saving techniques are essential for programs with large
numbers of state variables, although as mentioned earlier, care must be taken to min-
imize rollback overheads. Alternatively, hardware support has also been proposed to
solve the state-saving problem [1,45].

Optimistic algorithms tend to use much more memory than their conservative coun-
terparts to store old messages and state information. One can implement Time Warp
using no more memory than is required by the corresponding sequential simulation
[46,47]; however, performance will be poor if one attempts to run Time Warp simula-
tions using this little memory. Protocols have been defined to roll back processes, if nec-
essary, to reclaim memory resources as needed. This provides a mechanism that allows
Time Warp to live gracefully with whatever memory is provided to it. Perhaps more
surprisingly, Jefferson also shows that existing conservative synchronization algorithms
are not storage optimal. For example, an LP that does not receive messages from any
other L P may not be constrained by the conservative algorithm from executing ahead of
the others and generating messages (which consume memory) before they would have
been created during a sequential execution. Adding a similar mechanism to existing
asynchronous protocols to guarantee execution using the minimum amount of memory
without introducing a significant performance degradation is an open question.

Unlike conservative approaches, optimistic systems need to be able to recover from
arbitrary program execution errors (e.g., the simulation program performing a divide-by-
zero operation) because such errors may be erased by a subsequent rollback. Erroneous
computations may enter infinite loops, requiring the Time Warp executive to interact
with the hardware's interrupt system. In certain languages, pointers may be manipulated
in arbitrary ways; Time Warp must be able to trap illegal pointer uses that result in run-
time errors and prevent incorrect computations from overwriting non-state-saved areas
of memory. Although such problems are, in principal, not insurmountable, they may
be difficult to circumvent in certain systems without appropriate hardware support. The
alternative taken by most existing Time Warp systems is to leave the task of analyzing
incorrect execution sequences to the user (e.g., by always checking array indices at run
time and explicitly testing to ensure that loops will terminate).

Finally, the Time Warp mechanism is much more complex to implement than conser-
vative approaches, particularly if one attempts to catch errors such as those described
above. Although the actual Time Warp code is not very complex if one ignores the
error-handling aspects, inexperienced implementors may make seemingly minor design
mistakes that lead to extremely poor performance. For example, use of an inappropri-
ate policy for determining which logical processes are executed when can be catas-
trophic. Debugging Time Warp implementations is time consuming because it may
require detailed analysis of complex rollback scenarios. A certain amount of design
experience (or luck) with optimistic execution is often required to obtain a good, robust
implementation of Time Warp. On the other hand, this development cost need only be
paid once when developing the Time Warp kernel rather than with each new application.

Because of its relaxed dependence on look-ahead, optimistic simulation techniques

12.7 TlME PARALLEL SIMULATION 451

such as Time Warp are believed to offer the best hope for providing a general-purpose
parallel simulation executive. Time Warp does entail additional overheads that are not
incurred in conservative simulation approaches (e.g., for state saving and rollback). In
general, it is difficult to predict without experimental evaluation whether an optimistic
or conservative mechanism will yield better performance for a specific application, but a
general rule is that if the application contains very poor look-ahead properties, optimistic
methods are more likely to achieve significant speed-ups. On the other hand, if state-
saving overheads are expected to dominate, conservative methods are preferred.

12.7 TlME PARALLEL SIMULATION

The approaches to distributed simulation discussed thus far use a spatial decomposition
of the simulation model into a collection of logical processes. We now turn our attention
to another approach that has been utilized successfully for certain simulation problems:
temporal decomposition.

One can view a simulation as a computation that must determine the values of certain
state variables across simulated time. The state variables capture the state of the system
(e.g., the number of customers waiting for service in a simulation of a queue). Changes
in the state of the system occur at discrete points in simulated time (e.g., when a new
customer enters the system). This space-time view of the simulation [48] is depicted
in Figure 12.8 using a two-dimensional graph, where the vertical axis represents the
state variables and the horizontal axis represents simulated time. The goal of the sim-
ulation program is to "fill in" the graph by computing the values of each of the state
variables across simulated time. A parallel simulator attempts to use multiple processors
that simultaneously fill in different portions of the space-time graph.

In Figure 1 2 . 8 ~ the graph is divided into horizontal strips, with a logical process
responsible for the computation within each strip. This is the space-parallel approach,
which has been the basis for the synchronization algorithms discussed earlier. An alter-
native approach called the time-parallel method partitions the space-time graph into

state
4

variab

processor 3 processor

processor 2

processor 1 k L
les

simulated time
(a)

state
variables

processor 4 I

simulated time
('J)

Figure 12.8 Space-time diagram depicting simulated time on the horizontal axis and state vari-
ables on the vertical axis: (a) approach exploiting space parallelism; (b) approach exploiting time
parallelism.

452 PARALLEL AND DISTRIBUTED SIMULATION

vertical strips as shown in Figure 12.8b and assigns a separate processor to each strip.
The simulated time axis is divided into intervals [TI, T2], [T2, T3], . . . , [Ti, Ti+ I], . . .
with processor i assigned the task of computing the portion of the space-time graph
within the interval [Ti, T, + 11.

Time-parallel simulation methods have been developed for attacking a handful of
specific simulation problems (e.g., measuring the loss rate of a finite-capacity queue).
Because the amount of parallelism available in time-parallel algorithms is proportional
to the length of the simulation run, this technique allows for massively parallel execution
for many simulation problems.

A central question that must be addressed by time-parallel simulation programs is
ensuring the states computed at the "boundaries" of the time intervals "match." Specifi-
cally, it is clear that the state computed at the end of the interval [Ti - 1 , Ti] must match
the state at the beginning of interval [Ti, Ti+ I]. Thus this approach relies on being able
to perform the simulation corresponding to the ith interval without first completing the
simulations of the preceding (i - 1, i - 2, . . . , 1) intervals.

Because of the state-matching problem, time-parallel simulation is really more a
methodology for developing massively parallel algorithms for specific simulation prob-
lems than a general approach for executing arbitrary discrete-event simulation models
on parallel computers. Time-parallel algorithms are currently not as robust as space-par-
allel approaches because they rely on specific properties of the system being modeled
(e.g., specification of the system's behavior as recurrence equations and/or a relatively
simple state descriptor). This approach is currently limited to a few important applica-
tions (e.g., queueing networks, Petri nets, cache memories, and statistical multiplexers
in telecommunication networks). Space-parallel simulations offer greater flexibility and
wider applicability, but concurrency is limited to the number of logical processes. In
some cases, both time and space parallelism can be used [49].

One approach to solving the state-matching problem is to have each processor
"guess" the initial state of its simulation and then simulate the system based on this
guessed initial state [SO]. In general, the initial state will not match the final state of the
previous interval. After the initial simulation of each interval has been completed, a fix-
up computation is performed to account for the fact that the wrong initial state was used
in each interval simulation. This might be performed, for instance, simply by repeating
the simulation, using the final state computed in the previous interval as the new initial
state. This "fix-up" process is repeated until the initial state of each interval matches
the final state of the previous interval. In the worst case, N such iterations are required
when there are N intervals. However, if the final state of each interval simulation is
seldom dependent on the initial state, far fewer iterations will be needed.

12.7.1 Time-Parallel Cache Simulation

To illustrate this approach, consider the simulation of a cache memory in a computer
memory system employing a least-recently-used replacement policy. Briefly, a cache is
a high-speed memory that holds recently referenced data and instructions. The goal is
to store frequently used data and instructions in the cache that can be accessed very
quickly, typically an order of magnitude faster than main memory. Because the cache
memory has very high speed, it is expensive, so the computer system may contain only
a limited amount of cache memory. If data or instructions are referenced by the CPU
that do not reside in the cache, the information must be loaded into the cache, displacing
other data/instructions from the cache if there is no unused memory in the cache. Main

12.7 TIME PARALLEL SIMULATION 453

memory is partitioned into a collection of fixed-sized blocks (a typical block size is 64
bytes), and some set of blocks are maintained within the cache. The cache management
hardware includes tables that indicate which blocks are currently stored in the cache.

The cache replacement policy is responsible for determining which block to delete
from the cache when a new block must be loaded. A commonly used policy is to replace
the block that hasn't been referenced in the longest time, based on the premise that
recently referenced blocks are likely to be referenced again in the near future. This
approach is referred to as the least recently used (LRU) replacement policy. Due to
implementation constraints, cache memories typically subdivide the cache into sets of
blocks and use LRU replacement within each set.

Heidelberger and Stone were among the first to propose the time-parallel simulation
approach, in the context of simulating cache memory systems using LRU replacement
[51]. This approach is effective for this application because the final state of the cache
is usually not dependent on the cache's initial state. The input to the simulation is a
sequence of memory references, with each reference denoting a read or write to a loca-
tion in memory. The sequence is partitioned into N subsequences, one for each processor
participating in the simulation. The parallel simulation proceeds as follows:

1. Each processor (CPU) executes a simulation of the subsequence assigned to it,
assuming that the cache is initially empty. This simulation is actually incorrect in
all processors except the first because in reality, the cache is not initially empty
except for the processor assigned the first subsequence.

2. Each processor (except the first) begins to repeat the simulation assuming the
initial state of the simulation for subsequence i is the same as the final state of
the cache at the end of the simulation of subsequence i - 1.

3. The simulation in step 2 continues until either the state of the cache becomes
the same as (matches) that of the previous simulation run at that point in the
subsequence or the end of the subsequence is reached.

4. Steps 2 and 3 are repeated until each subsequence simulation terminates by con-
verging to a prior state rather than reaching the end of the subsequence.

When using an LRU replacement policy, the final state of the simulation of a sub-
sequence is guaranteed to be independent of the initial state if the subsequence fills an
empty cache with new data elements. If each subsequence is sufficiently long to have
this property, only two passes through the subsequences (one initial pass, and one to
fix up the initial portions of the first pass) will be required to complete the simulation.

A variation on this approach devised in the context of simulating statistical multi-
plexers for asynchronous transfer mode (ATM) switches precomputes certain points in
time where one can guarantee that a buffer overflow (full queue) or underflow (empty
queue) will occur [52,53]. Because the state of the system (i.e., the number of occupied
buffers in the queue) is known at these points, independent simulations can be begun at
these points in simulated time, thereby eliminating the need for a fix-up computation.
Ammar and Deng also use a related approach for simulating Petri networks [54].

12.7.2 Time-Parallel Simulation of Queues Using Parallel Prefix

Another interesting approach to time-parallel simulation is described in ref. 55. This
algorithm simulates a G/G/1 queue (a queue with a single server and general distribu-

454 PARALLEL AND DISTRIBUTED SIMULATION

tions for service and interarrival times) where service times are not dependent on the
state of the queue. The approach is to represent the queue's behavior as a set of recur-
rence equations which are then solved using well-known parallel prefix algorithms. The
parallel prefix computation enables the state of the system at various points in simulated
time to be computed concurrently.

A prefix computation is one that computes the N initial products of Pi = XI * X2 *
. . . * Xi for i = 1, 2, . . . , N where * is an associative operator. Well-known algorithms
exist for performing this computation in parallel. The key observation is that the sim-
ulation of a G/G/l queue can be recast into this form. Specifically, let ri denote the
interarrival time preceding the ith job and si denote the service time for the ith job. r;
and si can be precomputed, in parallel, since they are independent random numbers. The
simulation must compute the arrival and departure times of the ith job, A; and D;, respec-
tively. Because the arrival time of the ith job is simply the arrival time of the (i - 1)st
job plus the interarrival time for the ith job (A; = A;- I + ri), computation of arrival
times is already in the proper form and a parallel prefix computation can be applied di-
rectly.

The departure times can also be written in the form of a parallel prefix computation
because Di = max(Di_),Ai) + s;, which can be rewritten as

where matrix multiplication is performed using max as the additive operator (with iden-
tity --) and + as the multiplicative operator (identity 0). Parallel prefix algorithms can
now be used to solve for D,.

12.8 DISTRIBUTED INTERACTIVE SIMULATION

The algorithms discussed thus far evolved from the high-performance computing com-
munity. Independently and in approximately the same time frame, a separate community
has evolved that has been driven by the Department of Defense to interconnect sepa-
rately developed simulators (e.g., manned tank simulators) on distributed computing
platforms to create synthetic environments for training military personnel. The-set i f
standards and approach to enable interoperability among separately developed simula-
tors have become known as distributed interactive simulation (DIS).

While the foundations for PADS research lies in early research concerning syn-
chronization, the precursor to DIS was the SIMNET (SIMulator NETworking) project
(1983-1989), which demonstrated the feasibility of interconnecting several autonomous
simulators in a distributed environment for training exercises [56]. SIMNET was used
as the basis for the initial DIS protocols and standards, and many of the fundamental
principles defined in SIMNET remain in DIS today. SIMNET realized over 250 net-
worked simulators at 11 sites in 1990.

From a model execution standpoint, a DIS exercise can be viewed as a collection
of autonomous simulators (e.g., tank simulators), each generating a virtual environment
representing the battlefield as seen from the perspective of the entities that it models.
Each simulator sends messages, called protocol data units (PDUs), whenever its state

12.8 DISTRIBUTED INTERACTIVE SIMULATION 455

changes in a way that might affect another simulator. Typical PDUs include movement
to a new location or firing at another simulated entity.

To achieve interoperability among separately developed simulators, a set of evolving
standards have been developed [57]. The standards specify the format and contents of
PDUs exchanged between simulators as well as when PDUs should be sent. Commu-
nication protocols and requirements are specified in a separate document [%I. DIS is
based on several underlying design principles [59]:

Autonomy of Simulation Nodes. Autonomy facilitates ease of development, inte-
gration of legacy (preexisting) simulators, and simulators joining or leaving the
exercises while it is in progress. Each simulator advances simulation time accord-
ing to a local real-time clock. Simulators are not required to determine which other
simulators must receive PDUs; rather, PDUs are broadcast to all simulators and the
receiver must determine those that are relevant to its own environment.

Transmission of "Ground Truth" Information. Each node sends absolute truth
about the state of the entities it represents. Degradations of this information (e.g.,
due to environment or sensor limitations) are performed by the receiver.

Transmission of State Change Information Only. To economize on communica-
tions, simulation nodes only transmit changes in behavior. If a vehicle continues
to "do the same thing" (e.g., travel in a straight line with constant velocity), the
rate at which state updates are transmitted is reduced. Simulators do transmit "keep
alive" messages (e.g., every 5 seconds), so new simulators entering the exercise
can include them in their virtual environment.

"Dead-Reckoning" Algorithms. All simulators use common algorithms to extrap-
olate the current state (position) of other entities between state updates. More will
be said about this later.
Simulation Time Constraints. Because humans cannot distinguish differences in
time of less than 100 ms, an application-to-application communication latency of
no more than this amount is required. Lower latencies are needed for other, non-
training, simulators (e.g., testing of weapons systems).

12.8.1 Contrasting DIS and Parallel Simulation

It is instructive to contrast the work in the PADS community described earlier with that
in DIS. Table 12.2 summarizes some key technical differences between PADS and DIS
research to date. One of the most important features distinguishing these communities
is that DIS has been focused primarily on real-time environments, while PADS work
has focused on non-real-time "as fast as possible" simulations. This is because DIS
has evolved from virtual training environments, while PADS has evolved from analytic
simulation tools for engineering design.

In PADS, performance is paramount, and speed-up relative to a sequential execution
is used as the primary metric. By contrast, realism of the virtual environment is of
principal importance in DIS, with scalability as a second, important goal. Intuitively,
a distributed simulation is said to be scalable if it can be expanded to include more
simulated entities executing on proportionately larger hardware configurations and the
simulator is still able to meet its stated objectives (e.g., value as a training mechanism),
which in turn translates to real-time performance. While scalability is also important
in PADS research, the issue has become a more pressing concern in DIS because of

456 PARALLEL AND DISTRIBUTED SIMULATION

TABLE 12.2 Contrasting PADS and DIS Research

PADS

Speed requirement As fast as possible
Typical applications VLSI circuits, telecomm,

wargaming, transportation
Performance metric Speed-up
Simulation model Single model
Distribution Single site
Communication Arbitrary latency; reliable
Network Multiprocessor or LAN

DIS

Real time
Military training, entertainment,

air traffic control, emergency planning
Realism, scalability
Federation of models
Geographically distributed
100-300 ms latency; unreliable
LAN and WAN

the military's desire to expand DIS demonstration exercises to include more simulated
entities and sites.

A second distinction between PADS and DIS simulations concerns the models them-
selves. To date, PADS work has been largely concerned with execution of a single large
simulation model. The components of the model are usually developed in a single sim-
ulation environment using one language and are developed from the start as a single
integrated system. Research has focused on simulation languages and tools for rapid
development of large simulation models. There is no question of interoperability among
the different components of the simulation because they are designed to do so from the
start. The question of retrofitting an existing model to execute on a parallel platform
has received only a modest amount of attention (see, e.g., refs. 60 and 61). By con-
trast, achieving interoperability among existing and new simulation models is central
to much of the work in the DIS community and is one of the most difficult techni-
cal problems being attacked. The aggregate-level simulation protocol (ALSP) project
is a second effort to bridge this gap by combining separately developed constructive
simulators using a PADS synchronization protocols [62].

To date, most PADS research utilizes tightly coupled multiprocessors (using shared
memory or message passing for communications) or LAN (local area network)-based
distributed computing environments, while DIS exercises usually utilize LAN and WAN
(wide area network) interconnects. Different assumptions are made by these commu-
nities concerning the network. PADS research generally assumes reliable communica-
tions but arbitrary communications latency. This originates from the analytic nature of
typical PADS applications. By contrast, most DIS work assumes unreliable communica-
tions but bounded maximum latencies for message delivery. Unreliable communications
are used because message acknowledgment protocols that are used to ensure reliable
delivery may compromise real-time performance. Message losses can often be tolerated
because many of the messages that are transmitted are simply periodic updates of state
information (e.g., the position of vehicles), so subsequent messages allow the simula-
tor to recover gracefully. Moreover, glitches in DIS simulations can often be tolerated
as long as they do not happen too frequently and do not have lasting effects. Maxi-
mum latencies also stem from the real-time nature of early DIS applications. Because
of human limitations to perceive nearly simultaneous events, latencies of up to 100 or
300 ms are acceptable [59]; Correct modeling of more tightly coupled systems [e.g.,
components of a weapons system (say, a simulated missile and its guidance system)]
require lower latencies [63].

12.8 DISTRIBUTED INTERACTIVE SIMULATION 457

12.8.2 Dead Reckoning

DIS simulations use a technique called dead reckoning to reduce interprocessor com-
munication to distribute position information. This reduction is realized by observing
that rather than sending new position coordinates of moving entities at some predeter-
mined frequency, processors can estimate the location of other entities through a local
computation. In principle, one could duplicate a remote simulator in the local processor
so that any dynamically changing state information is readily available. When applied
to computing position information of moving entities, this local computation is referred
to as the dead-reckoning model (DRM).

In practice, the DRM is only an approximation of the true simulator. An approximation
is used because (I) the DRM does not receive inputs received by the actual simulator (e.g.,
a pilot using a flight simulator decides to travel in a new direction), and (2) to economize
on the amount of computation required to execute the DRM. The DRM is realized as a sim-
plified, lower-fidelity version of the true model. To limit the amount of error between the
true and DRM, the true simulator maintains its own copy of the DRM to determine when
the divergence between them has become "too large" (i.e., the difference between the true
position and the dead-reckoned position exceeds some threshold). When this occurs the
true simulator transmits new, updated information (the true position) to "reset" the DRM.
To avoid "jumps" in the display when the DRM is reset, simulators may realize the trans-
ition to the new position as a sequence of steps [64].

12.8.3 Communications in DIS

Work in DIS is now attempting to scale exercises to include more entities and sites
(locations). Current goals call for exercises including 50,000 entities at 30 sites by 1997
and 100,000 entities at 50 sites by 2000. Significant changes to DIS are required to
enable simulations of this size, particularly with respect to the amount of communication
that is required. Because DIS uses broadcasts, the number of messages that must be
transmitted is proportional to N ~ , where N is the number of entities.

Even with dead reckoning, the DIS protocol described above does not scale to such
large simulations. As mentioned above, an obvious problem is the reliance on broad-
casts. There are two problems here: (1) realizing the communication bandwidth required
to perform the broadcasts, estimated to be 375 Mbits per second per platform for a sim-
ulation with 100,000 players [65], is too costly, and (2) the computation load required to
process incoming PDUs is excessive and wasteful, particularly as the size of the exer-
cise increases because a smaller percentage of the incoming PDUs will be relevant to
each simulator.

Several techniques have been developed to address this problem [66]:

Relevance Filtering. Rather than using broadcasts, messages are sent to only a sub-
set of the simulation entities [65,66]. For example, the battlefield can be divided
into a grid, and entities need only send state-update PDUs to entities in grid sec-
tors in or near that generating the PDU. Relevance filters can be used for other
information as well (e.g., radio communications).

Distributed Representation. Information concerning remote entities can be stored
locally. This is particularly effective for information that seldom changes. Like
dead reckoning, remote computations can be replicated locally to generate dynami-
cally changing data.

458 PARALLEL AND DISTRIBUTED SIMULATION

Compression. Redundant information can be eliminated from the PDU. The proto-
col independent compression algorithm (PICA) uses a reference state PDU that is
known to the communicating entities and only transmits differences from the ref-
erence state [67]. PICA has been reported to yield fourfold compression of entity
state PDUs [66].
Bundling. Several PDUs may be bundled into larger messages to reduce overheads.

Overload Management. These mechanisms reduce the communications load dur-
ing periods of high utilization. For example, dead-reckoning thresholds may be
adjusted to generate less traffic when the network is loaded.

Fidelity Management. Different degrees of detail can be sent to different entities.
For instance, less frequent state updates can be sent to distant receivers than those
in close proximity. This is particularly useful for wide area viewers such as aircraft
that can "see" large areas at one time.

Relevance filtering and multicast communications go hand in hand, although it
should be noted that relevance filtering still has merit even if multicast is not available.
Multicast communications mechanisms provide for efficient transmission of messages
where identical copies must be sent to many destinations. A multicast group refers to
a set of destinations that should all receive a copy of any message sent to the group.
Multicast is more challenging in DIS than other applications (e.g., teleconferencing or
video on demand) because of the need for a large number of multicast groups and the
dynamic nature of the groups. It is estimated that from 1000 to 10,000 active multicast
groups (different sets of destinations) will be needed, with entities joining or leaving
groups at a rate of hundreds per second [68]. Changes to multicast groups should occur
with low latency (e.g., 1 ms).

12.8.4 Synchronization and Time Management

In DIS, the term synchronization usually refers to the problem of ensuring that the real-
time clocks distributed throughout the network advance in synchrony with each other
[63]. Time management refers to the method used to advance simulated time in each
simulator (i.e., what the PADS community refers to as synchronization). The synchro-
nization and time management mechanisms are responsible for ensuring that temporal
correlation is achieved (i.e., temporal aspects of the simulation exercise correspond to
real-world behavior). While PADS simulation protocols guarantee that all logical pro-
cesses observe the same, time-stamped ordered sequence of events, DIS makes no such
guarantees. This is a well-known problem in DIS today. Correlation problems can occur
because:

Messages may be lost. While DIS can tolerate some lost PDUs, as discussed earlier,
loss of certain events such as detonation of ordinances could be more problematic.
No mechanism is provided to ensure that events are processed in time-stamp order.
PDUs may arrive out of order because of communication delay variations or dif-
fering (real-time) clocks in different simulators. Different simulators may perceive
the same set of events in different orders, possibly resulting in different observed
outcomes in different parts of the network. This is clearly undesirable.

In DIS, each PDU contains a time stamp with the current time of the simulator

12.9 CONCLUSIONS 459

(obtained from the simulator's real-time clock) generating the PDU. This is in con-
trast to PADS simulations that typically generate events into the simulated future [i.e.,
with (simulated time) time stamp greater than the current time of the entity schedul-
ing the event]. Thus events in DIS always arrive "late." Receivers can compensate by
determining the communication delay in transmitting the message. Relative time-stamp
schemes do this based on past message transmission times, and absolute time-stamp
schemes assume synchronized real-time clocks in the sender and receiver to determine
the latency simply by computing the difference between the send and receive times
[69 I .

Much of the work in the DIS community to address the temporal correlation problem
has been concerned with maintaining real-time clocks that are synchronized to a stan-
dard clock called coordinated universal time (UTC). Several approaches have been used
for this task (see ref. 63). Methods include broadcasting UTC on radio services, use of
a U.S. National Institute of Standards and Technology (NIST) dial-up time service, use
of a global positioning system (GPS) used by radio navigation systems [70,71], and net-
work protocols such as Network Time Protocol (NTP) to distribute clock information
over the network [72]. The relationship between clock synchronization and temporal
correlations is discussed in ref. 73.

In addition to timing and synchronization errors, other correlation problems may arise
due to difference in the virtual environments perceived by different simulator nodes. A
tank that believes it is hiding behind a tree may actually be visible to other simulators
because of differences in spatial computations. This can lead to "unfair" scenarios that
reduce the realism of the exercise.

Work in DIS encompasses a variety of other topics that are related to interoperabil-
ity and producing realistic synthetic environments, as opposed to distributed execution.
Computer-generated forces are artificial intelligence techniques to generate automated
or semiautomated models for forces, enabling the number of simulation participants to
be much larger than the number of personnel participating in the exercise. Aggrega-
tion and deaggregation algorithms enable interoperability between virtual simulators
representing individual, deaggregated entities (e.g., individual tanks) and constructive
simulators with aggregated entities (a column of tanks) by aggregating and deaggre-
gating entities as needed. Work in validation, verijcation, and accreditation (VV&A)
is concerned with defining appropriate performance metrics and measurement mecha-
nisms to ascertain the extent that simulation exercises meet their goals. Physical envi-
ronment representation is concerned with providing entities with common views of
the battlefield in an environment changing because of constructed (e.g., introduction
of craters when shells explode) and natural (e.g., roads washed out by thunderstorms)
causes.

12.9 CONCLUSIONS

The goal of this chapter is to provide insight into the problem of executing discrete-event
simulation programs on parallel and distributed computers. Conservative and optimistic
simulation techniques offer a general approach requiring a spatial decomposition of the
simulation program into logical processes that may execute concurrently on different
processors. Optimistic methods offer the greatest potential as a general-purpose simula-
tion engine where the application can be cleanly separated from the underlying execu-

460 PARALLEL AND DISTRIBUTED SIMULATION

tion mechanism. Conservative methods require specification of look-ahead which is in
general difficult to accomplish without help from the programmer, but avoid some of
the overheads and implementation complexities associated with optimistic mechanisms.
Parallel simulation software executives (e.g., those developed in research labs and uni-
versities) are widely available (e.g., the Georgia Tech Time Warp software is available
from the author of this chapter and is being used extensively in modeling air transporta-
tion systems and telecommunication networks). However, few commercial versions of
parallel simulation executives are available at the time of this writing. Time-parallel
simulation techniques offer massively parallel execution for simulation problems with
little spatial parallelism (e.g., simulation of a single queue), but are currently limited
in applicability to a handful of problems. Finally, simulation techniques developed in
the DIS community relax causality constraints and focus on interoperability issues in
constructing federations of autonomous simulations.

The state of the art in parallel and distributed simulation has advanced rapidly in
recent years. The technology is now having a major impact in both the commercial
and military simulation communities. As networking infrastructure improves to provide
greater connectivity among previously isolated machines, one can expect distributed
simulation, especially those embraced by the DIS community, to be much more common
and have a much broader impact in the years ahead.

REFERENCES

1. Fujimoto, R. M. (1989). The virtual time machine, in Proceedings of the International Sym-
posium on Parallel Algorithms and Architectures, pp. 199-208.

2. Jones, D. W. (1986). Concurrent simulation: an alternative to distributed simulation, in Pro-
ceedings of the 1986 Winter Simulation Conference, J. R. Wilson, J. 0. Henriksen, and S. D.
Roberts, eds., IEEE, Piscataway, N.J., pp. 417-423.

3. Jones, D. W., C.-C. Chou, D. Renk, and S. C. Bruell (1989). Experience with concurrent
simulation, in Proceedings of the 1989 Winter Simulation Conference, E. A. MacNair, K. J.
Musselman, and P. Heidelberger, eds., IEEE, Piscataway, N.J., pp. 756-764.

4. Reynolds, P. F., Jr. (1988). A spectrum of options for parallel simulation, in Proceedings of
the 1988 Winter Simulation Conference, M. Abrams, P. Haigh, and J. Comfort, eds., IEEE,
Piscataway, N.J., pp. 325-332.

5. Chandy, K. M., and J. Misra (1979). Distributed simulation: a case study in design and veri-
fication of distributed programs, IEEE Transactions on SofhYare Engineering, Vol. SE-5, No.
5, pp. 440-452.

6. Bryant, R. E. (1977). Simulation of packet communication architecture computer systems,
MIT-LCS-TR-188, Massachusetts Institute of Technology, Cambridge, Mass.

7. Su, W. K., and C. L. Seitz (1989). Variants of the Chandy-Misra-Bryant distributed discrete-
event simulation algorithm, in Proceedings of the SCS Multiconference on Distributed Sim-
ulation, Vol. 21, pp. 3843, SCS Simulation Series, March.

8. Peacock, J. K., J. W. Wong, and E. G. Manning (1979). Distributed simulation using a net-
work of processors, Computer Networks, Vol. 3, No. 1, pp. 44-56.

9. Chandy, K. M., and J. Misra (1981). Asynchronous distributed simulation via a sequence of
parallel computations, Communications of the ACM, Vol. 24, No. 4, pp. 198-205.

10. Misra, J. (1986). Distributed-discrete event simulation, ACM Computing Surveys, Vol. 18,
No. 1, pp. 39-65.

REFERENCES 461

11. Dijkstra, E. W., and C. S. Scholten (1980). Termination detection for diffusing computations,
Infi~rmution Processing Letters, Vol. 1 1 , No. 1, pp. 1 - 4 .

12. Liu, L. Z., and C. Tropper (1990). Local deadlock detection in distributed simulations, in
Proceedings ofthe SCS Multiconference on Distributed Simulation, Vol. 22, pp. 64-69, SCS
Simulation Series, January.

13. Ayani, R. (1989). A parallel simulation scheme based on the distance between objects, in
Proceedings of the SCS Multiconference on Distributed Simulation, Vol. 2 1, pp. 1 1 3-1 18,
SCS Simulation Series, March.

14. Chandy, K. M., and R. Sherman (1989). The conditional event approach to distributed sim-
ulation, in Proceedings of the SCS Multiconference on Distributed Simulation, Vol. 21, pp.
93-99, SCS Simulation Series, March.

15. Lubachevsky, B. D. (1989). Efficient distributed event-driven simulations of multiple-loop
networks, Communications of the ACM, Vol. 32, No. 1, pp. 11 1-123.

16. Nicol, D. M. (1989). The cost of conservative synchronization in parallel discrete event sim-
ulations, Technical Report 90-20, ICASE, June.

17. Nicol, D. M. (1988). Parallel discrete-event simulation of FCFS stochastic queueing networks,
SIGPLAN Notices, Vol. 23, No. 9, pp. 124-137.

18. Fujimoto, R. M. (1990). Parallel discrete event simulation, Communications of the ACM, Vol.
33, No. 10, pp. 30-53.

19. Nicol, D. M. and R. M. Fujimoto (1994). Parallel simulation today, Annals of Operations
Research, Vol. 53, pp. 249-286.

20. Sleator, D. D. and R. E. Tarjan (1985). Self-adjusting binary search trees, Journal of the
ACM, Vol. 32, NO. 3, pp. 652-686.

21. Fujimoto, R. M. (1989). Performance measurements of distributed simulation strategies,
Transactions of the Society for Computer Simulation, Vol. 6, No. 2, pp. 89-132.

22. Leung, E., J. Cleary, G. Lomow, D. Baezner, and B. Unger (1989). The effects of feedback
on the performance of conservative algorithms, in Proceedings of the SCS Multiconference
on Distributed Simulation, Vol. 21, pp. 44-49, SCS Simulation Series, March.

23. Bagrodia, R. L., and W.-T. Liao (1990). Maisie: a language and optimizing environment for
distributed simulation, in Proceedings ofthe SCS Multiconference on Distributed Simulufion,
Vol. 22, pp. 205-210, SCS Simulation Series, January.

24. Cota, B. A., and R. G. Sargent (1990). A framework for automatic lookahead computation
in conservative distributed simulations, in Proceedings of the SCS Multiconference on Dis-
tributed simulation, Vol. 22, pp. 56-59, SCS Simulation Series, January.

25. Tinker, P. A., and J. R. Agre (1989). Object creation, messaging, and state manipulation in an
object oriented Time Warp system, in Proceedings of the SCS Multiconference on Distributed
Simulation, Vol. 2 1, pp. 79-84, SCS Simulation Series, March.

26. Jefferson, D. R. (1985). Virtual time, ACM Transactions on Programming Languages and
Systems, Vol. 7, No. 3, pp. 404425.

27. Lin, Y.-B., and E. D. Lazowska (1989). Determining the global virtual time in a distributed
simulation, Technical Report 90-01-02, Department of Computer Science, University of
Washington, Seattle, Wash.

28. Preiss, B. R. (1989). The Yaddes distributed discrete event simulation specitication language
and execution environments, in Proceedings of the SCS Multiconference on Distributed Sim-
ulation, Vol. 21, pp. 139-144, SCS Simulation Series, March.

29. Samadi, B. (1985). Distributed simulation, algorithms and performance analysis, Ph.D. thesis,
University of California, Los Angeles.

30. Gafni, A. (1988). Rollback mechanisms for optimistic distributed simulation systems, in Pro-
ceedings of the SCS Multiconference on Distributed Simulation, Vol. 19, pp. 61-67, SCS
Simulation Series, July.

462 PARALLEL AND DISTRIBUTED SIMULATION

31. Reiher, P. L., R. M. Fujimoto, S. Bellenot, and D. R. Jefferson (1990). Cancellation strategies
in optimistic execution systems, in Proceedings of the SCS Multiconference on Distributed
Simulation, Vol. 22, pp. 112-121, SCS Simulation Series, January.

32. Berry, 0 . (1986). Performance evaluation of the Time Warp distributed simulation mecha-
nism, Ph.D. thesis, University of Southern California, May.

33. Som, T. K., B. A. Cota, and R. G. Sargent (1989). On analyzing events to estimate the possible
speedup of parallel discrete event simulation, in Proceedings of the 1989 Winter Simulation
Conference, E. A. MacNair, K. J. Musselman, and P. Heidelberger, eds., IEEE, Piscataway,
N.J., pp. 729-737.

34. Lomow, G., J. Cleary, B. Unger. and D. West (1988). A performance study of Time Warp,
in Proceedings of the SCS Multiconference on Distributed Simulation, Vol. 19, pp. 50-55,
SCS Simulation Series, July.

35. West, D. (1988). Optimizing Time Warp: lazy rollback and lazy re-evaluation, MS. thesis,
University of Calgary, January.

36. Gates, B., and J. Marti (1988). An empirical study of Time Warp request mechanisms, in
Proceedings of the SCS Multiconference on Distributed Simulation, Vol. 19, pp. 73-80, SCS
Simulation Series, July.

37. Puccio, J. (1988). A causal discipline for value return under Time Warp, Proc. SCS Multi-
conference on Distributed Simulation, Vol. 19, pp. 171-176, SCS Simulation Series, July.

38. Jefferson, D. R., B. Beckman, F. Wieland, L. Blume, M. DiLorento, P. Hontalas, P. Reiher, K.
Sturdevant, J. Tupman, J. Wedel, and H. Younger (1987). The Time Warp Operating System,
Proceedings of the 11th Symposium on Operating Systems Principles, Vol. 21, No. 5, pp.
77-93.

39. Wieland, F., L. Hawley, A. Feinberg, M. DiLorento, L. Blume, P. Reiher, B. Beckman, P.
Hontalas, S. Bellenot, and D. R. Jefferson (1989). Distributed combat simulation and Time
Warp: the model and its performance, in Proceedings of the SCS Multiconference on Dis-
tributed Simulation, Vol. 21, pp. 14-20, SCS Simulation Series, March.

40. Presley, M., M. Ebling, F. Wieland, and D. R. Jefferson (1989). Benchmarking the Time
Warp Operating System with a computer network simulation, in Proceedings of the SCS
Multiconference on Distributed Simulation, Vol. 21, pp. 8-13, SCS Simulation Series, March.

41. Ebling, M., M. DiLorento, M. Presley, F. Wieland, and D. R. Jefferson (1989). An ant foraging
model implemented on the Time Warp Operating System, in Proceedings of the SCS Multi-
conference on Distributed Simulation, Vol. 21, pp. 21-26, SCS Simulation Series, March.

42. Hontalas, P., B. Beckman, M. DiLorento, L. Blume, P. Reiher, K. Sturdevant, L. Van War-
ren, J. Wedel, F. Wieland, and D. R. Jefferson (1989). Performance of the colliding pucks
simulation on the Time Warp Operating System, in Proceedings of the SCS Multiconference
on Distributed Simulation, Vol. 21, pp. 3-7, SCS Simulation Series, March.

43. Fujimoto, R. M. (1989). Time Warp on a shared memory multiprocessor, Transactions of the
Society for Computer Simulation, Vol. 6, No. 3, pp. 21 1-239.

44. Fujimoto, R. M. (1990). Performance of Time Warp under synthetic workloads, in Proceed-
ings of the SCS Multiconference on Distributed Simulation, Vol. 22, pp. 23-28, SCS Simu-
lation Series, January.

45. Fujimoto, R. M., J. Tsai, and G. Gopalakrishnan (1988). Design and performance of special
purpose hardware for Time Warp, in Proc. 15th Annual Symposium on Computer Architec-
ture, pp. 401408, June.

46. Jefferson, D. R. (1990). Virtual time 11: storage management in distributed simulation, in
Proceedings of the 9th Annual ACM Symposium on Principles of Distributed Computing, pp.
75-89, August.

47. Lin, Y.-B., and B. R. Preiss (1991). Optimal memory management for time warp parallel
simulation, ACM Transactions on Modeling and Computer Simulation, Vol. 1, No. 4.

48. Bagrodia, R., W.-T. Liao, and K. M. Chandy (1991). A unifying framework for distributed
simulation, ACM Transactions on Modeling and Computer Simulation, Vol. 1, No. 4.

49. Gaujal, B., A. G. Greenberg, and D. M. Nicol (1993). A sweep algorithm for massively paral-
lel simulation of circuit-switched networks, Journal of Parallel and Distributed Computing,
Vol. 18, No. 4, pp. 484-500.

50. Lin, Y.-B., and E. D. Lazowska (199 1). A time-division algorithm for parallel simulation,
ACM Transactions on Modeling and Computer Simulation, Vol. 1, No. 1 , pp. 73-83.

51. Heidelberger, P., and H. Stone (1990). Parallel trace-driven cache simulation by time parti-
tioning, in Proceedings ofthe 1990 Winter Simulation Conference, 0. Balci, R. P. Sadowski,
and R. E. Nance, eds., IEEE, Piscataway, N.J., pp. 734-737.

52. Nikolaidis, I., R. M. Fujimoto, and A. Cooper (1993). Parallel simulation of high-speed net-
work multiplexers, in Proceedings of the IEEE Conference on Decision and Control, Decem-
ber.

53. Andradbttir, S., and T. Ott (1995). Time-segmentation parallel simulation of networks of
queues with loss or communication blocking, ACM Transactions on Modeling and Computer
Simulation, Vol. 5, No. 4, pp. 269-305.

54. Ammar, H., and S. Deng (1992). Time warp simulation using time scale decomposition, ACM
Transactions on Modeling and Computer Simulation, Vol. 2, No. 2, pp. 158-177.

55. Greenberg, A. G., 5 . D. Lubachevsky, and I. Mitrani (1991). Algorithms for unbound-
edly parallel simulations, ACM transaction.^ on Computer Systems. Vol. 9, No. 3, pp. 201-
221.

56. Kanarick, C. (1991). A technical overview and history of the SIMNET project, in Advances
in Parallel and Distributed Simulation, Vol. 23, pp. 104-1 1 1, SCS Simulation Series, January.

57. 1EEE (1993). Standard for information technology: protocols for distributed interactive sim-
ulation applications, IEEE Standard 1278, IEEE, Piscataway, N.J.

58. IST (1994). Standard for distributed interactive simulation: communication architecture
requirements, lnstitute for Simulation and Training, Orlando, Fla.

59. DIS Steering Committee (1994). The DIS vision, a map to the future of distributed simulation,
Technical Report IST-SP-94-01, Institute for Simulation and Training, Orlando, Fla.

60. Tsai, J. J . , and R. M. Fujimoto (1993). Automatic parallelization of discrete event simula-
tion programs, in Proceedings of the 1993 Winter Simulation Conference, G. W. Evans, M.
Mollaghasemi, E. C. Russell, and W. E. Biles, eds., IEEE, Piscataway, N.J., pp. 697-705,
December.

61. Nicol, D. M., and P. Heidelberger (1995). On extending parallelism to serial simulators, in
Proceedings of'the 9th Workshop on Parallel and Distributed Simulation, pp. 6 0 4 7 , June.

62. Wilson, A. L., and R. M. Weatherly (1994). The aggregate level simulation protocol: an
evolving system, in Proceedings of the 1994 Winter Simulation Conference, J . D. Tew, S.
Manivannan, D. A. Sadowski, and A. F. Seila, eds., IEEE. Piscataway, N.J., pp. 781-787.

63. Cheung, S., and M. Loper (1994). Synchronizing simulations in distributed interactive simu-
lations, in Proceedings of the 1994 Winter Simulation Conference, J. D. Tew, S. Manivannan,
D. A. Sadowski, and A. F. Seila, eds., IEEE, Piscataway, N.J., pp. 1316-1323.

64. Fishwick, P. A. (1994). Simulation Model Design and Execution: Building Digital Worlds,
McGraw-Hill, New York.

65. Macedonia, M. R., M. J. Zyda, D. R. Pratt, D. P. Brutzman, and P. T. Barham (1995). Exploit-
ing reality with multicast groups: a network architecture for large-scale virtual environments,
in Proceedings ofthe 1995 IEEE Virtual Reality Annual Symposium, pp. 11-15, March.

66. Van Hook, D. J., J. 0. Calvin, M. Newton, and D. Fusco (1994). An approach to DIS scalabil-
ity, in Proceedings of the 11th Workshop on Standurds,fi)r the Interoperubility of Distributed
Simulations, Vol. 2, pp. 347-356.

67. DiCaprio, P. N., C. J. Chiang, and D. J. Van Hook (1994). PICA performance in a lossy

464 PARALLEL AND DISTRIBUTED SIMULATION

communications environment, in Proceedings of the 11th Workshop on Standards for the
Inreroperability of Distributed Simulations, Vol. 2, pp. 363-366.

68. Miller, D. C. (1995). A brief history of distributed interactive simulation (presentation notes),
in Distributed Interactive Simulation IPIATM Multicast Symposium, May.

69. Golner, M., and E. Pollak (1994). The application of network time protocol (NTP) to imple-
menting DIS absolute timetamps, in Proceedings of the 11th Workshop on Standards for the
Interoperability of Distributed Simulations, Vol. 2, pp. 431440.

70. Kress, J., J. R. Phipps, and D. Carver, Jr. (1994). Synchronization of large scale distributed
simulations and programs, in Proceedings of the 10th Workshop on Standards for the Inter-
operability of Distributed Simulations, Vol. 2, pp. 611-623.

71. Forbes, J. (1994). Synchronization and absolute time stamping in the DIS environment, the
BFTT method, in Proceedings of the 10th Workshop on Standards,fi)r the Interoperability oj
Distributed Simulations, Vol. 2, pp. 625-627.

72. Mills, D. L. (1991). Internet Time Synchronization: The Network Time Protocol, IEEE Trans-
actions on Communications, Vol. 39, No. 10, pp. 1482-1493.

73. Katz, A. (1994). Synchronization of networked simulators, in Proceedings of the 11th Work-
shop on Standards for the Interoperability of Distributed Simulations, Vol. 2, pp. 8 1-87.

CHAPTER 13
-

On-Line Simulation: Need and
Evolving Research Requirements

WAYNE J. DAVIS

University of Illinois

13.1 INTRODUCTION

In this chapter we explore the future evolution of simulation modeling and analysis
techniques. It is obvious that no one can predict the future with certainty. However, it
is immediately evident that today's systems are more complex than their predecessors
and that these systems will affect future simulation tools and the associated methods that
are employed for simulation analyses. One class of systems that has significantly influ-
enced the development of simulation tools is the flexible manufacturing system (FMS).
Since FMSs have been introduced, several simulation tools, (e.g., AweSim, ARENA,
and WITNESS, among others), now include provisions for modeling material handling
systems (see Chapter 14). As new classes of systems are developed, this evolutionary
trend will continue.

The flexible manufacturing system is only one example of a new class of large-scale
discrete-event systems that are being developed or are in the conceptual design stage.
Other systems include advanced air or vehicular traffic control systems (Chapter 16),
real-time battle management systems (Chapter 19), emergency response systems, and
so on. In fact, one goal within the manufacturing arena is to integrate several flexible
manufacturing systems into a much larger enterprise system to provide an agile manu-
facturing environment.

The desire to design and operate large-scale, discrete-event systems has evolved
based on two distinct realities. First, there are the real-world needs. For example, in
most metropolitan areas, vehicular traffic (especially at rush hour) has become a major
problem. The general consensus is that a system must be developed to coordinate the
traffic flow rather than relying solely on the combined actions of the individual vehicle
operators, who can only make decisions within their immediate domain while attempt-
ing to optimize their individual performance objectives. Someone, or something, must
consider the performance of the entire traffic system.

Handbook of Simulation, Edited by Jerry Banks.
ISBN 0-47 1 - 13403- 1 O I998 John Wiley & Sons, Inc.

466 ON-LINE SIMULATION: NEED AND EVOLVING RESEARCH REQUIREMENTS

Second, computer and networking technologies have now provided new opportuni-
ties to explore such systems. As recently as a decade ago, such systems would have been
much more difficult, if not impossible, to construct. Even now, some questions remain
about whether the current information-processing capabilities are sufficient. However,
few believe that current capabilities have reached their ultimate potential. In fact, these
capabilities continue to increase at an exponential rate, and their ultimate limits (if they
exist) are unknown.

Desire plus information-processing capability do not solve the problems, however. A
case in point is the development of an air traffic control system. The system currently
employed in the United States was developed in the 1970s and is long overdue for
replacement. Yet even given advancements in both computer and software technologies,
engineers and programmers have spent years and millions of dollars trying to provide
a replacement system. When will a new system be available? No one is really certain.

A key element in the implementation of these systems is the specification of the
control architecture that manages their operation. The complexity of these systems will
never permit the definition of a single monolithic controller that can manage the entire
system. Could a single controller ever manage a Fortune 500 corporation or the vehicular
traffic flow pattern for the Chicago metropolitan highway system? The overall control
requirements must be distributed within a control architecture. There is still another
major concern. In the real-time management setting, planning and control cannot be
addressed independently. That is, in the real-time environment, a controller cannot rely
upon another, separate planning entity to perform its planning. Each controller must
plan its own strategy, which it then implements.

Researchers have already recognized the need for integrated planning and control in
the real-time management of simple systems such as robotics and have developed a new
class of intelligent controllers. (The interested reader may refer to the annual Proceed-
ings of the IEEE International Symposium on Intelligent Control or the numerous other
control journals.) Significant advances have been made in the intelligent control tech-
nologies, but these results are not sufficient to address the emerging class of large-scale
discrete-event systems. The present technology for intelligent control addresses primar-
ily the management of a single subsystem only. The coordinated operation of more than
one subsystem has been considered only in a very limited sense. Most systems under
analysis are continuous state in nature (i.e., they can be modeled by differential equa-
tions), and there has only been minimal consideration of discrete-event systems.

The design, implementation, and real-time management of large-scale systems will
require the coordinated operation of numerous (mostly discrete-event) subsystems. This
coordinated approach will require that sophisticated intelligent controllers be defined for
each subsystem to address planning and control requirements in real time. Because every
intelligent controller must plan its own actions, each controller will be able to plan only
to the extent that it can implement. Furthermore, each controller's actions must also be
coordinated with the actions of the other intelligent controllers in order to provide a
coordinated response for the overall system. Because of the need for each subsystem to
interact with other subsystems, we refer to this emerging class of intelligent controllers
as coordinators.

Once an intelligent control (coordination) architecture is proposed, the consequences
on the overall system behavior must be tested before the system can be implemented.
That is, the response of the system must be simulated under a variety of operating sce-
narios. Unfortunately, today's simulation tools are not capable of modeling the interac-
tions among the controllers, and therefore, they cannot accurately access the constraints

13.2 EVOLUTION OF NEW SIMULATION MODELING APPROACHES 467

that a proposed control hierarchy imposes on operation of the system. In this respect,
the system designer cannot verify a proposed design before it is implemented. The con-
sequences derived from this limitation have already been experienced in the design and
operation of FMSs. Few, if any, FMSs have achieved their anticipated performance
goals, and many have operational defects, such as a tendency to deadlock. Mize et al.
(1992) have concluded that the current simulation tools should not be used to predict the
absolute performance characteristics of FMSs. Rather, their use should be restricted to
comparing the relative performance of alternative systems only. In short, Mize is saying
that current simulation tools cannot accurately predict the performance of this class of
systems.

Over the last decade, our research laboratory has had an opportunity to work with
several real-world FMSs. Our efforts to model these systems have uncovered several
deficiencies in the modeling approaches that are being employed by the current simu-
lation tools (see Davis et al., 1993). In the next section we attempt to describe these
deficiencies. We also define a new modeling approach that we believe can address these
deficiencies. In developing this modeling approach, we define a possible intelligent con-
trol architecture for managing these systems. We develop the functions that must be
addressed by each controller and demonstrate the evolving need for on-line simulation
analyses. An overview of the integrated solution approach for the modeling planning
and control of these systems which serves as the basis for this chapter will appear in
Davis, Macro and Setterdahl (1998).

On-line simulation is an evolving technology (see Chapter 21) for which there is cur-
rently minimal theoretical guidance. In Section 13.3 we contrast two types of planning:
off-line planning, which employs the current simulation technologies; and on-line plan-
ning, which requires on-line simulation analysis. Based on this discussion, several indi-
vidual facets of the on-line simulation approach are then discussed, and future research
requirements are outlined. In particular, we explore the nature of the advancements that
must be made in the areas of input analysis (Chapter 3), output analysis (Chapter 7),
experimental design (Chapter 6), optimization (Chapter 91, and validation and verifi-
cation (Chapter 10). The chapter ends with a brief description of our current research
efforts toward implementing on-line simulation analyses.

13.2 EVOLUTION OF NEW SIMULATION MODELING APPROACHES

To provide an illustrative example of a complex discrete event, in this section we focus
on modeling of a flexible manufacturing system (FMS). This section begins by describ-
ing a generic FMS using a conventional modeling approach. Then a more descriptive
model is formulated in order to demonstrate the limitations of the current modeling
approach. Next, an alternative modeling approach is proposed. Finally, using this new
modeling approach, we speculate on what future modeling capabilities exist for these
systems.

13.2.1 Observations Pertaining to the Capabilities of Conventional
Simulation Approaches

In Figure 13.1 we provide a schematic for a generic FMS within which job entities of
several part types are processed. For this generic FMS, we assume that there is an entry
mechanism that introduces the job entities into the system and an exit mechanism where

468 ON-LINE SIMULATION: NEED AND EVOLVING RESEARCH REQUIREMENTS

Station

Material
Handling
Svstem

Figure 13.1 Schematic diagram for a typical manufacturing cell.

Statmn
2 <

these depart from the system. The entry mechanism for most simulation models specifies
a probabilistic distribution for interarrival times between successive job entities. This
entry mechanism also assigns a given part type to the arriving job entity. Other attributes
pertaining to job entity can also be initialized. For example, the arrival time for the entity
is often recorded.

While the entity resides within the FMS, it will visit one or more of the four work-
stations included within the FMS. The stations that a given job entity will visit and the
order in which these visits will occur depend on the part type to which the job entity
belongs. Today, most simulation tools permit the modeler to specify the sequence of
stations that will be visited by each entity of a given part type. Typically, the definition
of the sequence requires that the modeler first specify a label for the sequence that cor-
responds to the part type. Then the modeler specifies the sequence of stations that will
be visited. For each station that is visited, the modeler may also be permitted to specify
a set of attribute values that will be assigned to an entity before it arrives at the next
station in its visitation sequence. Based on these observations, these sequences can be
viewed as a simplified specification for the process plan to manufacture a given part
tY Pe.

Once an entity arrives at a given station, it is typically placed into a queue at the
beginning of a subnetwork of nodes that the entity will traverse while it resides at the
station. Consider a typical station subnetwork as shown in Figure 13.2. After the entity
arrives at the station, it joins the initial queue, where it waits until an operator and the
machine become available. When both resources are available, a setup operation then
occurs with a duration equal to the value stored in the entity's SetupTime attribute.
The value of the entity's SetupTime attribute is typically initialized before the entity
arrives at the station using the specifications made within the sequence statement for
the part type to which the job entity belongs. After the setup operation is completed, the
operator could be freed and the actual processing would occur. This would be modeled
by a delay equal to the value stored in the entity's RunTime attribute. After this delay
occurs, the machine would be freed and the entity would join the output queue for the
workstation, where it would wait until the material handling system transfers the entity
to the next workstation.

Most modern simulation tools provide a significant capability for specifying the
material handling system's characteristics. These capabilities include options to model
transport systems such as automated guided vehicle systems or conveyors. Most sim-
ulation languages also include basic modeling elements which permit an entity that is

--- > <
Station

> 3

13.2 EVOLUTION OF NEW SIMULATION MODELING APPROACHES 469

RunTlme
Free

Figure 13.2 Example network for job entity flow within a workstation

waiting at a given station to request the services of the material handling system in
order to transport it from the current station where it resides to the next station in its
visitation sequence. When the entity gains access to the material handling system, the
station index, which is stored as one of the entity's attributes, is incremented to the next
station that is to be visited and the transporter then begins to transport the entity to that
next station. At the same time, the entity's attributes that are to be employed at the
next station, such as SetupTime and RunTime, are updated using the specifications for
the assignment of attribute values that were included by the modeler within the station
visitation sequence.

We have now reached a point where we can begin discussing the deficiencies of
the current modeling approaches. First, even though the discussed system is a flexible
manufacturing system, the modeler is typically limited to specifying a single visitation
sequence for each part type. That is, the modeler usually cannot specify alternative
sequences for the same part type. The reason for this limitation is that the decision
about what happens next is dependent on the current state of the entity and of the node
at which it resides.

As example of this limitation, consider the FMS discussed in Flanders and Davis
(1995). In this FMS, there were seven milling machines. Five of the milling machines
were dedicated to machining steel parts and the remaining two milling machines were
dedicated to machining aluminum parts. The tooling employed in the machining pro-
cesses was optimized so that any machine dedicated to a given material type (i.e., steel
or aluminum) could perform any required machining operation on any part of a given
material type. Each part typically required three distinct fixturings (i.e., mounting the
part on a fixture) to be employed. After a given part was fixtured, there was a choice
of either five milling machines if the part was steel, or two milling machines if the
part was aluminum, where the part could be assigned for machining. The decision to
which machine the part was to be assigned depended on the loading of all the machines
dedicated to machining the material type for the requesting part and the remaining tool
life for the tools that resided at a given machine. In this example there simply was no
way that the modeler could specify the requirements for assigning the part to a machine
using a station visitation sequence.

With current modeling technologies it is very difficult to manage the behavior of
the entity by considering the state of a given subsystem of nodes and the entities that
reside in those nodes. Simply stated, specifying the controllers that can make decisions
on what to do next is nearly impossible using current modeling technologies. Most
languages do permit the modeler to introduce programming patches that will allow more
complex routing logic to be considered, but employment of these patches usually makes
the model much more complex to debug and validate.

470 ON-LINE SIMULATION: NEED AND EVOLVING RESEARCH REQUIREMENTS

When the model includes a material handling system, the simulation tool employed
provides the controller for managing that material handling system. This controller is
typically coded within the simulation software and is not accessible to the modeler. What
the modeler provides is the specification for basic layout of the material handling system
and the points in the model where an entity can either access or egress from the material
handling system. While the entity is under the control of the material handling system,
the modeler has little or no access to the control logic that governs the behavior of the
entity. There are several situations where this limitation can be a significant problem.
One particular situation arose when we desired to manage the placement of entities on
a conveyor. Most simulation tools will simply place an entity on a conveyor whenever
the first conveyor position of sufficient width reaches the entity that is waiting to access
the conveyor. In certain cases it may be desirable if the conveyor position is not given
to first entity that is reached, as it may be more beneficial for the conveyor position to
be allocated to an entity that will be reached later.

The ability to model material handling is also limited by the types of material han-
dling devices provided by the simulation tool. Few, if any, simulation tools provide the
capability to model automated storage and retrieval systems. In fact, the capabilities
for modeling material handling systems within most current simulation tools will not
permit an entity to be stored within the material handling system. Rather, the modeling
capabilities are provided only as a means for transferring an entity from one location to
another while operating under the control logic provided by the vendor of the simulation
tool.

Now, let us assume that the generic FMS depicted in Figure 13.1 is dedicated to
machining discrete parts. Let us assume further that the system contains dedicated mate-
rial handling systems for both the job entities, representing parts to be machined, and the
tooling required to perform the machining at a given station. In the literature, few sim-
ulation models for FMSs of this complexity are discussed, yet most real-world flexible
manufacturing systems for discrete-part machining require some mechanism for deliv-
ering tools to the workstations. If one attempts to model an FMS of this complexity
using current simulation tools, he/she will immediately observe additional deficiencies
with these tools.

The first deficiency is that most current simulation tools are focused primarily on
modeling a single basic entity type. For most manufacturing applications, this is the
job entity. In the scenario proposed, there are two basic entity types arriving at a sta-
tion: jobs and tools. The desire to consider two types of entities will typically require
that the modeler write two sets of network logic for each station, one for the job entity
and one for a tool entity. When an entity arrives, the modeler must first test the entity's
attributes to determine what type of entity has arrived and then invoke the proper net-
work logic to handle that basic entity type. Second, the modeler must specify the order
in which a given tool will be used in the processing of a given part type at the given
station. The capabilities for specifying the station visitation sequences will not permit
this specification to be made. Again, the modeler will have to resort to programming
patches to store this more detailed processing information. Third, the flow of the job
entity along its dedicated station's subnetwork must be synchronized with the flow of
the tool entity along its subnetwork at the given station. That is, the overall run-time
delay for the job entity is dependent on the delays associated with loading each tool
into the machine spindle's chuck, executing the NC-machine code for cutting to be per-
formed with the tool, and finally, unloading the tool from the machine spindle's chuck.
Fourth, the modeler must provide a mechanism for modeling the systemwide tool man-

13.2 EVOLUTION OF NEW SIMULATION MODELING APPROACHES 471

agement system. Tools have a finite life, after which they must be replaced. In addition,
most real-world FMSs will permit the sharing of tools among machines. That is, the
tools represent resources that can be moved from one machine to another, depending on
where they are currently needed. Furthermore, a given tool can be used at several differ-
ent points in a given processing plan, and may also be used in several different process
plans. This implies that the tools can also be employed by more than one machine. In
fact, a goal in designing the collective set process plans for the parts to be manufactured
within a given cell is often to minimize the total number of tool types required to man-
ufacture entire set of part types within the cell. In general, tooling is very expensive.
Hence tool management is a critical concern, and its consequences upon the production
flow must be considered within the model.

To make the foregoing deficiencies more concrete, consider the schematic for a
generic automated machining workstation depicted in Figure 13.3. This automated
workstation is comprised of several processes each with its own controller. The overall
coordination of the actions occurring within the workstation is managed by the worksta-
tion controller. When a job entity arrives at the machining workstation, the workstation
controller issues two commands to separate processes. First, it tells the part carousel
to move an empty storage position to a location where the incoming job entity can be
stored. It then tells the part loader to remove the part from the material handling sys-
tem and place it on the empty part storage position. A similar situation occurs when an
incoming tool entity arrives at the workstation. Parts and tools can be returned to their
respective material handling systems at the FMS's cell level by reversing the procedure.

When a job entity is to be processed, the part carousel is first instructed to position
the job entity at a location so that it can be loaded into the work area using the part
exchanger. The part exchanger is then instructed to load the job entity into the machine's
work area. After the processing plan has been downloaded into the station controller and
after the location of the part within the work area has been calibrated (which represents

Tool Tool

Tool
Spindle

Mechanism

Exchanger Loader

Ffl@' Table

' n b a r t Exchanger &4

Storage
,,/-/:;tion * c:::e1 O@

Part w Loader

Figure 13.3 Schematic for a typical automated workstation with a discrete-machining FMS.

472 ON-LINE SIMULATION: NEED AND EVOLVING RESEARCH REQUIREMENTS

an element of the set up procedure), the workstation controller rotates the tool carousel
lo the position that will permit the first tool to be employed in the process plan to be
loaded into the tool mechanism by the tool exchanger. The NC-machining instructions
to be implemented with that tool are then downloaded into the controller that manages
the worktable and tool spindle mechanism. After this instruction is executed, the tool
exchanger is instructed to remove the current tool from the spindle and to return it
to a given position on the tool carousel. The next tool is then loaded into the spindle
mechanism and the process is repeated.

After all the processing steps have been implemented for the given job entity, the
part exchanger is then instructed to remove the job entity from the work area into a
given position on the part carousel. The workstation controller then notifies the cell
controller within the FMS that the job entity has finished its assigned processing at the
given station and that the job entity is now ready for removal from the station.

It should be noted that several tasks can occur concurrently at the workstation. For
example, both a tool and a part can be loaded into the workstation while another part is
being processed in the work area. In addition, there can be contention for a processes.
For example, a tool loading and tool exchange both require access to the tool carousel.
In short, the workstation controller must perform real-time planning in order to schedule
the order in which pending tasks will be implemented.

Although the schematic for the workstation is fairly simple, its complexity cannot be
modeled by most simulation languages. First, there are no provisions for modeling the
workstation controller that is managing the individual processes within the workstation.
Second, there are no modeling mechanisms for handling the sequence of tools required
in a given processing plan for a given part type residing at the workstation. Third,
there are no mechanisms for modeling the carousels. Recall that programming elements
provided by most simulation languages will not permit the storage of entities within the
material handling system.

The operations of the processes for the generic workstation are nevertheless discrete-
event in nature. These discrete events represent the start and finish events associated with
the execution of each task at a given process. Furthermore, the duration of most of these
tasks is nearly deterministic. For automated equipment we can typically compute the
time required to move a carousel from one location to another with very high accuracy.
Similarly, we can typically compute the time required to implement a segment of a
machine's NC code within a few milliseconds.

However, we cannot model the dynamics of this generic workstation today with con-
ventional simulation languages and we certainly cannot incorporate its dynamics into the
model for the overall FMS. Instead, we ignore the internal dynamics of the workstation
and make probabilistic approximations for the time that will be required to implement
any given aggregate processing task, such as those illustrated in Figure 13.2. Perhaps
this modeling approach is acceptable when we are attempting to make steady-state esti-
mates for the system performance, but it simply is not sufficiently accurate when we
must address on-line planning and control concerns.

Even the use of this current modeling approach in order to make steady-state approx-
imations is suspect. As stated earlier, most simulation models of FMSs ignore the flows
of presumed secondary entities, such as tooling, fixturing, and even processing infor-
mation. This assumption to ignore the flow of secondary entities is valid only if these
flows do not represent a constraint on the overall system performance. Yet in numerous
cases where we have modeled real-world discrete-part machining FMSs, the assump-
tion to ignore the flow of secondary entities has not been valid. In every case the flow

13.2 EVOLUTION OF NEW SIMULATION MODELING APPROACHES 473

of the presumed secondary resources has imposed a significant constraint on the over-
all production flow (see Hedlund et al., 1990; Dullum and Davis, 1992; Flanders and
Davis, 1995).

Additionally, when we have used detailed models to develop statistical estimates of the
steady-state performance of an FMS and compared them to the state-state estimates asso-
ciated with simplified models employing the conventional modeling approach, we have
discovered that the steady-state estimates are not the same. Invariably, the approximate
model significantly overestimates the projected performance of the system. This obser-
vation confirms the statement made by Mize et al. (1992), which concluded that current
simulation tools should not be used to project the absolute performance of a FMS. Their
observations also confirm another finding that we have made in our interaction with real-
world FMSs. To date, we have not found an operational FMS that has achieved the perfor-
mance projections based on its preliminary simulation analysis. This fact may be a major
reason for manufacturers' current disinterest, if not distrust, of FMSs.

Finally, the development of steady-state performance statistics for a FMS is an oxy-
moron. If we are to operate the system in a flexible manner, a steady-state operation
condition can never be achieved. In short, we are trying to estimate statistics for a
situation that can never occur. This situation within a flexible manufacturing scenario
must be contrasted against that of the assembly line. For an assembly line, steady-state
operating conditions can be specified, and here it makes sense to estimate steady-state
performance.

13.2.2 Toward a New Modeling Approach

In Figure 13.4 we attempt to summarize the interaction among subsystems and the flow
of entities that arise in the operation of an FMS. In this figure we have established
two basic flow planes for the interactions among the controllers that are managing the
system. The vertical plane deals with the controller interactions associated with the flow
of job entities; the horizontal plane addresses the flow of tool entities. For each entity
type, we have indicated the basic controllers that are involved, including the cell-level
and machine-level controllers for both the material handling and tool handling systems.
When a job entity anives at the station, it is initially under the control of the cell material
handling system (MHS). When the workstation accepts control of the job entity at its
arrival event (A), the control of that entity is passed from the cell controller to the
workstation controller and then to the machining station's material handling system.
The control of the entity remains there until the processing of the job entity is initiated.
At that point, the control of the entity is returned to workstation and the start job (S J)
event occurs. After the station controller downloads its basic task instructions to the
process controller, the start task (ST) event occurs and the process controller assumes
control of the job entity.

Arrival events also occur for tools, at which point control of the tool is passed from
the cell tool handling system (THS) to the machining station THS via the cell and the
workstation controllers. The control of the tool remains with the station THS until it
is needed to execute a processing instruction. When this occurs the tool is loaded into
the process, and the process controller assumes control of the tool entity. At this point,
a start instruction (S,) occurs. After each instruction is completed, a finish instruction
event occurs (F,), and control of the tool is returned to the station THS when it is
removed from the machine's spindle. This process is repeated for all the remaining tools
that are needed to complete the set of processing instructions within a processing task.

474 ON-LINE SIMULATION: NEED AND EVOLVING RESEARCH REQUIREMENTS

Figure 13.4 Coordination of entity flows with controller interactions.

After all the instructions within a task are completed, a finish task (F T) event occurs.
At this point, the control of the job entity is returned through the station controller
to the station's MHS. However, since the processing on this job entity is completed,
the control of the job disposition is actually returned to the cell controller, which then
passes that control to the cell MHS, which then schedules its pickup (P) event. When
the pickup event occurs, the cell MHS takes physical control of the job entity. The cell
MHS is then instructed by the cell controller to deliver the job entity to the next station.
This task assignment will lead to the next amval event at the next station that is to be
visited by the job entity. The tool entities may become worn or no longer needed at a
given workstation. To this end, pickup events occur for tools also.

In reality, Figure 13.4 represents a significant simplification of the real-world sce-
nario. There are many more entity-type planes that could be considered. For example,

13.2 EVOLUTION OF NEW SIMULATION MODELING APPROACHES 475

we could provide a plane for the flow of task description (i.e., process plans) informa-
tion. We have already encountered FMSs where it can take several minutes to download
the detailed processing information to a given workstation.

Despite this simplification, however, we can make several important generalizations
based on this figure. First, the events associated with the operation of these systems
actually represent moments in time where controllers interact. Second, when controllers
interact, there is typically a reassignment of an entity's ownership from one controller
to another. While a controller has ownership of an entity, typically one or more tasks
will be assigned to the controller for implementation upon or with the entity by the
controller's supervisor. After the execution of assigned tasks has been completed, the
physical control of the entity remains with the subordinate controller to which the task
was assigned, but the control for the disposition of the entity is returned to the supervi-
sor, who may then ask the subordinate to perform another task on the entity or arrange
the necessary material handling tasks which will allow the subordinate controller to
return the physical entity to the supervisor when the resulting pickup event occurs.

Based on this discussion, we can now define three sets of commands that a supervi-
sory control can provide to a subordinate controller. The first command is for the sub-
ordinate to accept an entity into its control domain. The second is for the subordinate to
perform one or more tasks upon or with an entity within its control domain. The third
command is for the subordinate to return an entity or remove it from its control domain.
Using the principle of feedback control, each of these commands will require that the
subordinate controller provide the supervisory controller a feedback response in order
to update the supervisor about the subordinate's success in fulfilling the requirements
of the command.

By now it is certainly clear that we must model the interactions among the controllers
that are managing these complex discrete-event systems in order to accurately portray
the state evolution interactions. Yet the modeling elements provided by the current sim-
ulation tools do not permit us to address these controller interactions. Rather, we must
seek a new modeling element, template if you like, which will permit the modeler to
decompose the overall system into a hierarchical collection of subsystems where each
subsystem will be managed by an intelligent controller. This hierarchical architecture
assumes that the intelligent controller within a given subsystem will have a supervisory
controller that assigns tasks to it. The intelligent controller for the subsystem will also
serve as the supervisory controller to the intelligent controllers for the subsystems that
reside within the considered subsystem.

Based on the observation that a given subsystem can be contained within another
supersystem and that the given subsystem itself can contain internal subsystems, the
desire is to develop the subsystem modeling template such that it can be recursively
employed in order to define the necessary levels of hierarchical subsystems that are
needed to model the overall system. This template now exists. The first formulation of
this modeling template was developed in collaboration with Motorola Corporation and
published in Tirpak et al. (1992a). Since its original publication, the modeling template
has been further generalized and is now termed the coordinated object. The schematic
for the coordinated object is depicted in Figure 13.5.

Let us first compare this new modeling template to the structure of the generic FMS
pictured in Figure 13.1. In Figure 13.1 the generic FMS has an entry mechanism. In Fig-
ure 13.5 the coordinated object has an input inhibit flag and input queue. The input port
through which the entity enters the coordinated object belongs to the coordinated object's
supervisor and has not been included in Figure 13.5. When an entity arrives at a given

476 ON-LINE SIMULATION: NEED AND EVOLVING RESEARCH REQUIREMENTS

subsystem feedback information

*
INTERFACING
SUBSYSTEMS

Output Queue V,

: : : : ASSIGNOR j j j j.+ 5

Control Law 2.

J

assigned tasks with i k e d k k h

completion times information

Figure 13.5 Schematic of the coordinated object: basic module for planning and control.

coordinated object, it is still under the physical control of the supervisor and resides in
the input port. The supervisor of the coordinated object then instructs the controller within
the coordinated object to accept the entity into its control domain. After the coordinated
object's controller accepts the entity into its control domain, the entity then joins the input
queue, which belongs to the coordinated object. The input inhibit flag is also controlled by
the coordinated object's controller. It can prevent entities from entering the coordinated
object. Its inhibiting actions can be comprehensive or selective. For example, if a given
processing subsystem within the coordinated object is inoperative, the coordinated object
may prevent any entity requiring the services of that processing subsystem from entering
the coordinated object. On the other hand, if the input queue is full, the coordinated object
may prevent any other entity from entering the system.

In Figure 13.1 there is also an output mechanism for entities exiting the FMS. The
coordinated object contains an output port, an output inhibit flag, and an output queue.
The output port belongs to the coordinated object. When a coordinated object finishes
its assigned tasks upon a given entity, it is placed into the output port and the supervisor
is notified. When the supervisor requests that the entity be returned, the entity joins the
output queue, which belongs to the supervisor. The supervisor also manages the output
inhibit flag, which can prevent entities from being returned to it.

13.2 EVOLUTION OF NEW SIMULATION MODELING APPROACHES 477

An inspection inside the coordinated object indicates that it possesses N processing
subsystems. These correspond to the workstations in Figure 13.1 and represent sub-
systems (processes) where processing tasks will be executed. The coordinated object
also contains interfacing subsystems. The material handling system included in Figure
13.1 represents one type of interfacing subsystem. The interfacing subsystems perform
tasks that support the production, such as transporting entities. The distinction between
interfacing and processing subsystem will be further delineated shortly.

An important feature of the coordinated object is that the intelligent controller man-
aging the collection of subsystems within the coordinated object is included as a critical
element of the coordinated object. The intelligent controller is responsible for accepting
tasks to be performed on or with entities within its control domain from its supervisory
controller. These tasks are then decomposed into a set of subtasks that can be executed at
the subsystems. When these subtasks are defined, the intelligent controller must sched-
ule the execution of each subtask at one of its subordinate subsystems. These subtasks
are then assigned to the intelligent controller within each subsystem after the entities
are moved into the appropriate subsystem's control domain.

The overall specification of the tasks that can be executed by the processing subsys-
tems is contained within the process plan database for the part type of the entity upon
which a processing task is defined. The process plans are thus employed to decompose
the tasks that have been assigned to the coordinated object into subtasks that can be
scheduled for execution at its subordinate processing subsystems. However, the execu-
tion of processing tasks at a processing subsystem usually requires that the entity, as well
as other entities that support its execution such as tooling, be delivered to the assigned
processing subsystem's control domain. To implement the basic processing subtasks,
additional supporting subtasks must be defined that will be executed by the interfacing
subsystems. The task descriptions for executing the supporting tasks are typically not
dependent on the information contained within the processing plan. Rather, the manner
in which an interfacing subsystem will execute a task is already known by the con-
troller. For example, the material handling system will typically move any job entity,
regardless of its part type, from one location to another using the same basic instruction
set. The same situation is true for the tool handling system in its delivery of tools. The
local area network also transfers information contained within the detailed processing
plan from the cell controller to a workstation controller. All of these subsystems are
interfacing subsystems.

As stated before, it is our desire to employ our modeling template recursively, the
coordinated object, in a manner that will permit us to detine the complete hierarchi-
cal control architecture for the system. To understand this approach, consider now a
workstation in Figure 13.1 which represents a processing subsystem within our cell-
level coordinated object. Using the schematic of a generic machining workstation as
pictured in Figure 13.3, we continue our decomposition using the coordinated object
template. First, the workstation is also a coordinated object. Let us assume that it con-
tains a single processing subsystem that includes the worktable and machine spindle and
two workstation-level interfacing subsystems: the workstation material handling system
and the workstation tool handling system. All three of these subsystems are also coor-
dinated objects. The station-level processing subsystem contains a single controller that
coordinates the individual controllers that are managing the worktable and the machine
spindle. The last individual process controllers are not coordinated objects because they
do not have any subordinate subsystems. The station-level material handling system is
also a coordinated object that manages the individual controllers for the part carousel,

478 ON-LINE SIMULATION: NEED AND EVOLVING RESEARCH REQUIREMENTS

part loader, and part exchanger. Similarly, the station-level tool handling system is a
coordinated object whose controller manages the tool carousel, the tool loader, and the
tool exchanger.

As we have recursively applied our modeling template, the coordinated object, to
the generic cell in Figure 13.1 and the automated machining station in Figure 13.3, we
now see that at least four levels of hierarchical control have emerged. At the lowest
level of this hierarchy are the basic processes that execute the basic primitive tasks
resulting from the overall task decomposition process. For example, the worktable may
be instructed to move to a given x-y position while traversing along a specified trajec-
tory while the machine spindle process may be instructed to rotate with a given angu-
lar velocity. At the higher levels, the intelligent controller is performing the necessary
planning, which eventually results in the primitive tasks that are being executed at the
lowest-level processes.

We call the resulting control hierarchy, the recursive object-oriented coordination
hierarchy (ROOCH). The development of the ROOCH for the overall system results in
two important specifications. First, it specifies a set of hierarchically nested subsystems,
which includes every process contained within the overall system. Second, it specifies
the controller for each subsystem and delineates for each controller a controller that will
serve as its supervisor and the controllers that are its subordinates.

With respect to system dynamics for the overall system modeled under the ROOCH
paradigm, there are two essential sets of dynamics to be considered. First, there are
the dynamics associated with the entities moving through the system. Second, there is
the task decomposition and execution process, which results from interactions among
the controllers. Current simulation tools focus on modeling the first set of dynamics
while ignoring the second set of dynamics entirely. It is our contention, however, that
the first set of dynamics, the movement of entities, is entirely dependent on the second
set of dynamics resulting from the controller interactions. Therefore, we believe that to
model effectively a complex discrete-event system such as an FMS operating under a
sophisticated control architecture, we must focus on modeling the interactions among
the intelligent controllers.

The development of the specifications for the functional operations of the intelligent
controllers as they interact with each other is still in its infancy. We are now researching
these architectures in our Manufacturing Systems Laboratory. Similar research is being
conducted by the Intelligent Systems Division at the National Institute of Standards
and Technology (see Albus and Meystell, 1995). We can, however, discuss the basic
functionality that must be addressed by this controller. In Figure 13.6 the intelligent
controller has been decomposed into four basic functional elements. The Task Acceptor
is responsible for interacting with its supervisor's Task Assignor in order to accept
new tasks that will be executed within the coordinated object. One element of the task
acceptance process is the determination of a time for the completion of the assigned task.
This completion time represents the time at which the supervisor will regain control of
the entity upon which new task(s) will be performed.

The Planner has several responsibilities. First, it must decompose the assigned tasks
into subtasks that can be implemented at its subordinate processing subsystems. Sec-
ond, it must also define the subtasks that must be executed by the interfacing subsystems
in order to support the execution of the processing subtasks at the processing subsys-
tems. Next, it must assign a subordinate subsystem to execute each subtask. Finally, it
must schedule when an assigned subtask will be executed at the subordinate subsystem.
Recall, however, that planning can also occur at the subordinate subsystem, which may

13.2 EVOLUTION OF NEW SIMULATION MODELING APPROACHES 479

Supcr~ ISW'S
Tash

Ass~gnor

Cell Borrndnrv

Response to Requestcd or
iueries 1 i Assird Tasks

Task
Acceptor I- - -4

Accepted Task with
I

Completion Dates

Performance

i
Implicit or Explicit

Task Assignment Policy

0

Task

I (Cellllyorksmtion
Boundary

I Subsystems'
Task I

Acceptors u
Figure 13.6 Schematic for one possible realization of an intelligent controller.

also possess an intelligent controller. Therefore, a given intelligent controller can plan
only to the extent that it can implement and must rely on subordinates to plan for the
execution of tasks that it cannot implement. Hence, the planning executed by the Plan-
ner within a given intelligent controller is by its very nature imprecise. Any schedule
that it develops for completing its assigned tasks cannot be fully specified. To this end,
we must rely on the principle of feedback control in order to permit the controller to
update its schedule based on feedback information reported by its subordinate subsys-

480 ON-LINE SIMULATION: NEED AND EVOLVING RESEARCH REQUIREMENTS

tems as they implement their currently assigned tasks. For the required feedback control
to occur, the schedule developed by the Planner must be converted into a control law
that will permit the schedule to be updated based on feedback information received from
the coordinated object's subordinate subsystems while they are executing their assigned
tasks.

The Task Assignor employs the current control law to assign tasks to its subordinate
subsystems. The assignment process requires the Task Assignor to interact with the Task
Acceptor within the subordinate subsystem where a given task is to be assigned. The
outcome of this process is the assignment of the task to the subordinate subsystem and
a negotiated completion time at which the control of the entity will be returned to the
Task Assignor.

The Task Assignor is also responsible for collecting feedback information from each
of the subordinate subsystems and organizing the information in order to describe the
current state of the collective set of subsystems. The feedback information will contain
not only the subordinate subsystems' current state, but will also provide an estimate
of the subsystems' future performance in executing the tasks that have already been
assigned to them. Please note that to insure continuous activity at the subordinate sub-
system level, there must be planning for future tasks as well as control of the tasks that
are currently being executed.

Once the current state information is collected, the Task Assignor then employs this
information to project the overall behavior of the coordinated object while it operates
under the control law that has been selected by the Planner. This projected performance
for the coordinated object is then transmitted to the remaining functions within the intel-
ligent controller and to the Task Assignor within the supervisor's intelligent controller.
The Planner employs the projected response for the coordinated object operating under
the currently selected control law as a standard against which the performance of alter-
native control laws are to be compared. If an alternative control law is demonstrated
to provide better performance than the control law that is being implemented, the new
control law will be submitted to the Task Assignor for implementation.

The Task Acceptor employs the projected response for the coordinated object in
order to provide a nominal system trajectory which it uses to negotiate the operational
constraints such as the projected completion date for new tasks with its supervisor's
Task Assignor. The System Identifier uses this projected trajectory to update its model
of the coordinated object as it interacts with its subordinate subsystems. We assume that
these subsystems will be time variant and that the need to update subsystem models is
constant.

The supervisor's Task Assignor uses the projected system 'trajectory for the coor-
dinated object in a manner that is similar to the manner in which the Task Assignor
employs the feedback information from its subordinate subsystems. In fact, the corre-
sponding behavior for each element in the supervisor's intelligent controller is similar to
that of the corresponding function within the coordinated object's intelligent controller.
If a subordinate subsystem is also a coordinated object, its intelligent controller's func-
tion also addresses similar responsibilities. Such is the beauty of recursion.

Although we do not discuss the detailed operation of each function within the intel-
ligent controller, it is clear that most of these functions must be able to predict the effect
of their functional responsibilities on the operation of the system. It is evident, based on
the complexity of these systems, that the future system trajectory cannot be described
analytically. Simulation will be essential. However, the required simulation analysis is
significantly different from the conventional off-line simulations that most simulation

13.2 EVOLUTION OF NEW SIMULATION MODELING APPROACHES 481

practitioners consider. These simulation analyses must consider the current state of the
involved systems. The analysis must be performed in real time. In fact, the simulations
themselves must be performed much faster than real time in order to provide sufficient
simulation trials for the real-time analysis. We term this form of simulation analysis
on-line analysis. We discuss on-line analysis extensively in the next section.

13.2.3 Toward New Simulation Capabilities

Using the recursive object-oriented coordination hierarchy (ROOCH), we have devel-
oped-a new simulation language called the hierarchical object-oriented programmable
logic simulator (HOOPLS). A HOOPLS-based model of a FMS consists of four primary
frames. The first simulation frame is the model frame, which contains the specifications
for the ROOCH associated with the FMS modeled.

The second simulation frame is the control frame, which provides for the exhaus-
tive definition of the control messages that will be issued or received by each controller
contained within the ROOCH. hec control frame also defines the state transition mecha-
nisms which are executed on the receipt of a control message and the subsequent control
message(s) that will be issued. Specification of these control messages and state tran-
sition mechanisms is a challenging but essential task. Given that HOOPLS explicitly
models the interaction among the controllers within the ROOCH and considers the flow
of all entities to be a consequence of these interactions, HOOPLS has abandoned the use
of a traditional event calendar. Instead, HOOPLS employs a message relay which stores
the control messages that will be passed among the controllers and orders them chrono-
logically, based on their delivery times. Each control message designates the controller
that issued the message, the recipient controller for the message, the message content,
and the scheduled time delay until delivery. The message relay is responsible for deliv-
ering the control message to the recipient controller at the appropriate simulated time.
It is obvious that the prescribed operation of the message relay physically mimics the
communication network that links the controllers in an actual FMS.

The third simulation frame in the HOOPLS-based model is the processing plan
frame. The processing plan details not only which manufacturing processes will be
required, and in which order, but also details which supporting resources (e.g., tool-
ing) will be required, and for what duration in order to complete a processing task.

The fourth simulation frame is the experiment frame, which specifies the experimen-
tal parameters governing the simulation study. HOOPLS expands the requirement for
the experiment frame, however, by requiring that it include extensive capabilities for
initializing the simulation to a known system state. The need for this provision will be
explained in Section 13.3. However, its needs has already been recognized when we
discussed the four basic functions that are contained within the intelligent controller.

The specifications for the HOOPLS language are currently under development.
Before finalizing these specifications, we hope to model a wide variety of flexible man-
ufacturing environments and to expand the scope of applicability for the proposed lan-
guage to the modeling of other classes of discrete-event systems.

To demonstrate the descriptive power of HOOPLS-based modeling approach, we
will now discuss a recent application of HOOPLS to develop a real-time emulator (we
discuss this term shortly), for the Rapid Acquisition of Manufactured Parts (RAMP)
FMS, operated by the Department of Defense. The RAMP FMSs (there are several
configurations) were developed by the U.S. Department of Defense's Flexible Com-
puter Integrated Manufacturing program as a means for manufacturing spare parts for

482 ON-LINE SIMULATION: NEED AND EVOLVING RESEARCH REQUIREMENTS

I I Kining

I I INPUT ._

r-------
I

I

I Testing I
I

I ,----J
I I

I
I

Imspeetionl
I

Rework I
I

Figure 13.7 Schematic layout for the RAMP FMS for manufacturing circuit boards.

defense systems in small lot sizes. (See Davis et al., 1994.) As a collection, these FMSs
are some of the most complex manufacturing systems that our research laboratory has
encountered. The particular RAMP being considered here has been designed to manu-
facture replacement circuit boards using through-the-hole assembly technologies where
the component leads are actually inserted into holes contained on the circuit board. A

13.2 EVOLUTION OF NEW SIMULATION MODELING APPROACHES 483

Improvement

Cell Coordrnator

1 G e l / M a t e d Handling SVn--Automated Storqe and Retrieval System & Conveyors

Figure 13.8 ROOCH for the RAMP FMS.

schematic for the this RAMP FMS is provided in Figure 13.7. The ROOCH developed
for modeling this system is given in Figure 13.8.

In Table 13.1 we provide a basic description for the functions that are being
addressed at each of its included workstations. In Table 13.2 we provide a list of the
controllers that are managing this system. The reader will note that human beings per-
form a significant portion of the manufacturing responsibility. We have separated these
controllers into three classes. A coordinate node indicates a controller within a coor-
dinated object. Coordinate nodes in this case are defined at the RAMP cell level, at
each workstation, and at the central automated storage and retrieval system (AS/RS),
which is the primary material handler at the cell level. A unit process node represents
a controller at a basic process that can implement a processing task. A transport pro-
cess node represents a controller at a basic process that can implement a transport task.
There are over 70 controllers in this system. In fact, the AS/RS system alone contains
3 1 controllers.

Numerous types of entities flow through this system. In fact, a given job entity for a
given part type must be further delineated into several different entity types during its
production process. Figure 13.9 provides a more detailed schematic for the manufactur-
ing process. All the parts needed to assemble an order of a given board type arrive in
an order kit tote at the kitting station. The bare printed circuit boards are placed into a
bare-board tote. Each of the smaller components to be mounted on the board is placed
into a part carousel, which is then placed into part tote. If needed, several part totes can
be generated for a given order. The larger parts are placed into either a mechanical parts
tote or a post-solder assembly tote, depending on whether they are placed on the board
before or after wave soldering occurs. All of these totes are then returned to the AS/RS.
At the board fixturing station, the bare boards in the bare-board tote will be individ-
ually placed into a fixture, and each fixtured board will be placed into an individual
fixtured board tote. As indicated in Figure 13.8, various totes containing different types
of parts for each job entity are needed at various stations. Based on this discussion, it
is obviously impossible to model a job as a single entity moving through the system.

484 ON-LINE SIMULATION: NEED AND EVOLVING RESEARCH REQUIREMENTS

TABLE 13.1 Processing Steps and Entity Flow for Production in the RAMP FMS

Kitting: Generate the various parts' kits associated with the production order.
Input: KIT tote containing all components for the order
Output: Bare board tote containing up to 10 boards

Pre-solder assembly tote(s) holding parts to be mounted before soldering
Post-solder assembly tote holding parts to be mounted after soldering
Mechanical tote containing large mechanical parts such as transformers

Board preparation: Place board into fixture.
Input: Bare-board tote with bare boards
Output: One-pallet tote for each fixtured board

Component preparation: Bend and tin the leads for the components.
Input: Pre-solder assembly tote(s) and post-solder tote
Output: Same

Pre-solder assembly: Place components on board prior to solder.
Input: Pre-solder assembly tote(s) and all pallet totes for given order
Output: Same

Pre-solder inspect: Check board prior to wave soldering.
Input: Pallet totes for order and pre-solder assembly tote(s) if rework is needed
Output: Same

Wave solder and clean
Input: All pallet totes associated with order.
Output: Same

Post-solder assembly: Mount smaller parts after wave soldering.
Input: All pallet totes associated with order and post-solder assembly tote
Output: Same

Post-solder inspection
Input: All pallet totes and pre- and post-solder assembly totes if reworked
Output: Same

Mechanical assembly: Remove board from fixture and mount larger mechanical parts.
Input: All pallet totes for order and mechanical part tote
Output: Printed wiring assembly tote for each board and mechanical part tote

Test: Perform bed-of-nails fixture test and burn-in test.
Input: Printed wiring assembly totes for job and various part totes if reworked
Output: Same

Confirma1 coat: Apply protective coating to board.
Input: Printed wiring assembly totes for order
Output: Same

Final quali@ control and inspection: Pack boards for shipping. Remove remaining parts.
Input: Post-wiring assembly totes for order and various part totes
Output: Packaged boards and unused parts.

Note: The operator is required to remove parts from, and place parts into, the totes at each processing station.
The totes come in two sizes-tall and short. The ASRS has six levels of storage, with each level capable of
holding 96 tall totes and 96 short totes.

There are also numerous supporting resources which are employed during the pro-
duction processes that must be tracked. For example, there are numerous types of totes.
In fact, there are nearly 1200 totes of different types that must be constantly tracked
within the system. There are also various fixtures that must be tracked. Some of these
fixtures are used to hold the boards and are stored with a fixtured board tote. Other
are used during testing operations. The human operators in this system are also cross-
trained. In fact, each operator has his or her own unique qualifications. During the oper-

13.2 EVOLUTION OF NEW SIMULATION MODELING APPROACHES 485

TABLE 13.2 Controllers in the RAMP FMS

Cell Controller (Coordinate Node)
Subordinate controllers:

Kitting station controller (coordinate node)
Subordinate Controllers:

Processor: human operator (unit process node)
Material handling controller: human operator (transport process node)

Board preparation controller (coordinate node)
Subordinate controllers:

Processor: human operator (unit process node)
Material handling controller: human operator (transport process node)

Component preparation controller (coordinate node)
Subordinate controllers:

Processor: human operator (unit process node)
Material handling controller: human operator
Part carousel controller (transport process node)
Tinning robot controller (unit process node)

Pre-solder assembly controller (coordinate node)
Subordinate controllers:

Processor: human operator (unit process node)
Material handling controller: human operator
Part carousel controller (transport process node)
Part location indicator controller (unit process node)

Test facility controller (coordinate node)
Subordinate controllers:

Processor: human operator (unit process node)
Material handling controller: Human Operator (transport process node)
Burn-in test controller (unit process node)
Conductivity test controller (unit process node)

Inspection/rework controller (coordinate node)
Similar to board preparation

Mechanical assembly controller (coordinate node)
Similar to board preparation

Conformal coat controller (coordinate node)
Similar to board preparation

Quality and packaging controller (coordinate node)
Similar to board preparation

Wave solder and clean controller (coordinate node)
Similar to board preparation

Automated storage and retrieval aystem controller (coordinate node)
Subordinate controllers:

Storage layer controller (6) (transport process node)
Inserter/extractor controller (5) (transport process node)
Station input/output conveyors controllers (20) (transport process node)

ation, these operators will be assigned to the station where their services are best needed.
The Department of Defense did attempt to construct a simulation model of this facil-
ity and was unsuccessful. The contractor who performed the simulation should not be
blamed, however. It is our contention that it is simply impossible to model this system
using conventional tools.

Under a small contract, our laboratory undertook the challenge of modeling this sys-

486 ON-LINE SIMULATION: NEED AND EVOLVING RESEARCH REQUIREMENTS

I C PRE-SOLDER AS=

... 4
BRD I

.
PWA I

: (A)
: CONFORMAL COAT

W V 4
C

v W

F17CrrAL QCiPACKWG

........ 4 4.. 4A 4
I PRA i I PRB , I PSI' I I MCH : PWA I

Figure 13.9 Process/resource flow diagram for circuit board production in the RAMP FMS.

13.2 EVOLUTION OF NEW SIMULATION MODELING APPROACHES 487

tem using the HOOPLS paradigm. Given the size of the contract, we were forced to
employ the services of two undergraduate students in computer science who had no prior
knowledge of simulation. We chose to program the model in C++. Instead of developing
a standard simulation model for the RAMP FMS, however, we elected to demonstrate
the additional capabilities that a HOOPLS-based model could provide. To this end we
set out to construct a real-time emulation for this RAMP FMS.

Under the HOOPLS paradigm, we programmed the control logic for each controller
in C++. We next developed our own messaging service that would permit these con-
trollers to be distributed across the Internet. Using this messaging service, each control
object communicated with the other control objects over the Internet. That is, when
one controller desired to send a message to another controller, it sent the message to
the messaging service, which then forwarded the message to the Internet IP address
where the recipient controller object resided.

For each controller, we also developed a detailed controller window which displayed
the real-time state information for the subsystem being managed by that controller.
However, each controller and its control window were retained as distinct programmed
objects. The control window objects were programmed as Java applets. This feature
permits the real-time emulation to be viewed at any site on the World-Wide Web using
a standard webbrowser. What evolved was real-time emulation capability for the RAMP
FMS that could be virtually viewed from anywhere on the World-Wide Web.

The real-time emulation operates in the following manner. First, the controller objects
for each controller contained within the RAMP FMS are assigned to a given computer
whose IP address is registered with the message service. After all the locations of all
the controllers are known, the emulation can begin. The message service is responsible
for maintaining the real-time clock that is to be employed by all the control objects. At
each second, it sends a time message to each emulated control object so that the overall
actions of entire collection is synchronized to a single clock. This feature also permits
the emulation to operate faster or slower than real time by employing time scaling at
the messaging service object. In the future, the viewer of the emulator will be able to
speed up the emulation when he or she desires to move quickly through a given phase
of the system's operation or slow the emulation down when the system behavior is to
be observed in minute detail.

Each control object is responsible for managing the events that occur within its
domain. Events are delayed from occurring until the real-time moment that they are
scheduled to occur. When an event occurs, one or more message may need to be sent
to another controller. These messages are then first sent to the message service and
then forwarded to the recipient controller. Upon receiving the message, the recipient
controller makes the appropriate state transitions and schedules when future events (or
control messages) will be transmitted to other controllers.

The control window's object is distinct from the controller object and can be exe-
cuted upon different computers. The entire ensemble of controller window objects are
typically bundled into a single Java applet which can be downloaded to any computer
with a web browser. When the control window's Java applet is executed, it first reg-
isters itself with the messaging service. At this point a control window for the overall
cell controller is presented on the screen. The contents of this window are very simi-
lar to the standard animation for a FMS depicting entities flowing through the various
stations. When the control window applet has registered itself with the message ser-
vice, the message service requests that the emulated control object start sending updated
state information at each second interval. The messaging service then forwards this state

488 ON-LINE SIMULATION: NEED AND EVOLVING R E S E A R C H REQUIREMENTS

information with the current time stamp to the requesting control window applet. The
control window applet then updates the contents within the control window to reflect
the new state information with each state information update that it receives from the
messaging service.

The remote viewer of the control window can select any element within the cell
controller window in order to access more detailed state information for that subsystem.
When the user selects a given subsystem, another control window applet is opened
and the message service is requested to start sending detailed state information for that
subsystem. Note that windows for several subsystems can be open simultaneously at one
viewing site. It is also possible that several individuals can view the real-time emulation
form from several different computer concurrently.

There are several differences between the real-time emulation and a conventional
animated simulation. First, the evolution of the system is being synchronized to a real-
time clock. For most animated simulations, the speed at which the animation evolves
is dependent on the speed of the computer processor that is performing the simulation.
The second difference is the detail of the state information displayed. For most animated
simulations, a viewer is limited to a single window. In our real-time emulation, every
subsystem has its own control window which can be accessed for more detailed state
information. Eventually, we hope to make the icons for the entities selectable also. That
is, by clicking a given entity's icon, another window will open that will permit one
to view the real-time detailed state information (attributes) for that entity. We believe
that this feature would be very useful for the real-time debugging and validation of
the model. The real-time emulation was demonstrated at the 1996 Winter Simulation
Conference (see Davis et al., 1996).

In the development of real-time emulation capability, we wished to demonstrate the
intrinsic ability that a HOOPLS-based model will have for managing the system it mod-
els. That is, the control objects developed for a HOOPLS-based model of a given system
can actually control the modeled subsystem within the real system. We have already
demonstrated this fact on a physical emulator for an FMS that we have constructed in
our laboratory (see Gonzalez, 1997; Gonzalez and Davis, 1997). Here the control objects
within the HOOPLS-based model for the physical FMS emulator have been placed on
separate computers and attached to the physical equipment that they were designed to
manage. The same programmed control objects are also being executed concurrently
on another computer to perform an on-line simulation of the physical FMS emulator in
order to project its future behavior in real-time while operating under the current policy
that is being employed to schedule tasks.

Our goals in the development of HOOPLS are the same goals that we feel should
guide the development of future simulation languages. First, future languages should
provide a computer-aided tool for designing the systems that they are modeling. When
the model is completed, the language should provide a model of sufficient fidelity
that it can actually manage the system that it models. Second, the same model should
have multiple uses. Certainly, it should be useful for off-line planning analyses that are
addressed during the design of the system. As stated above, it should also be able to
manage the systems operations in real time. Finally, the same model should be available
to perform within on-line planning analyses to assess the future behavior of the system
in real time.

Third, we should move toward a standard model description language. We believe
that HOOPLS has taken a major step in this respect by modeling the controller inter-
actions. Currently, we are attempting to model several different types of manufacturing

13.2 EVOLUTION OF NEW SIMULATION MODELING APPROACHES 489

systems. Our goal is to develop a set of basic controller types that are applicable across
most manufacturing scenarios. We are also attempting to define a generalized struc-
ture for the process plan database. These generic specifications will govern our even-
tual development of the HOOPLS-based modeling and design tool for these complex
discrete-event systems.

By modeling controller interactions, we also believe that the maintainability and
reusability of the model can be enhanced. We are currently demonstrating this feature in
our modeling of the RAMP FMS. At one RAMP site, the operator has added a new sta-
tion which itself is an automated line for assembling circuit boards using surface-mount
technologies. As we integrate this new station into our current real-time emulation model
for the RAMP FMS, nearly all the existing code will be reusable. Our focus will be
simply on programming the capabilities for the new station and expanding the current
cell controllers dynamics in order to permit it to communicate with the new station.
We must also add a new entry point for the automated storage and retrieval system so
that totes can be delivered to the new station. We must describe the entities and process
plans that can be executed on in the expanded FMS. Note, however, that all of these
modifications are additions to existing code (not major rewriting of the existing code),
most of which will be completely retained within the emulation model for the expanded
system.

We believe that by modeling controller interactions this reusability can be expanded
in ways that most cannot imagine. Consider a given piece of equipment. Its controller
is typically specified by the vendor. Now assume that the vendor of this equipment pro-
vides a detailed model of its system which addresses all the control input and output
messages. This piece of code should be useable by any simulation model which employs
the controller interactions as a basis for modeling the system. The vendor can place the
control object for its equipment into a national library which is assessable via the inter-
net. When the modeler is designing a system, he or she can then download the model
for the given piece of equipment and integrate it quickly into the overall system that
the designer is investigating. In this manner, the designer should be able quickly to test
alternative configurations of equipment within the proposed system before it is imple-
mented. In fact, if an agency such as the National Institute of Standards and Technology
can take an initiative in this area, a standardized set of commands for basic equipment
types can be defined. We know that this is feasible because large manufacturers have
already specified a set of command instructions which they will employ when they seek
to purchase equipment from a given vendor. In this manner, all equipment of a given
type employs the same instructional set, independent of its vendor. If a single corpora-
tion can accomplish this standardization within its manufacturing facilities, it can also
be done at the national/international level.

Furthermore, since the controllers interactions can be standardized, any simulation
model that uses these standardized commands should be able to integrate with any other
modeled system which also employs these commands. That implies further that models
generated by one vendor's simulation tool should be able to integrate with another model
produced with another simulation tool. Again, we believe that it will take the leadership
of a national agency such as the National Institute of Standards and Technology to make
this standardization. The important observation, however, is that this standardization is
feasible.

Other researchers are also considering the modeling of controller interactions.
Researchers at Georgia Tech have developed OOSIM, which shares many modeling
concepts and capabilities with HOOPLS (see Narayanan et al., 1992; Govindaraj et al.,

490 ON-LINE SIMULATION: NEED AND EVOLVING RESEARCH REQUIREMENTS

1993). Researchers at Texas A& M University are also attempting to employ a special-
ized version of the ARENA simulation language, to control their demonstration FMS
(see Smith et al., 1994; Drake et al., 1995; Peters et al., 1996).

The reader should be cautioned from believing, however, that modeling controller
interactions solves every issue pertaining to the modeling, planning, and control issues
associated with the design and management of these complex discrete-event systems.
It does not. Once we accept the fact that there are alternative approaches for model-
ing discrete-event systems beyond the conventional approaches employing entity flows
through stochastic queuing networks, the entire area of discrete-event simulation is open
to development of new modeling approaches. In addition to HOOPLS, we are devel-
oping a new simulation tool which is being explicitly designed to support scheduling.
One version of this new language, called the flexible object-oriented production plan-
ning simulator (FOOPPS), has been designed to support the integrated tasks of master
production scheduling and manufacturing resource planning in a flexible manufacturing
environment (see Seiveking and Davis, 1995; Davis et al., 1997).

We believe that the conventional modeling approaches do address a broad class of
discrete-event systems. However, they have been shown on several occasions to be inad-
equate for some systems. In the near future, major new approaches for modeling com-
plex discrete-event systems will appear. We further believe that with their introduction,
the conventional uses of simulation will be significantly expanded. One particular new
use will be the development of on-line simulation technologies which will be needed
to support the on-line planning and control requirements within the intelligent control
architectures that manage these systems. In light of this observation, we now discuss
on-line simulations.

13.3 EVOLVING SIMULATION TECHNOLOGIES FOR ON-LINE PLANNING
ANDCONTROL

To understand the role that simulation plays in on-line planning and control, we need
to develop a basis for comparison of the new technologies with existing simulation and
planning technologies. We begin by providing a brief overview of off-line planning with
simulation, which is addressed in detail in Chapters 3, 6, 7, 9, and 10. A schema for
on-line planning is then provided. Two approaches to on-line planning, reactive and
proactive, are discussed. Finally, we discuss technologies that are needed to implement
on-line simulation.

13.3.1 Overview of Off-Line Planning Using Conventional Simulation
Technology

The off-line approach to simulation analysis begins by assuming that there is a system to
be modeled, as is depicted at the top center of Figure 13.10. This system is characterized
by its state variables, which are assumed to change or evolve with time. Using classical
system theory, there must be a set of inputs to the system that represents the environ-
mental interactions on the system. The behavior of the system is characterized by its
state transition function, which determines the evolution of the system state variables
given the system's current state and the sequence of inputs that the system experiences.
As the system state evolves, the system will generate outputs that represent the interac-
tion of the system on its environment. Again, it is assumed that there exists an output

13.3 EVOLVING SIMULATION TECHNOLOGIES FOR ON-LINE PLANNING 491

REAL-WORLD

Stale and
Design Parameters

and Output
Functions

Outputs *

Obsewed Input

Stilt~stical
Tcchnlques

Obsen ed

Statisl~cal
Comparisons

I
Probabil~st~c

Input
Distribut~ons

' I -
SYSTEM
MODEL

Statc and
Des~yn Parameters

Statc Trans~t~on

1 and Output
Funct~on\ OUTPUT

ANALYSIS

Collcctcd

Performance
Funchon5 and

Stal~sllcal
Tcchn~qucs EXPERIMENTAL I DESIGN I L

Factor~al Des~gn &
Variance Reduct~on

Technques

Figure 13.10 Schematic for the off-line planning process using simulation

function which defines the generated output based on the current system state and the
system inputs. Thus the state transition function and the output fur~ctions are dependent
on both the current system state and the input stream. The role of the modeler is to
translate the state transition and the output functions for the real system into a model
that can then be exercised, or simulated, to predict the behavior of the system. As in
Figure 13.10, the system model also receives inputs and generates outputs just as in the
real system.

Since both the system and its model accept inputs and generate outputs, the modeler
has a method for determining the accuracy of the created model, and the validution

492 ON-LINE SIMULATION: NEED AND EVOLVING RESEARCH REQUIREMENTS

process is introduced (see Chapter 10). As illustrated in Figure 13.10, the validation
process begins with the assumption that both the real system and its model are initialized
to the same state and are subjected to the same input stream. It is often assumed that
the modeler will have control over the input stream used for the validation process. To
this end, Figure 13.10 depicts an input stream that is being generated by the validation
process itself. However, when the actual system is employed, it is often expensive, if not
impossible, to provide an arbitrary input stream. Usually, the modeler carefully records
an input stream as it affects the real system and the resulting output stream that the
system generates. The same input stream is then applied to the model and its output
stream is recorded.

If the model is correct, the output streams for the real system and the model should
be the same. To verify this, the validation process computes the error term between the
two output streams as a function of time. The computed stream of output errors is then
used to correct the model. In most cases, the validation process is actually comprised
of two distinct steps, validation and ver$cation. The validation step is concerned with
developing the correct model for the system, while the verification step seeks to ensure
that the model has been executed faithfully by the software program. Law and Kelton
(1991) note that verification is often easier when one employs a commercial simulation
tool. This statement assumes, however, that the simulation language employs the correct
modeling philosophy. Unfortunately, as discussed in Section 13.2.1, current simulation
languages have not been designed for modeling systems where controller interactions
must be considered. In this case, the benefits of using a commercial simulation tool
may not be realized during the validation process. In fact, its use may even hinder the
validation process.

If the use of a commercial simulation tool is appropriate, modem capabilities for
these tools, such as animation and interactive run controllers (debuggers), are often
useful in the validation process. Still, it is nearly impossible to design a set of procedural
steps that ensure a valid model in every situation. The validation process becomes even
more complicated when one considers a time-variant system where the characteristics
for essential elements of the modeled system change with time. Today, one usually
assumes that the system is stationary, and validation is usually conducted in an off-
line manner. For time-variant systems, validation must be conducted on-line while the
system is in operation.

Currently, simulation is used primarily to support off-line planning, not on-line plan-
ning and control. Off-line planning usually attempts to improve the design of the real
system. To facilitate the system design process, it is usually assumed that both the real-
world system and its model are characterized by a set of design parameters that affect
both the state transition and the output functions (see Figure 13.10). The primary pur-
pose for simulation within the off-line planning scenario is to assess the performance
of the system while it operates under a given set of values for the design parameter.
The overall goal for off-line planning is to define the optimal set of values for these
design parameters. However, the ability to specify the true optimal set of parameters
can seldom be achieved for real-world systems. The model is always an approximation
to the real-world system. Furthermore, it is virtually impossible to explore all feasible
values for the design parameters.

The first step of the off-line planning approach is to specify the input stream that
will be employed during the planning analysis. The most commonly used approach
is to perform a statistical analysis of prior or potential inputs to the system and then
to develop probabilistic distributions that characterize the recorded or predicted input

13.3 EVOLVING SIMULATION TECHNOLOGIES FOR ON-LINE PLANNING 493

streams. This process is often referred to as input analysis (see Chapter 3) . A second,
less common approach is simply to apply the recorded input streams to the real-world
system as input streams to the model. The latter approach is referred to as a data-driven
simulation. When either approach is adopted, the resulting simulation analyses are still
conducted off-line (i.e., they are detached from the real-world system).

Using either a generated or recorded input stream, a simulation run (experiment)
is then conducted for a given parameter setting. The output stream generated is then
subjected to output analysis (see Chapter 7) , which consists of two major steps. First,
a set of performance measures is selected for the analysis. Then, using the generated
output streams, the values of these performance measure are statistically quantified.

In performing this statistical analysis, several additional factors must be considered.
First, the length of the employed simulation run and the number of replications that must
be performed are determined. Second, measures are taken to ensure that transient effects
arising from the initial conditions of the simulation runs are eliminated. In most cases
the desire is to provide a steady-state analysis of the projected system performance.

As discussed in most simulation texts, there are two basic types of output analy-
sis. The first type predicts the steady-state values for the performance measures using
simulation trials conducted over an extended-time horizon. Here more than one replica-
tion (trial) may be performed, or a given simulation run may be partitioned into several
component trials using batching techniques. The second type of simulation analysis,
the terminating simulation, attempts to estimate the expected performance of the sys-
tem while it operates over a repeated cycle. Here numerous simulation trials for the
cycle being investigated are needed so that an estimate of the system state and perfor-
mance can be made at any point in the cycle. This is accomplished by averaging the
temporal values of the recorded state and performance measures across several simula-
tion runs. As will be shown shortly, the terminating simulation analysis does have some
similarities to the statistical analysis required for on-line simulations. However, there
are also critical differences.

In both instances, the primary concern of the simulation analyst is to develop sta-
tistical estimates of the expected values of one or more performance measures. These
values are assumed to depend on the values of the design variables associated with the
simulation experiment. These, in general, should be independent of the initial system
state for the simulation, except in the case of the terminating simulation, where the
initial system state is assumed to be the same for every simulated operational cycle.

As mentioned previously, the overall goal of off-line planning is to specify an opti-
mal set of design parameters within the limitations of the adopted modeling and search
processes. To this end, the modeler typically seeks to describe performance measures
as a function of the design parameters. This estimated function is often referred to as
the response surfLlce. The design parameters (which serve as the variables in the func-
tion) are typically referred to as the,factors. Experimental factorial design techniques as
well as other statistical approaches (see Chapter 6) can be employed to assist in defining
which experimental settings for the factors (design parameters) should be investigated to
maximize the information that can be obtained about the response surface. In addition,
variance reduction techniques (see Law and Kelton, 1991), can be employed to further
refine the statistical estimates resulting from simulation results for a given assignment
of values for the factor (design parameters).

Given the response function, the modeler seeks the optimal assignment of the factors.
If more than one performance measure is employed, the modeler might use utility func-
tion techniques or other multicriteria decision-making techniques to develop the best

494 ON-LINE SIMULATION: NEED AND EVOLVING RESEARCH REQUIREMENTS

compromise among the performance measures (see Fishburn, 1987; Wolfram, 1988).
In any case, search techniques are essential to establish the optimal parameter settings
(see Chapter 9). Several types of search techniques might be employed. These include
derivative-free search methods such as the Box method or the Nedler-Meade algorithm
(see Himmelblau, 1972), or more recent stochastic search techniques such as genetic
algorithms (see Goldberg, 1989), or simulated annealing (see Davis, 1987). Using per-
turbation analysis techniques (see Cassandras, 1993), it is now also possible to make
estimates of the derivatives for the performance measures with respect to the design
parameters. Hence derivative-based searches such as the conjugate gradient algorithms
may also be considered (see Bazaraa et al., 1993).

These optimizations, however, are often very "noisy." In other words, the perfor-
mance measures are typically random variables whose values must be estimated sta-
tistically. The parameters are often discrete-valued variables that can take on integer
values only. For example, there can be only an integer number of servers at a given
station, or the capacity of a queue must be integer. In short, determining the optimum
set of values is not a trivial task, and optimality often represents a property that simply
cannot be established or verified.

Once the desired set of design parameter values has been determined (see Figure
13.6), these are then implemented within the real-world system. At this point the mod-
eler can return to the validation process to determine if the anticipated performance
estimated through the off-line planning process is being achieved by the real-world
system. This validation effort may lead to further improvements in the model, and a
new off-line planning cycle may be warranted to further refine the selected values of
the design parameters.

13.3.2 Overview of On-Line Planning and Control Using On-line Time
Simulation Technology

On-line (real-time) planning and control begin with the assumption that a simulation
model for the real system exists and has withstood the validation process. It is also
assumed that off-line planning has been performed to determine the optimum set of
design parameters for operation of the system. Like the off-line planning scenario, the
real-time planning scenario presumes that both the real-world system and its model
will be subjected to inputs from the environment. However, the on-line planning sce-
nario necessitates that the modeler consider the same real-time inputs that affect the real
system (see Figure 13.11). In this respect, the real-time simulation is necessarily data
driven.

A critical element of both the real-world system and its model is the control pol-
icy that has been selected for implementation. In Figure 13.11 there is no mention of
planning per se. In the real-time operation of the system, a selected plan must be imple-
mented immediately. This implies that choosing a plan necessarily requires specification
of the control policy that will implement the selected plan. Therefore, the plan selected
and its control policy become intrinsically linked. As implied in Figure 13.11, the imple-
mentation of the control policy is the only element that needs to be considered.

The control policy selected, in conjunction with the state transition function, deter-
mines the evolution of the system state as a function of time. One may, in fact, view
the system inputs as consisting of two components. The input to the system depicted
in Figure 13.11 represents the exogenous input component over which the system has
no control. On the other hand, the second component is the endogenous control input,

13.3 EVOLVING SIMULATION TECHNOLOGIES FOR ON-LINE PLANNING 495

AUTO-
I VALIDATION

I

Syslcm
Model

Uplatcs

SYSTEM
MODEL

(Operatlng
under cunent

SYSTEM
MODEL

(Operating undcr
illternati\ e conlrol

ml1cv 1)

I SYSTEM I I
MODEL
eratlng undcr

alternat~\ e conlrol I I

X
.i! I -
0

k 1 ANALYSIS ANALYSIS
I

-6 '
3" I

I
REAL-TIME

ANAL.YSIS
GENERATOR

I

Figure 13.11 Schematic for the on-line planning/control process using real-time simulation.

which depends on the selected control policy. This control policy can generate the con-
trol inputs in either of two ways. If an open-loop control policy is employed, the con-
trol inputs generated under that policy are determined on an a priori basis and will not
depend on the evolution of the system state. For a closed-loop control policy, however,
the issued control inputs depend on both the selected control policy and the current state
of the system.

The current system state for a on-line simulation provides another critical input to
the system model(s) included within the on-line planning/control scenario. The need to
employ the current state information as an input to the system model was a primary
reason for including the extensive initialization capabilities with the experiment frame
of the HOOPLS (discussed in Section 13.2.3).

Although the system model has presumably been validated, the validation pro-
cess must continue under the on-line planning/control scenario. In most cases, off-line
planning is performed once (usually when the system is initially configured) and not
addressed again until the system is modified. Since off-line planning does not consider
the real-time operation of the system, there is usually no need to update the system
model between subsequent, off-line planning episodes.

Real-world systems are seldom stationary. That is, the operating characteristics

496 ON-LINE SIMULATION: NEED AND EVOLVING RESEARCH REQUIREMENTS

change constantly with time. Typically, these changes are slow, but they can also be
abrupt. For example, a new type of cutting tool with an extended tool life is introduced
into a machining cell and the number of tooling replacements may be reduced sig-
nificantly. Improved processing techniques could also significantly modify processing
times.

Whether the system characteristics are changed slowly or abruptly, the system model
must continually be updated to reflect these changes. To this end, Figure 13.1 1 includes
an autovalidation process that compares the output projected by the model against the
measured output from the system and updates the model to improve its accuracy. This
autovalidation process functions in a manner similar to the system identification element
which is contained in most conventional, self-organizing controllers for time-varying,
continuous-state systems (see Astrom and Wittenmark, 1989; Eykhoff, 1974; Ljunj,
1987). Hence, the autovalidation process can be viewed as a system identifier for a
discrete-event system. Unfortunately, the technology needed to construct this autovali-
dation capability does not currently exist. Because it does not exist, however, does not
imply that it is not needed. Such technology is essential for the on-line simulation of
real-world systems (see Section 13.3.6).

Under a true on-line planning/control scenario, it is essential that a on-line simulation
of the implemented control policy be conducted concurrently with the implementation of
the control policy by the real-world system. In general, the real-world system is stochas-
tic. As the real-world system evolves in time, while operating under a selected control
policy, it will realize only one of the potential-state trajectories that could occur. That
is, the current operation of the system can be viewed as a single statistical experiment.
The on-line simulation must necessarily be initialized to the current system state for the
real-world system. Its statistics must characterize the future response of the real-world
system given the current system state. Hence on-line simulation must employ simula-
tion models that can be executed much faster than real time. Certainly, the evolution of
the simulation will not be tied to a real-time clock, which was the case for the real-time
emulator developed for the RAMP FMS (see Section 13.2.3). Rather, the simulation tri-
als that analyze the system performance over a given planning horizon must be repeated
numerous times to generate a set of output trials that can then be employed to statisti-
cally quantify future performance of the real system. To provide the essential number
of simulation trials for on-line analysis, the trials employed must uctually be generated
at a rate that is signijcuntly faster than real time!

While operating under current control law, statistical estimates for the future perfor-
mance of the real system have three immediate uses. First, these provide another input
for the real system and can be viewed as feedforward information to be employed by
the controller of the real system. Second, the projected response of the system operat-
ing under the control policy selected can assist in the generation of alternative control
policies for possible implementation. This use is discussed in Section 13.3.7. Finally,
these projections provide a reference level of performance against which the predicted
performance of other potential control policies can be compared.

Returning to Figure 13.11, the reader will note that R additional instantiations of the
system model have been included. Each of these R instantiations considers an alternative
control law for possible implementation. These simulations receive the current state of
the real system as an input and any updates to the system model derived from the
autovalidation process. Again, these real-time simulations generate trials as quickly as
possible in order to statistically characterize the future performance of the real system
as it operates under the alternative control law.

13.3 EVOLVING SIMULATION TECHNOLOGIES FOR ON-LINE PLANNING 497

To compute the statistical estimates, the outputs generated by the on-line simulation
trials for each system model are passed immediately to an on-line output analysis pro-
cess. Obviously, there is a correspondence between the on-line output analysis function
included in Figure 13.10 and the output analysis function included under the off-line
planning scenario in Figure 13.9. There are, however, marked differences in the statisti-
cal technologies needed to implement the respective functions, as discussed in Section
13.3.4.

The actual statistical comparison of the future performance of a real-world system
operating under current and alternative control laws is performed by the on-line compro-
mise analysis function. It is assumed from the outset that multiple performance criteria
will be considered and that a compromise solution must be defined. Again, the proce-
dures for performing the compromise analysis are not currently known. One approach
might be to develop a utility function for real-time performance criteria in order to
provide a single, aggregate performance criterion that can then be used in the com-
parison. There are, of course, limitations to this approach as the contribution of the
individual criterion becomes obscured in the aggregation process. There are also other
approaches to multicriteria that have been considered in the operations research litera-
ture (see Fishburn, 1987; Wolfram, 1988). However, these approaches have not presently
been extended to consider the stochastic performance measures that are to be evaluated
using simulation.

Comparison approaches are also a research issue. For the comparison of stochastic
entities, the notion of stochastic dominance has been developed. However, the require-
ments that are necessary to assert stochastic dominance are so restrictive that these
are difficult to demonstrate. Stochastic dominance requires that (empirical) cumulative
density functions for the compared quantity must not intersect. That is, the cumulative
density function for the performance criterion arising from the operation of the system
under one alternative control strategy must be consistently greater than the cumulative
density function for the same performance measure operating under another control
strategy. To assert complete dominance in the on-line planning situation, one control
strategy must stochastically dominate all the others with respect to all performance cri-
teria. This situation seldom occurs, and other forms of statistical comparison are needed.
Issues arising from on-line compromise analysis are discussed in Section 13.3.5.

If an alternative control policy is demonstrated to provide an improved performance
over the control policy that is currently being implemented, the new control policy is
transmitted to the real-world system for immediate implementation. It is also transmit-
ted to the reference simulation model, which then begins to estimate the future perfor-
mance of the system as it operates under the new control policy. The control policy
implemented is also transmitted to the alternative control policy generator to provide a
starting point for generating new control policy alternatives. These alternatives subse-
quently will be subjected to on-line simulation at the other R instantiations of the system
model (included in Figure 13.1 1). Like many of the other elements discussed above, the
procedures for generating these alternative control policies are a research concern (see
Section 13.3.7).

Together, the on-line compromise analysis function and the alternative control pol-
icy generator implement a planning algorithm that is similar to the design optimization
function for the off-line planning scenario (see Figure 13.10). In particular, the alterna-
tive control policy generator function can be viewed as one of implementing the search
algorithm. There is, however, no direct correspondence to the experimental design func-
tion (in Figure 13.10) for the on-line planning scenario (illustrated in Figure 13.1 1).

498 ON-LINE SIMULATION: NEED AND EVOLVING RESEARCH REQUIREMENTS

Given the discrete nature of the control policies to be evaluated, it is unlikely that a
response function can be defined over a control policy space. That is, the definition of
a response surface requires that a design variable space be defined such that the value
of the performance criteria can be functionally related to the potential values of the
design variables (factors). For control policies, this functional relationship is virtually
impossible to define.

13.3.3 Proactive Versus Reactive On-Line Planning

The schematic for on-line planning/control provided in Figure 13.1 1 is actually a gen-
eralization upon, and an enhancement of, most of the real-time simulation, planning,
and control algorithms contained in the literature (see Chapter 21). In fact, most pub-
lished research in this area still has not provided an integrated approach. Most papers
report experimental efforts to construct real-time schedulers only. Furthermore, the
reported algorithms are usually not true on-line algorithms. These begin by choosing a
scheduling/control policy that is to be implemented. This is accomplished by recording
the current state of the real-world system and then performing the planning in an off-line
fashion. Once the schedule is defined, it is executed in an open-loop manner. While this
schedule is being executed, planning is usually suspended. The system performance is
simply monitored until the planned and realized response deviates to such an extent that
the current schedule is no longer valid. At this point, the system state is recorded and a
new schedule is sought. The situation that triggers rescheduling is sometimes referred
to as a decision point (see Harmonosky, 1990, 1995; Harmonosky and Robohn, 1991).

As stated above, the system usually operates in an open-loop control manner under
most reported algorithms. That is, the feedback information realized from the measured
response of the system while it operates under the selected schedule is ignored until the
decision point occurs. When the decision point occurs, rescheduling is implemented.
There is no attempt to update the schedule during the interim between decision points
where rescheduling occurs. With this strategy it is clear that the scheduling becomes
reactive, triggered primarily by system disruptions and/or unexpected system behavior.

Reactive planning/control is, by its very nature, inefficient. By analogy, reactive
planning/control is tantamount to driving a vehicle down a highway and changing the
direction of steering and/or speed only when one encounters a guardrail or another
vehicle. On the other hand, reactive planning and control is much easier to implement.
As we will see shortly, reactive planning and control relieves the modeler of having to
provide many of the new technologies required to implement proactive on-line planning
and control. In many respects, reactive planning may be viewed simply as performing
off-line planning more frequently over shorter planning horizons.

A proactive, on-line scheduling and control methodology has been depicted in Figure
13.10. The functions in Figure 13.10 are designed to operate concurrently with the real-
world system. That is, the task of seeking an improved schedule is constant and never-
ending. Furthermore, most proposed reactive planning schemes assume that the system
is deterministic. Such schemes perform a single simulation run for each scheduling alter-
native. The proactive planning/control framework attempts to provide a full assessment
of the uncertainties that exist in future system performance. In addition, statistical esti-
mates are constantly updated to account for the current state of the real-world system
as it evolves in real time. As this information is formulated, it is forwarded to the real-
world system to be employed as feedforward information for controlling that system.
As in our driving analogy, the statistical information derived from real-time simulations

13.3 EVOLVING SIMULATION TECHNOLOGIES FOR ON-LINE PLANNING 499

is our forward-looking vision that permits us to see oncoming cars and turns so that we
can modify our speed and direction appropriately. The schedule is constantly updated
to reflect the current state of the system and the projected system performance. On the
other hand, the closed-loop control policy that monitors the system state and precipi-
tates the modification of the schedule remains in place until it is demonstrated that a
better control policy exists.

Under the proactive planning approach, alternative control policies are always being
evaluated, and a new control policy can be implemented whenever it is beneficial to
do so. That is, we do not have to wait until a decision point occurs to change the
control policy. The proactive approach always seeks a better plan for its associated
implementing policy and can execute a new policy immediately. Meanwhile, the overall
planning and control algorithm constantly assesses the outcome of implementing the
current control policy based on the current state of the system.

The algorithm defined in Figure 13.1 1 has been specially developed for implementa-
tion in a concurrent computing environment. This algorithm is asynchronous in nature.
That is, it does not require handshaking or two-way communication among the included
functions. Thus the algorithm can be implemented in the simplest of concurrent com-
puting environments, including a network of independent workstations. Of course, an
advanced concurrent computing environment would permit enhanced communication
among the included functions, but it is not essential.

Despite the complexity of the schematic in Figure 13.1 1 , it still represents a sim-
plification of the on-line planning/control situation. Our research in the on-line arena
has demonstrated conclusively that on-line planning and control requires that both the
planning and the subsequent implementation of the plan must be performed by the same
agent to be effective. That is, on-line planning necessitates that an agent plan only to
the extent that it can implement. Planning and control can be distributed across several
intelligent controllers. The need for a whole new set of distributed planning and control
algorithms thus evolves.

These observations led initially to the conceptualization of the coordinated object
and the recursive, object-oriented coordination hierarchy, as discussed in Section 13.2.
Recall that each of the coordinated objects contains a intelligent controller to perform its
on-line planning and control. Looking carefully within the intelligent controller of the
coordinated object pictured in Figure 13.6, four functions have been included. Figure
13.11 provides a schematic of the Planning Function that is responsible for determining
an improved control law. The Task Assignor Function is responsible for implementing
that control law. It performs this task by assigning tasks to its subordinate subsystems.
In making this assignment, the Task Assignor Function interacts with the Task Acceptor
Function within the subordinate subsystem's intelligent controller. The Task Acceptor
Function's role is one of accepting new tasks to be executed by the coordinated object
and establishing their completion dates. If new tasks are not accepted, the coordinated
object will eventually have no new tasks to perform. Since new tasks are always being
accepted even while currently assigned tasks are executed, the scheduling problem as
addressed by the coordinated object is constantly being modified. Hence the need for
on-line planning is constant. Meanwhile the System Identifier Function is constantly
attempting to improve its model of the subordinate subsystem to permit the other func-
tions to better address the on-line planning and control requirements.

The complexity of the overall operation of the intelligent controller is well beyond
the scope of this chapter. Like the Planner, each of the other functions consists of several
integral elements. These also employ their own on-line simulations. Furthermore, the

500 ON-LINE SIMULATION: NEED AND EVOLVING RESEARCH REQUIREMENTS

overall operation of a given intelligent controller cannot be addressed without consider-
ing its coordinated interactions with the intelligent controllers at adjacent levels of the
ROOCH. Davis (1992) and Davis et al. (1992) provide a more comprehensive formu-
lation for the intelligent controller within this distributed planning and control frame-
work. Davis (1992) and Davis et al. (1993, 1996) further develop the architecture for
the coordinated objects and the associated algorithms needed to distribute planning and
control. This work can also be viewed as an application of the more general reference
model for the intelligent control of large-scale systems that is being developed by Albus
and Meystel (1995). This reference model has now been extended to a framework for
semiotic modeling (see Meystel, 1995). On the other hand, the control of discrete-event
systems is still in its embryonic stage. Ho (1989) may be viewed as one of the pioneers
in formalizing the control of discrete-event systems (see also Cassandras, 1993).

To be effective, however, on-line planning (scheduling) and control must also be
coordinated with the other organizational functions that address strategic planning and
control issues. The comprehensive set of interactions among all the agents that are
addressing the entire set of planning and control functions gives rise to what we have
termed hyperlinked object-oriented architectures (see Davis et al., 1995a). The evolving
simulation requirements for these advanced architectures have also been published in
Davis et al. (1995b). The important observation here is that although the primary current
use for on-line simulation is to enable an on-line scheduling capability, there will prob-
ably be many new uses for on-line simulation in the future. A primary purpose of the
semiotic modeling (as discussed above) is to provide a framework for modeling and to
incorporate the supporting technologies for real-time data analysis. On-line simulation
is one such technology.

We now investigate the new simulation-based technologies that are needed to support
proactive on-line planning and control. We outline the needs for new simulation tools,
new on-line statistical output analysis tools, procedures for on-line compromise analysis,
and the selection of scheduling alternatives.

13.3.4 New Simulation Tools and On-Line Simulation Requirements

Now that an overview of on-line simulation and planning has been presented, new
requirements for future simulation modeling tools may be defined. First, the need for
a controller-based simulation approach becomes even more obvious. The output of the
on-line planning process must be the control law by which the developed plan is to
be implemented. Unless the simulation model can incorporate this law and model the
interactions among the controllers that result from its implementation, there will be no
way to evaluate the plan. Second, the capability to initialize the simulation to a mea-
sured system state has been established as a critical requirement for on-line simulation.
As stated in Section 13.2.3, most current simulation tools are limited in this capacity.

There is also a need for the simulation modeling approach to produce hierarchical
models. Recall that a primary assertion for on-line planning is that the planning must
be distributed. Each coordinated object must plan its own schedule and implement it.
On the other hand, the coordinated object should not plan for actions beyond its control
authority to implement. Thus it does not make sense for the on-line planner (e.g., coor-
dinated object) to consider the complete model for the overall system in its planning.
Rather, it needs only to consider its behavior as it interacts with immediate subordi-
nate subsystems. Simply stated, the span of control is limited for each on-line plan-
ner. It does not have direct control over the behavior of its supervisor, nor does it have

13.3 EVOLVING SIMULATION TECHNOLOGIES FOR ON-LINE PLANNING 501

direct control over the manner in which its subordinates interact with their own subordi-
nates.

Furthermore, if the on-line planner simulates only the behavior that is derived from
its subordinate interactions, the computational requirements for each on-line simulation
trial will be reduced. The simulated model will typically be much smaller than the over-
all system model. The net effect will be that the planner can generate simulation trials
at a far faster rate, which, in turn, has consequences for on-line output analysis.

13.3.5 Evolving Needs for On-Line Output Analysis Techniques

Hundreds of papers and numerous books and monographs have been written on the
subject of output analysis for off-line planning. On the other hand, little or no research
on on-line output analysis has been reported. Unfortunately, most of the literature per-
taining to off-line output analysis is not (or has not been shown to be) relevant to the
on-line counterpart. For practical purposes this is a virgin research area.

There is a singular concern that seems to render the off-line approaches to output
analysis inappropriate to on-line simulation analyses. This is the need to initialize sim-
ulation trials to the current system state. As discussed earlier, off-line output analysis is
concerned primarily with estimating the steady-state performance of the system. In most
cases, explicit measures are taken to eliminate the effects of the transient response which
arise after starting the system from a particular initial state. Even terminating simulation
analyses assume that the same initial state and operational cycle will be investigated.

For on-line simulations, the focus is on the transient phase of operation. The system
never reaches steady state over the short planning horizon. The modeler must analyze the
performance of the system in the near term given the current system-state information.
Thus, each moment's planning constraints are unique and depend on the current system's
state. The same planning problem, as well as the same system state, may never again
be observed over the operational lifetime of the system.

Figure 13.12 provides an overview of the ideal situation that evolves when one per-
forms on-line simulation. First, one must separate the output analysis into two regions.
The retrospective analysis considers the measured system response that has occurred

t; Trial l
Trial 3

Current State S t

Retrospective Prospective

Measured system response

Analys~s

Forecasted system response

Figure 13.12 Ideal scenario for real-time output analysis.

Anal? sis
4 *

502 ON-LINE SIMULATION: NEED AND EVOLVING RESEARCH REQUIREMENTS

prior to the current moment. Here, one might ask a question such as: What was the
average sojourn time for job entities residing in the system during the last month? The
answer to this retrospective question can easily be answered using the output data that
were collected while the system operated.

In on-line output analyses, however, one is concerned with providing statistical esti-
mates of the future response of the system. As indicated in Figure 13.12, the current
state St is known and one desires to look at the evolution of the system-state trajectory
beyond that state. In the ideal situation, the essential number of simulation trials (K)
is generated immediately and a prospective output analysis can be implemented. If this
ideal scenario could be implemented in a manner depicted in Figure 13.12 (i.e., the K
simulation trials could be instantaneously generated), the output analysis would be sim-
ilar to that for a terminating simulation, since all trials are being initiated to the same
state S t . For the moment, let us assume that this ideal scenario can be achieved.

For the prospective output analysis, several types of statistical estimates can be made.
One type of analysis would attempt to predict the state at some future time, say t' (see Fig-
ure 13.12). This type of analysis is similar to state estimation and is addressed by most ter-
minating simulations. A second type of analysis might focus on the occurrence of a speci-
fied event (e.g., when a given job will be completed). In Figure 13.12 we have depicted the
occurrence of the selected event as the projected times t; through t i for the trials 1 through
K, respectively. Given these projected times, one could construct an empirical probabil-
ity density function for the projected event time and compute its associated statistics. The
third type of output analysis would first specify one or more performance measures, which
would then be evaluated for each projected trajectory generated on a given simulation trial.
These computed values would then be used to compute empirical probability density func-
tions for the projected performance index and its associated statistics. For on-line planning
situations, most output analysis will probably be of the third type. However, it is still pos-
sible to make the other types of statistical estimates.

The problem is, however, that the ideal situation depicted in Figure 13.12 cannot be
realized. It requires computational time to generate the required simulation trials. Figure
13.13 is a more realistic depiction of the situation. In this figure, sk denotes the initial
state to which the kth simulation trial is initiated. While the simulation trial is being
executed, the system continues to evolve. Let A represent the average time required to
generate the simulation trial. If trial k was initiated at t , trial k + 1 will be initiated at
t + A. During the A time interval, the system will evolve to sk+'. This state may not
have been projected by the previous trial k because we are assuming that the system is
stochastic.

A = Computation time period to generate a
simulation trial

Figure 13.13 Realistic scenario for addressing real-time output analysis.

13.3 EVOLVING SIMULATION TECHNOLOGIES FOR ON-LINE PLANNING 503

Should one initialize the next simulation trial k + 1 to the now known state . S k + ' ?
A paradox has arisen. Ideally, one would prefer to initialize every simulation trial to
the same initial state, as depicted in Figure 13.12. If one adopts this approach, one can,
with some statistical justification, treat the on-line output analysis in a manner similar
to that of a terminating simulation analysis. However, if one adopts this approach, one
must also ignore known information about the system performance that was measured
while computing the essential number of simulation trials.

The second approach (depicted in Figure 13.13) is simply to initialize each simula-
tion trial to the most recent, recorded state. However, if one adopts this approach, a set
of simulation trials will be generated where each trial has been initialized to a different
state. Hence a statistical analysis based on the resulting set of trials is certainly ques-
tionable. Using this approach, however, one employs all known information pertaining
to the measured system response. In our research, we have adopted the second approach
so that we may employ all known information. However, we are certainly aware of the
statistical concerns that arise.

There are other statistical concerns pertaining to the number of simulation trials that
will be used to perform output analysis. When one investigates the real-time dynamics of
a system, the nature of its operation changes with time. At certain times, system behavior
may be very transient (i.e., fast dynamics). At other times, it may be very slow (i.e.,
nearly steady state). If the system is operating with nearly steady-state dynamics, the
desire is to increase the number of simulation trials employed in the statistical analysis
so that one might achieve more confidence in the statistical estimates. On the other hand,
if the system is operating in a highly transient regime, employment of a large number of
simulation trials may utilize trials that were initialized to a starting state that is no longer
relevant. It is our belief that during periods of highly transient behavior, it is necessary
only to make some estimate of future performance. The retention of many old trials
may provide an undesirable bias, a form of statistical inertia, in real-time estimates.

It is our observation that there are currently no solutions to the foregoing dilemma.
However, after years of experimentation, we have adopted the following approach. For
each real-time simulation, we maintain a fixed number of computed performance indices
from prior simulation trials, usually the last I000 to 2000 trials. These projected values
for each performance index are held in a pushdown stack. As a new trial provides a
projected performance value, the new value is added to the top of the stack and the
oldest projected value is removed from the bottom of the stack. To compute statistical
estimates for a performance index, we employ an adaptive sample size algorithm as
investigated initially by Antonacci (1992). This algorithm begins by taking the 50 most
recent projected values for a given performance index and computes its sample mean
and associated confidence interval. This procedure is repeated for the 100, 250, 500,
1000, and 2000 most recent samples. Using the properties of statistical estimates, the
confidence interval at a given confidence level for the 50 most recent projections should
be larger than that of the 100 most recent at the same confidence level. The confidence
interval for the 100 most recent samples should be larger than that of the 250 most
recent, and so on. This is true, however, only if the system is operating in a nearly
steady-state mode. If the system is operating in a transient mode, the sample variance
can increase to a point where the confidence interval is actually larger for the larger
sample sizes.

After computing the confidence intervals for the various sample sizes, we find the
largest sample size employed to compute each performance index. We begin with a
sample that includes the last 50 trials and incrementally increase that sample size to

504 ON-LINE SIMULATION: NEED AND EVOLVING RESEARCH REQUIREMENTS

100, 250, 500, 1000, or 2000 by requiring that the confidence interval for the next-
largest size be fully contained within the confidence interval of the previous sample
size. If the confidence interval for the larger sample size is not contained within the
smaller sample size, we employ the smaller sample size to perform our estimates. If
more than one performance index is considered, the smallest sample size determined
for the analysis of any performance index is used for estimating all the performance
indices.

Our approach attempts to maximize the sample size that can be employed in the
statistical analysis. When transients occur in system performance, the sample size is
automatically reduced to minimize the statistical bias that occurs when outdated simu-
lation trials are employed. However, when the system performance is operating at nearly
steady state, the sample size will automatically be increased to use all available data.

Returning to the on-line planning scenario depicted in Figure 13.10, we recall that
R different control policy alternatives, in addition to the control policy currently being
implemented, are being analyzed concurrently. To ensure that a consistent statistical
analysis is performed for all control policies, the smallest acceptable sample size found
for any scheduling policy is employed for the analyses of all policies.

The task of performing on-line statistical analysis for R + 1 control policy alternatives
in real time is computationally challenging. Assuming that L performance measures are
to be considered, there are L(R + 1) empirical probability density functions, means,
variances, and sets of confidence intervals to be updated in real time. In general, the
performance indices are not entirely statistically independent of each other. To this end
we typically compute L(L - 1)(R + 1)/2 covariances in real time.

The amount of data that can be generated in this manner is phenomenal. Therefore,
graphic interfaces are essential. In Figures 13.14 and 13.15 we provide sample graphical
outputs for an on-line simulation that we conducted for the Automated Manufacturing
Research Facility's flexible manufacturing system that was previously operated by the
National Institute of Standards and Technology. Figure 13.14 depicts the estimated aver-
age sojourn time (AvgTIS) against the average tardiness (AvgLt) for the next 100 jobs
to be processed by the system. Each dot on the upper right screen plots the (AvgLt,
AvgTIS) coordinates for the values of the indices computed on a given simulation trial.
On this graphic the results of the last 1000 simulation trials are plotted. The dots on the
computer screen are color-coded to represent the different scheduling/control policies
that are being evaluated. For publication purposes, the color-coded graphic has been
converted to a gray scale. In this study we compare three different strategies for allo-
cating the two automated guided vehicles to the jobs that are waiting to be transferred
from one station to another. The medium gray dots represent reported performance index
values for a first in, first out (FIFO) strategy where the material handling requests are
processed in the order in which they are received. The light gray dots represent the "Lat-
estJob" strategy where jobs are given priority based on proximity to their due dates.
Finally, the black dots represent the "SmartCart" control strategy, which attempts to
minimize the distance that the carts must travel to process the next transfer request.

In Figure 13.14, the dots related to the FIFO strategy are of three distinct linear
clusters which are angled at nearly 45". The dots for the LatestJob strategy are also
divided into three nearly horizontal clusters. One must look carefully to discern the
dots from the SmartCart strategy. In Figure 13.14 they form stubby, vertical lines that
lie primarily on top of the clusters associated with the LatestJob strategy. In Figure
13.15 there are again three primary clusters of dots for both FIFO strategies. In this
figure the three clusters for LatestJob strategy blend into a single band. The dots for the

13.3 EVOLVING SIMULATION TECHNOLOGIES FOR ON-LINE PLANNING 505

Number of Trials = 1210
Number Displayed = 1000

FIFO Statistics:
Corr: 0.877427
Beta: 0.371306

SmartCart Statistics:
Corr: 0.895299
Beta: 0.095369

LatestJobStatistics:
Corr: 0.927429
Beta: 0.081 195

0
0.0 132 265 397 530 663

AvgLt

Figure 13.14 Sample graphic from an on-line simulation depicting the trade-offs between the
average time in the system and the average lateness.

SmartCart strategy also form vertical lines within the LatestJob clusters, but the vertical
lines are much longer in this graphic.

To the left and below the primary graphic, the empirical cumulative density functions
are given for each performance index operating under each control policy. The functions
are again coded by a gray scale with reference to the control policy being depicted. In the
lower left-hand quadrant, the correlation coefficient is given for the two indices under
each control policy. The slope of the best linear regression line for the data reported in
the primary graphic is also given for each policy.

In Figure 13.14 we can see that the control policy chosen leads to significantly dif-

506 ON-LINE SIMULATION: NEED AND EVOLVING RESEARCH REQUIREMENTS

0.5

0.4

0.3

AvgPr

0.2

0.1

0.0

Number ofTrlals = 1210
Number Displayed = 1000 1 .o

FIFO Statistics:
Corr: -0.820257
Beta: -0.000463

Smartcart Statistics: k

Corr: -0.789749 , , , # + m a p

Beta: -0.000282

C3 LatestJobStatistics:
Corr: -0.830235 0.0 132 265 397 530 663
Beta: -0.000223 AvgLt

Figure 13.15 Sample graphic from an on-line simulation depicting the trade-offs between the
average lateness and the average productivity.

ferent results. In particular, there is a strong linear relationship denoted between the two
indices operating under the FIFO policy. This relationship is less pronounced under the
other two policies. In Figure 13.14 another graphic for the same on-line simulation anal-
ysis is provided, but here the average productivity (AvgPr) is plotted against the AvgLt
for the next 100 jobs to be processed. Note the remarkable difference between Figures
13.14 and 13.15 in the loci of the plotted dots. In particular, the relationships for the
indices in Figure 13.14, under the FIFO strategy, were nearly linear, whereas the rela-
tionships in Figure 13.15 are certainly nonlinear. If L performance indices are being
considered, there are L(L - 1)/2 such graphics to be computed in real time.

13.3 EVOLVING SIMULATION TECHNOLOGIES FOR ON-LINE PLANNING 507

Some additional comments regarding the clustered shapes of the dots are appropriate.
First, these shapes can and do change with time. The shapes of the clusters are dependent
on the current state of the system. Second, in Figure 13.14 we noted that the points in
the main graphic for a given control policy do not form a continuous cloud or cluster
of points. Rather, they separate into bands that are similarly shaped. We would expect
the clusters not to have bands if the system were purely stochastic. We had conjectured
that the hands might arise from abrupt changes in the initial state. However, for the
graphics depicted in Figures 13.14 and 13.15, we held the initial state constant, and all
the reported simulation trials use the same initial state. Although we have not yet proven
it, we conjecture that these discrete-event systems may be chaotic and that the bands
represent the existence of multiple attractors. In complex system theory it is known that
such behavior can occur for even the simplest of nonlinear continuous state systems.
Can such behavior also occur for these complex systems? This issue requires more
research. We should note also that this concern has not arisen in past research since
simulation analysis has not considered transient behavior. Attention to transient behavior
may provide new insights into the true dynamics of discrete-event systems. There is still
much to be learned about the dynamics of discrete-event systems.

The procedures outlined in this section have been developed from an empirical point
of view. Our research in on-line simulation has discovered problems which we have
discussed here and in earlier articles (see Davis et al., 1991; Tirpak et al., 1992b). We
have attempted to engineer solutions to these problems, but there is limited statistical
validity to such approaches for on-line output analysis, as discussed above. Much more
research is needed.

13.3.6 Evolving Needs for Real-Time Compromise Analysis Techniques

The issue of selecting a control policy for implementation remains. A comparison of
systems using simulation is discussed in Chapter 8. Typically, such analyses are per-
formed in off-line fashion where one or more performance criteria are to be considered.
In this section we address a similar task, but in an on-line fashion. We view the imple-
mentation of a given control policy as a distinct system configuration and our task is to
select the system configuration operating under a particular control policy as the system
configuration that is to be implemented at this current moment in time.

The discussion in Section 13.3.4 dealt with the on-line statistical characterization of
the L considered performance indices for each of the possible control policy alternatives.
The task remains to select the best control policy for implementation. To compare a
given stochastic performance index across different control alternatives, we begin by
considering the concept of stochastic dominance as discussed by Whitt (1979). Assume
that F l (x) and F2(x) represent the cumulative probability density function for a given
performance index as computed for control policies 1 and 2, respectively. The principle
of stochastic dominance states that control policy 1 would dominate control policy 2 if
the appropriate following conditions could be demonstrated:

F l (x) > F2(x) for every x (for a maximization) (1)

Fl (x) < F2(x) for every x (for a minimization) (2)

508 ON-LINE SIMULATION: NEED AND EVOLVING RESEARCH REQUIREMENTS

In general, this is a very difficult result to achieve. However, if we return to Figure
13.13 and view the empirical cumulative density functions for both the AvgTIS and the
AvgLt (both of which we desire to minimize), we see that SmartCart control strategy
currently dominates both the FIFO and the LatestJob control strategies with respect to
both indices. In Figure 13.14 we see that empirical cumulative density functions for the
AvgPr under the SmartCart control strategy and LatestJob intersect. Hence, it cannot be
asserted that the SmartCart policy dominates the LatestJob policy in this case.

Based on the data depicted in Figures 13.13 and 13.14, one would probably select the
SmartCart policy for implementation. However, stochastic dominance cannot be strictly
demonstrated. This is the usual case, as true stochastic dominance can seldom be demon-
strated. In most cases, trade-offs must be considered for the development of a compro-
mise solution.

In developing a compromise solution, it is desirable to employ many of the
approaches to multicriteria decision making, or Pareto optimization, that have been
developed in the planning literature. Unfortunately, most of these concepts have been
developed for deterministic systems and have not been extended to stochastic systems.
One might adopt a utility function approach, which aggregates the L individual perfor-
mance criteria into a single criterion. If this approach were to be adopted, one could
simply append another performance criterion, the utility function, to the current list of L
considered performance criteria and evaluate it for each simulation trial. A graphic, such
as the ones in Figures 13.13 and 13.14, could then be generated for the utility function in
order to compare the utility function against each individual performance function that
is considered within the utility function. Finally, one might attempt to use the principle
of stochastic dominance to assert the control policy that should be employed, based on
the statistics for the utility function.

Two problems arise when this approach is adopted. The first problem concerns the def-
inition of the appropriate utility function. The statistics computed for each performance
index under each alternative control strategy are time variant. Since the statistics for the
performance indices are time variant, it follows that the statistical characterizations gov-
erning the compromise among the performance criteria are also time variant. Hence, in
the on-line planning scenario, it is virtually impossible to define a utility function on an a
priori basis for the entire period in which on-line planning is to be addressed.

The second problem concerns the ability to demonstrate and the benefits derived from
demonstrating stochastic dominance. Even if a utility function could be defined, it is
unlikely that one control policy would dominate the others stochastically. Furthermore, a
demonstration of stochastic dominance is not a complete solution in itself. Stochastic dom-
inance provides no information about the extent to which one control policy dominates
another with respect to a given performance index, nor does it guarantee that the dominat-
ing control policy will generate a better performance index when implemented. In Figure
13.14, which includes the empirical probability density functions for the average sojourn
time (AvgTIS), we see that the SmartCart strategy dominates the FIFO strategy to a much
greater extent than it dominates the LatestJob Strategy. In the latter case the two empirical
probability density functions almost lie on top of each other.

Stochastic dominance addresses the expected outcome resulting from applying the
dominating control policy many times. However, under the on-line planning scenario,
the current situation will probably be addressed at this time only. Hence, implementation
of a control law provides an opportunity to conduct a single experiment. The outcome
of the experiment cannot be guaranteed, as the system is assumed to be stochastic and,
perhaps, chaotic.

13.3 EVOLVING SIMULATION TECHNOLOGIES FOR ON-LINE PLANNING 509

Our laboratory is currently experimenting with new ways of computing dominance
probabilities. We are now computing, in real time, the probability that one control policy
will provide a performance value that is 6 greater than the value generated by another
control policy. This dominance probability density function is calculated for all possible
combinations of performance indices and control alternatives and all possible values of
6. This is a computationally intensive operation, as there are R + 1 control alternatives
and L performance criteria to be considered, requiring that a total of LR(R+ 1)/2 domi-
nance probability distributions for 6 are to be computed in real time. Furthermore, these
probabilities are again dependent on the current state of the system and must be recom-
puted constantly. Even when these probabilistic dominance distributions are computed,
we still do not know how to employ them efficiently to obtain the best compromise
solution. This task remains a future research direction.

13.3.7 Evolving Needs for Autovalidation Procedures

As stated in Section 13.3.1, the validation process is often complex, and there are no
standard procedures that apply for addressing this task over a broad spectrum of mode-
ling situations. Even the suggestion to develop autovalidation procedures might appear
to be folly. Nevertheless, it must he recognized that real-world systems are time vari-
ant, and the models that are employed in the on-line planning scenario must be adapted
to reflect observed changes in the system dynamics. Again, there is a current need for
which there is no solution.

A major factor that contributes to the complexity of the validation process is the
underlying modeling philosophy of the simulation language chosen. Often, the mod-
eler is forced to employ modeling tricks in order to address a particular element of the
system's operation. When the modeler employs nonstandard modeling methods, model
validation and verification processes are complicated. This deficiency can be addressed
with new simulation languages that apply a modeling philosophy more congruent with
the operation of the real-world systems. As stated above, we believe that it is essen-
tial to model controller interactions for most modem automated systems. We further
believe that languages which adopt this philosophy will simplify modeling and permit
the construction of models that are more easily validated.

A second factor that complicates the validation process evolves from the use of
aggregation where the dynamics arising from the execution of several tasks is model
as the execution of a single task. A common belief is that aggregation simplifies the
validation process. This assertion has never been proven, however. In our years of mod-
eling real-world systems, we have observed that a primary contribution to the stochastic
nature of the models is derived from the aggregation process, not the system dynamics.
In fact, one can take a deterministic system and construct a model that is stochastic
due solely to aggregation. The fact is that when one ignores the detailed dynamics of
a system, one reduces the ability to predict the dynamics of that system.

Most engineering disciplines require a testing of the consequences of making simpli-
fying assumptions before application. For example, can one safely apply a linear model
when the system has nonlinear characteristics? To test the simplifying assumptions, one
must build two models, one with, and one without, the simplifying assumptions. Too
often in simulation, however, we apply simplifying assumptions that are never tested.
The required detailed models are never constructed.

It is our belief that we should model the system to the greatest detail possible to
achieve the most accurate predictions of true system performance. With this approach

510 ON-LINE SIMULATION: NEED AND EVOLVING RESEARCH REQUIREMENTS

we have found that the resulting models are typically less stochastic. In general, the
remaining stochastic elements that are truly random variables associated with phenom-
ena that are more readily measured. For example, the yield on a given process can easily
be plotted as a function of time. The time required to perform a given instruction from
a specific processing plan can be measured and statistically quantified.

It is also noted that many of the procedures employed in input analysis can be auto-
mated. This observation is, to a certain degree, substantiated by the fact that many of
these procedures have already been programmed and are now included as standard ele-
ments of most commercial simulation packages. It is our belief that if we are concerned
with statistical quantifying of simple random phenomena, there is a potential for the
development of autovalidation procedures.

However, with the statistical characterization of stochastic phenomena that have
evolved simply through the aggregation process, the validation process is typically much
more complex. In this case the modeler must develop a probabilistic distribution for a
phenomenon that represents the interaction of several random variables. These interact-
ing random variables could have been investigated independently if an aggregation had
not been adopted.

In summary, we challenge the inherent belief that the modeler should attempt aggre-
gation in order to simplify the model. New, improved simulation tools would permit the
modeler to address the detailed dynamics of the real system and should make validation
a more exacting endeavor.

13.3.8 Selection of Scheduling Alternatives

As with the foregoing concerns, the selection of scheduling alternatives is also an area
where considerable research is needed. A problem evolves with the nature of discrete-
event systems because their dynamics are explicitly tied to the definition and the execu-
tion of tasks. Unfortunately, our current planning techniques do not adequately consider
tasks. Most mathematical programming formulations for scheduling problems are tied to
the definition of decision variables. These decision variables simply do not provide the
information required to specify tasks. Too often, the modeler must make numerous sim-
plifying assumptions in order to translate the scheduling problem into a mathematical
formulation. In most cases the formulation considers the precedence relationships and
required processing durations for the scheduled job at various machines only. These for-
mulations ignore completely the constraints that arise from the provision of supporting
resources such as tooling in a manufacturing setting. These formulations also typically
do not consider alternative methods for implementing a given task. That which results
is a formulation that has little correspondence to the real-world planning task that must
be addressed.

Even if the decision can be expressed as a mathematical programming problem, the
mathematical programming problem still must be solved. Here again, there are no guar-
antees. The complexity of the resultant formulation often requires heroic efforts to gen-
erate a solution. Heuristic approaches are often adopted. More recently, next-genera-
tion search procedures such as genetic algorithms have been applied. There are numer-
ous articles from the genetic algorithm literature in which the scheduling problem is
addressed as the classic traveling salesman problem (TSP). To transform the scheduling
problem into a TSP, the modeler must once again make several simplifying assumptions
which ultimately affect the utility of the solution.

If a solution can be achieved, the task remains to transfer this solution into a con-

13.3 EVOLVING SIMULATION TECHNOLOGIES FOR ON-LINE PLANNING 51 1

trol policy that can be implemented. There are no well-tested procedures for making
this transformation. Perhaps the solution tells us the order in which each job will be
processed at each machine, but is this the control policy that we desire to implement?
Recall that it is our desire to develop a closed-loop policy that will modify the schedule
based on the current state of the system. The mathematical formulation of the problem,
however, typically ignores the stochastic nature of the system. The constraints are deter-
ministic. Seldom does the planner check the robustness of the derived solution against
the uncertainties that exist in the real system. There simply is no basis for the generation
of a closed-loop control law.

Such observations are not new. In the 1980s, there was a major initiative from several
research groups to develop scheduling capabilities using expert systems. The attempt was
to develop rule-based schedulers which would specify the control action based on the cur-
rent state of the system. Hence, this approach did lead to a closed-loop control law.

One might argue that a major impetus for the development of expert-system, rule-
based schedulers was the perceived consensus that mathematical programming could not
address the scheduling problem. Complications again arose. First, there simply were no
experts for many of these systems. This was especially true when new systems (e.g.,
flexible manufacturing systems) were brought on-line. Second, most expert systems
assumed deterministic behavior when the systems were stochastic. Third, the quality
of the schedules produced by these systems could not be tested. Expert systems do
not guarantee optimal solutions. In fact, expert systems provide no capability at all for
assessing the quality of the solutions they generate. Finally, the task of assessing the
appropriate action for every possible state is simply insurmountable. Thus rule-based
schedulers were unable to respond in all given situations.

In formulating the on-line planning schematic given in Figure 13.10 we did not make
assumptions about how the scheduling/control policy will be generated. We assumed only
that alternative control policies exist. On-line simulations are then conducted to project
performance with respect to a set of criteria. (Note that the scheduling approaches above
typically consider a single performance criterion.) We believe that the development of
scheduling approaches for these discrete-event systems will remain a major research con-
cern well into the future. Given the decades of scheduling research, this may appear to be
an astonishing statement. The fact remains that our laboratory is still encountering numer-
ous instances where operators of advanced manufacturing systems are turning off their
expensive commercial schedulers and running their systems on an ad hoc basis (e.g., first
in, first out basis) to increase their throughput and productivity.

Based on our research, we suggest that the following criteria be considered in devel-
oping a comprehensive scheduling approach:

The scheduling approach should lead immediately to the definition of tasks that will
be executed in a manner that satisfies the detailed processing plans for executing
a job. The potential for alternative processing plans should also be considered.

The scheduling approach should consider the provision of all supporting resources
essential to task execution.

The execution scheme for the planned tasks must be transferrable into a closed-loop
control policy that can be implemented immediately at the controllers contained
within the real-world system.

The feedforward information derived from the on-line simulation of the currently
implemented policy should be incorporated into the planning process.

512 ON-LINE SIMULATION: NEED AND EVOLVING RESEARCH REQUIREMENTS

Finally, on-line planning and control necessitates that both planning and control be
distributed. Currently, there is little theoretical guidance to address this requirement,
particularly in the case of discrete-event system management.

13.3.9 Implementation Considerations

Before leaving this section, perhaps it would be beneficial to mention a few concerns that
arise during the implementation of the on-line simulation and planning analyses. This
is certainly not a trivial concern. In developing on-line simulation analyses in our labo-
ratory, we have attempted to implement the algorithms in a manner that will allow for
asynchronous communication among the various implemented modules. In this regard,
our attempt has been to define computational procedures that will minimize the com-
munication among the various computational modules and to require one way commu-
nication only.

In the on-line simulation analysis used to generate Figures 13.13 and 13.14, we
adopted the following approach. First, we began with a real-time emulation for the Auto-
mated Manufacturing Research Facility operated by the National Institute of Standards
and Technology which was the subject FMS for the analysis. This emulation was pro-
grammed in C and wrote the current state information to a file on the network server's
disk every 10 seconds of emulated time. The same C code that is performing the real-
time emulation for the AMRF is also employed to generate the on-line simulation trials.
We refer to this use of the simulation code as being the simulation engine.

In this study, three different simulation engines were employed, one for each rule
considered for dispatching the material handling system. These rules included first in,
first out, the latest job, and the shortest travel distance to determine which of the pend-
ing transportation requests would be handled next. Each engine first read the current
state file stored on the network server and then generated 10 simulation trials using that
current state information. On each simulation trial, the simulation engine also com-
puted the value of the four considered performance indices for the next 100 jobs to be
manufactured by the system. These indices included the average time in the system,
the average tardiness, the average productivity and the average process utilization. The
values of the performance indices computed from the 10 trials were then written into
two other files, both with the same information, on the network server. At this point a
given simulation engine reinitialized itself using the current state information stored on
the network server and repeated the process of generating 10 more simulation trials.

As stated above, each sinlulation engine writes two files containing the project per-
formance of the system for its 10 most recent trials. One of these files for each sim-
ulation engine serves as the input to the on-line statistical analysis module. When the
on-line statistical module determines that one of its input files from one of the sim-
ulation engines is not empty, it inputs the 10 most recent trials and then updates its
performance statistics for the particular dispatching rule that was employed to generate
the latest estimates. It then checks its input files that were generated by the other sim-
ulation engines. It continues this checking and incorporates the inputted data wherever
new data is available. In addition to generating the graphic output as depicted in Figures
13.13 and 13.14, the on-line statistical analysis module also outputs a file containing its
current estimates for the empirical cumulative density function for each performance
index while operating under each dispatching rule.

The on-line statistical compromise analysis function has access to two sets of input
date. First it can use the second output file of performance estimates for the last 10

13.4 CONCLUSIONS 513

simulations as generated by a given simulation engine. It can also employ the output file
of the cumulative density functions generated by the on-line statistical analysis module.
The operation of the on-line compromise analysis module is very similar to that for the
on-line statistical analysis module. As new data is inputted into the module, the statistics
are updated and displayed to the user. The output of the statistical compromise analysis
is the rule selected for dispatching the material handling system. This is written to a
file which is then inputted by the real-time emulator for the AMRF. In this manner, the
planning loop is closed.

Although the foregoing procedure works, it is very costly in terms of input and output
requirements in its need to employ the services of the hard disk drive upon the network
server. In fact, long-term execution of the on-line simulation analyses can be detrimental
to the life of the hard disk drive. To overcome the current communication overhead, the
entire suite of program has been reprogrammed in Java. A client-server has been devel-
oped to handle the communication among the various modules. The window interfaces to
the various modules are now executable at any site on the world-wide web.

Within the next year, we hope to establish a home page for our laboratory on the
World-Wide Web where both the real-time emulation and the on-line simulation analysis
can be viewed by all. We also hope to provide detailed databases for several real-world
FMSs which the public can download and employ in the development of simulation
models for real-world FMSs. In the long term, we also hope to generate remote displays
to our physical FMS emulator where the viewer will be able to monitor its real-time
operation and state information, view its projected behavior via an on-line simulation
analysis, and make control decisions that will affect its future performance.

13.4 CONCLUSIONS

For over three decades, significant research efforts have been devoted to the discrete-event
modeling approaches and the simulation technologies needed to conduct off-line planning
analyses. In the introduction we discussed a new class of large-scale system, one utilizing
distributed control, for which we believe that current modeling, scheduling, and control
techniques are inadequate. In Section 13.2 we addressed the limitation of current modeling
approaches head on. We asserted that an essential requirement for modeling these systems
is the ability to assess the impact that the controller interactions have on the dynamics of
the system. We also asserted that the real-time management of these systems requires that
on-line planning and control be considered in an integrated fashion and that the complexity
of these systems requires that both planning and control be distributed across a hierarchy
of intelligent controllers or coordinators.

To address these requirements, in Section 13.2 we introduced the notion of the coordi-
nated object, which included an intelligent controller or coordinator to perform integrated
on-line planning and control. The recursive object-oriented coordination hierarchy was
then described as an architecture for assembling the coordinated objects into a real-time
management structure such that planning and control are both distributed and coordinated.
To model the performance of the ROOCH, a new simulation modeling methodology, the
hierarchical object-oriented programmable logic simulator was introduced and our efforts
to construct a real-time emulator for a real-world FMS were discussed.

In Section 13.3 we addressed the on-line planning and control problems that would
probably be addressed by a coordinated object. First, the off-line and on-line planning
scenarios using simulation were contrasted. Next, two forms of on-line planning (reactive

514 ON-LINE SIMULATION: NEED AND EVOLVING RESEARCH REQUIREMENTS

and proactive) were discussed. Finally, we presented a series of technologies that must be
developed to permit on-line simulation analyses to be conducted within on-line planning
scenarios. The development of most of these technologies represents new research areas.

In summary, the writing of this futuristic assessment has presented a considerable
challenge for several reasons. First, simulation is a very large topic in itself. The cou-
pling of simulation with the evolving areas of on-line planning and control for a large-
scale discrete-event system makes the task even more exciting and difficult. The writing
of this chapter drew on years of experience with real-world systems. The conclusions
and approaches are empirical; they were developed to address problems as the research
team encountered them. More theoretical research is certainly justified.

REFERENCES

Albus, J., and A. Meystel (1995). A reference model architecture for design and implementation
of semiotic control in large and complex systems, in Architectures for Semiotic Modeling and
Situation Analysis in Large Complex Systems: Proceedings of the 1995 ISIC Workshop, J .
Albus, A. Meystel, D. Pospelov, and T. Reader, eds., AdRem Press, Bala Cynwyd, Pa., pp.
21-32.

Antonacci, L. A. (1992). Experimentation in stochastic compromise analysis for real-time mul-
ticriteria decision making, unpublished master's thesis, W. J. Davis, advisor, Department of
General Engineering, University of Illinois, Urbana, Ill.

Astrom, K. J., and B. Wittenmark (1989). Adaptive Control, Addison-Wesley, Reading, Mass.

Bazaraa, M. S., D. Sherali, and C. M. Shetty (1993). Nonlinear Programming: Theory und Appli-
cations, 2nd ed., Wiley, New York.

Booch, G. (1991). Object Oriented Design with Applications, Benjamin-Cummings, Redwood
City, Calif.

Cassandras, C. G. (1993). Discrete Event Systems: Modeling and Perjormance Analysis, Aksen
Associates.

Davis, L. (1987). Genetic Algorithms and Simulated Annealing, Pitaan Publishing, London.

Davis, W. J. (1992). A concurrent computing algorithm for real-time decision making, Proceed-
ings of the ORSA Computer Science and Operations Research: New Developments in Their
Interfaces Conference, 0. Balci, R. Sharda, and S. Zenios, eds., Pergamon Press, London, pp.
247-266.

Davis, W. J., H. Wang, and C. Hsieh (1991). Experimental studies in real-time, Monte Carlo
simulation, IEEE Transactions on Systems, Man and Cybernetics, Vol. 2 1, No. 4, pp. 802-8 14.

Davis, W. J., A. T. Jones, and A. Saleh (1992). A generic architecture for intelligent control sys-
tems, Computer Integrated Manufacturing Systems, Vol. 5, No. 2, pp. 105-1 13.

Davis, W. J., D. L. Setterdahl, J. G. Macro, V. Izokaitis, and B. Bauman (1993). Recent advances in
the modeling, scheduling and control of flexible automation, in Proceedings of the 1993 Winter
Simulation Conference, G. W. Evans, M. Mollaghasemi, E. C. Russell, and W. E. Biles, eds.,
Society for Computer Simulation, San Diego, Calif., pp. 143-155.

Davis, W. J., J. J. Swain, G. Macro, and D. L. Setterdahl (1994). An object-oriented, coordination-
based simulation model for the RAMP flexible manufacturing system, in Proceedings of the
Flexible Automation and Integrated Manufacturing Conference, M. M. Ahmad and W. G. Sul-
livan, eds., Begell House, New York, pp. 138-147.

Davis, W. J., F. G. Gonzalez, J. G. Macro, A. C. Sieveking, and S. V. Vifquain (1995a). Hyper-
linked architectures for the coordination of large-scale systems, in Architectures for Semiotic
Modeling and Situation Analysis in Large Complex Systems: Proceedings of 1995 ISIC Work-

REFERENCES 51 5

shop, J . Albus, A. Meystel, D. Pospelov, and T. Reader, eds., AdRem Press, Bala Cynwyd,
Pa., pp. 21-32.

Davis, W. J., F. G. Gonzalez, J. G. Macro, A. C. Sieveking, and S. V. Vifquain (1995b). Hyper-
linked applications and its evolving needs for future simulation, in Proceedings of the 1995
Winter Simulation Conference, C. Alexopoulos, K . Kang, W. R. Lilegdon, and D. Goldsman,
eds., Society for Computer Simulation, San Diego, Calif., pp. 186-193.

Davis, W. J., J. J. Swain, G. Macro, A. L. Brook, M. S. Lee, and G. S. Zhou (1996). Devel-
oping a real-time emulation/simulation capability for the control architecture to the RAMP
FMS, a state-of-the-art tutorial in Proceedings of the 1996 Winter Simulation Conference, J .
M. Charnes, D. J. Morrice, D. T. Brunner, and J. J. Swaim, eds., Society for Computer Sim-
ulation, San Diego, Calif., pp. 171-179.

Davis, W. J., A. C. Brook, and M. S. Lee (1997). A new simulation methodology for master
production scheduling, Proceedings of the 1997 IEEE International Conference on Systems,
Man and Cybernetics.

Davis, W. J., J. Macro, and D. Setterdahl. (to appear). An integrated methodology for the modeling,
scheduling and control of flexible automation, Journal of Robotics und Intelligent Control.

Drake, G. R., J. S. Smith, and B. R. Peters (1995). Simulation as a planning and scheduling
tool for flexible manufacturing, in Proceedings of the 1995 Winter Simulation Conference,
C. Alexopoulos, K. Kang, W. R. Lilegdon, and D. Goldsman, eds., Society for Computer
Simulation, San Diego, Calif., pp. 805-8 12.

Dullum, L. M., and W. J. Davis (1992). Expanded simulation studies to evaluate tool delivery
systems in a FMC, in Proceedings of the 1992 Winter Simulation Conference, J. J . Swain, D.
Goldsman, R. C. Crain, and J. R. Wilson, eds., Society for Computer Simulation, San Diego,
Calif., pp. 978-986.

Eykhoff, P. (1974). System Identijcation: Parameter and State Identification, Wiley, New York.

Fishbum, P. C. (1987). Nonlinear Preference and Utility Theov , Johns Hopkins University Press,
Baltimore, Md.

Flanders, S. W., and W. J. Davis (1995). Scheduling a flexible manufacturing system with tooling
constraints: an actual case study, Intei$aces, Vol. 25, pp. 42-55.

Goldberg, D. E. (1989). Genetic Algorithms in Search, Optimization and Machine Learning,
Addison-Wesley, Reading, Mass.

Gonzalez, F. G. (1997). Real-time distributed control and simulation of a physical emulator of a
flexible manufacturing system, unpublished doctoral thesis, W. J. Davis, advisor, University
of Illinois at Urbana-Champaign.

Gonzalez, F. G., and W. J. Davis (1997). A simulation-based controller for distributed discrete-
event systems with application to flexible manufacturing, in Proceedings of the 1997 Winter
Simulation Conference, S. Andradbttir, K. J. Healy, D. H. Withers, and B. L. Nelson, eds.,
Society for Computer Simulation, San Diego, Calif., pp. 845-852.

Govindaraj, T., L. F. McGinnis, C. M. Mitchell, D. A. Bodner, S. Narayanan, and U. Sreekanth
(1993). OOSIM: a tool for simulating modem manufacturing systems, in Proceedings of the
1993 National Science Foundation Grantees in Design and Munufacturing Conference, pp.
1055-1062.

Harmonosky, C. M. (1990). Implementation issues using simulation for real-time scheduling, con-
trol, and monitoring, in Proceedings of the 1990 Winter Simulation Conference, 0. Balci, R.
P. Sadowski, and R. E. Nance, eds., Society for Computer Simulation, San Diego, Calif., pp.
595-598.

Harmonosky, C. M. (1995). Simulation-based real-time scheduling: review of recent develop-
ments, in Proceedings of the 1995 Winter Simulation Conference, C. Alexopoulos, K . Kang,
W. R. Lilegdon, and D. Goldsman, eds., Society for Computer Simulation, San Diego, Calif.,
pp. 220-225.

516 ON-LINE SIMULATION: NEED AND EVOLVING RESEARCH REQUIREMENTS

Harmonosky, C. M., and S. F. Robohn (1991). Real-time scheduling in computer-integrated man-
ufacturing: a review of recent research, Journal of Computer Integrated Manufacturing, Vol.
4, pp. 331-340.

Hedlund, E., W. Davis, and P. Webster (1990). Using computer simulation to compare tool delivery
systems in an FMC, in Proceedings of the 1990 Winter Simulation Conference, 0. Balci, R.
P. Sadowski, and R. E. Nance, eds., Society for Computer Simulation, San Diego, Calif., pp.
64 1-645.

Himmelblau, D. M. (1972). Applied Nonlinear Programming, McGraw-Hill, New York, pp.
148-158.

Ho, Y. C. (1989). Dynamics of discrete-event systems, Proceedings of the IEEE, Vol. 77, No. 1,
pp. 3-6.

Law, A. M., and W. D. Kelton (1991). Simulation Modeling and Analysis, 2nd ed., McGraw-Hill,
New York.

Ljung, L. (1987). Systenz Identijcation: Theory for the User, Prentice Hall, Upper Saddle River,
N.J.

Meystel, A. (1995). Semiotic Modeling and Situation Analysis: An Introduction, AdRem Press,
Bala Cynwyd, Pa.

Mize, J. H., H. C. Bhuskute, and M. Kamath (1992). Modeling of integrated manufacturing sys-
tems, IIE Transactions, Vol. 24, No. 3, pp. 14-26.

Narayanan, S. D., A. Bodner, U. Sreekanth, S. J. Dilley, T. Govindaraj, L. F. McGinnis, and C.
M. Mitchell (1992). Object-oriented simulation to support operator decision making in semi-
conductor manufacturing, in Proceedings of the 1992 International Conference on Systems,
Man and Cybernetics, IEEE, Piscataway, N.J., pp. 1510-1519.

Peters, B. A., J. J. Swain, S. Smith, J. Curry, and C. LaJimodiere (1996). Advanced tutorial: simu-
lation based scheduling and control, in Proceedings of the 1996 Winter Simulation Conference,
J . M. Charnes, D. J. Monice, D. T. Brunner, and J. J. Swaim, eds., Society for Computer Sim-
ulation, San Diego, Calif., pp. 194-198.

Seiveking, A. C., and W. J. Davis (1995). An object-oriented simulation language for master
production scheduling, in Proceedings of the 1995 IEEE International Conference on Systems,
Man and Cybernetics, A. C. Sieveking and W. J. Davis, eds., pp. 189-194.

Smith, J. S., R. A. Wysk, D. T. Sturrock, S. E. Ramaswamy, G. D. Smith, and S. B. Joshi (1994).
Discrete event simulation for shop floor control, in Proceedings of the 1994 Winter Simulation
Conference, J. D. Tew, S. Manivannan, D. A. Sadowski, and A. F. Seila, eds., Society for
Computer Simulation, San Diego, Calif., pp. 962-969.

Tirpak, T. M., S. M. Daniel, J. D. LaLonde, and W. J. Davis (1992a). A fractal architecture for
modeling and controlling flexible manufacturing systems, IEEE Transactions on Systems, Man
and Cybernetics, Vol. 22, No. 5, pp. 564-567.

Tirpak, T. M., S. J. Deligiannis, and W. J. Davis (1992b). Real-time scheduling of flexible man-
ufacturing, Manufacturing Review (ASME), Vol. 5, No. 3, pp. 193-212.

Whitt, S. (1979). Comparing probability measures on a set with intransitive preference relation,
Management Science, Vol. 25, No. 6, pp. 505-5 11.

Wolfram, S. (1988). Fundamentals of multicriteria optimization, in Multicriteria Optimization in
Engineering and in the Sciences, S. Wolfram, ed., Plenum Press, New York.

PART IV

APPLICATION AREAS

CHAPTER 14

Simulation of Manufacturing and
Material Handling Systems

MATTHEW W. ROHRER
AutoSimulations Incorporated

14.1 INTRODUCTION

Manufacturing and material handling systems provide a wealth of applications for sim-
ulation. Simulation has been used to solve manufacturing problems for many years, as
indicated in the annual Proceedings of the Winter Simulation Conference. There are
several reasons for this great use of simulation, including:

Motivation is needed for manufacturers to stay competitive. . A high level of automation is applied to manufacturing. . Trends such as just-in-time manufacturing need to be tested.

Manufacturing systems are quite well defined. . Manufacturing and material handling systems are usually too complex for other
analytic techniques.

In a global economy, successful manufacturers are constantly changing the way they
do business in order to stay competitive. Companies are asking such questions as:

When should the next piece of equipment be purchased?
How many people will be needed next month to fill orders?

Can a new order be accepted without delaying other work?
How will the new plant operate five years from now?

How can work-in-process inventory and cycle time be reduced while increasing
throughput?

Simulation provides a method for finding answers to these and other questions about

Handbook of Simulation, Edited by Jerry Banks.
ISBN 0-471-1 3403-1 O 1998 John Wiley & Sons, Inc

520 SIMULATION OF MANUFACTURING AND MATERIAL HANDLING SYSTEMS

the behavior of a manufacturing system. Savolainen et al. (1995) indicate that simulation
models are really formal descriptions of real systems that are built for two main reasons:

1. To understand conditions as they exist in the system today.

2. To achieve a better system design through performing what-if analysis.

Law and Kelton (1991) and Banks et al. (1997) give many benefits for simulation. Per-
haps the most important benefit is that after the model is validated and verified, proposed
changes can be investigated in the simulation model rather than in the real system.

As a result of material handling requirements and repetitive tasks, a major increase
in automation has occurred in manufacturing. Robots perform many tasks that human
beings used to perform. Ergonomic issues continue to drive the use of automation where
repetitive tasks can cause injury to people. Also, automated material handling systems
help move products quickly to the point of use, enabling manufacturers to increase their
production. Automation projects require significant capital expenditures, and simulation
can be used to test drive new equipment before purchasing it.

There have been many trends in manufacturing methods with names such as just-in-
time (JIT), flexible work cells, and Kanban. Types of manufacturing systems as defined
by Harrell and Tumay (1996) include, but are not limited to:

1. Project shop

2. Job shop

3. Cellular manufacturing

4. Flexible manufacturing systems

5. Batch flow shop

6. Line flow systems (production and assembly lines, transfer lines)

For many manufacturers, implementing a change in their operation can be risky.
Once again, simulation can be used as the test bed for evaluation of new manufacturing
methods and strategies.

One of the tasks of industrial and manufacturing engineers is to look for ways to
improve manufacturing processes. Process improvement starts with measurement. The
axiom "one can't improve what can't be measured" comes to mind. Using engineering
discipline, manufacturing systems can be measured, data collected, and processes ana-
lyzed. Measurement efforts are the first step to better understanding of manufacturing sys-
tems. Where processes have been measured and data collected, simulation can be applied
as a decision-making tool to enhance system understanding. When systems are not well
defined or understood, it is difficult to build accurate models that are worthwhile.

Manufacturing and material handling systems can be arbitrarily complex and diffi-
cult to understand. The number of possible combinations of input variables can be over-
whelming when trying to perform experimentation. Other methods of analysis, such as
spreadsheet models or linear programs, may not capture all the intricacies of process
interaction, downtime, queueing, and other phenomena observed in the actual system.
After manufacturing system data have been collected and verified, simulation can be
used to represent almost any level of detail to provide an accurate representation of
a real-world system. From a model of the system, the behavior of the system and its
components can be better understood.

14.1 INTRODUCTION 521

When Should Simulation Be Used? Simulation is used most often in the planning
and design of new or existing manufacturing facilities. Whenever a new system is being
designed, and significant financial resources will be expended, simulation should be one
of the steps in the design process. In the late 1990s, some companies use minimums from
$50,000 to $100,000 as the capital expenditure level which requires that a simulation
be performed. Most new facilities run into the millions or even billions of dollars in
construction and equipment costs. The average simulation takes 4 to 10 person-weeks to
complete, and with late 1990s prices of around $5000 per week, the cost extends from
$20,000 to $50,000. If a manufacturer saves just one piece of equipment, or eliminates
a potential bottleneck, the simulation will have paid for itself. Once the bricks and
mortar are in place and the machines have been set on the floor, it is expensive to make
changes, perhaps 10 times as expensive as making the change when the system was
being designed.

While some models are used to plan and design, other models are used in the day-
to-day operation of manufacturing facilities. These "as built" models provide manufac-
turers with the ability to evaluate the capacity of the system for new orders, unforeseen
events such as equipment downtime, and changes in operations. Some operations mod-
els also provide schedules that manufacturers can use to run their facilities. Simulation
can complement other planning and scheduling systems to validate plans and confirm
schedules. Before taking a new order from a customer, a simulation model can show
when the order will be completed and how taking the new order will affect other orders
in the facility. Simulation can be used to augment the tasks of planners and schedulers
to run the operation with better efficiency.

Experimentation with an actual system can be a costly endeavor. In a service industry
such as banking, it is easy to add another teller to the operation without causing adverse
effects in the operation. In a manufacturing facility, any disruption in the operation can
cause problems that could be catastrophic. For example, an automotive supplier provides
trim parts to an assembly line. The automaker keeps a minimum inventory of the parts
at the line, following JIT principles and reducing work-in-process (WIP) inventory. The
supplier attempts a process change that backfires and causes a delay in production of 8
hours. Because the automaker only has 4 hours worth of inventory on site, the assembly
plant is forced to shut down, idling hundreds of workers. The automaker decides to find
another supplier and takes its business elsewhere. With an accurate model, the supplier
could have tested many different scenarios before making process changes on the shop
floor. In this example the cost of idling workers as well as the lost business could easily
have justified using simulation.

There are cases where simulation is not the appropriate tool. For example, when a
closed-form solution is possible, simulation would be an unduly expensive alternative.
Banks and Gibson (1997) give 10 rules when simulation is not the appropriate tool.

What Are the Steps in Getting Started with Simulation? Once the need to build
a simulation model is recognized, the next step is to get a simulation project started.
The size of the firm will determine how you proceed with a study. The following are
some options for getting started:

Use internal resources.

Enlist the services of a qualified simulation consultant.

Use a simulation consultant in combination with internal resources.

522 SIMULATION OF MANUFACTURING AND MATERIAL HANDLING SYSTEMS

Regardless of the approach taken, be sure that objectives are clearly defined for the
project. Also, when using internal resources, remember that the process of simulation
is more than learning how to use a simulation tool. A course in simulation from a
university or software vendor or other provider can help ensure the success of your first
project. Banks and Gibson (1996) prescribe 12 steps in getting started with simulation.

What Software Should Be Used? The selection of simulation software depends
on many considerations. These considerations and a brief description of numerous sim-
ulation software packages are covered in Chapter 25.

Chapter Outline. This chapter is organized into two sections, the first on manufac-
turing and the second on material handling. In each of the sections, issues specific to
the topic are discussed. An example as well as case studies are provided to enhance
understanding of the topic. Finally, a synopsis of recent articles from the Proceedings
of the Winter Simulation Conference is given.

14.2 MANUFACTURING SYSTEMS

Manufacturing is the process of making a finished product from raw material using
industrial machines. Almost everything in the home, at the workplace, or in moving
between the two is the result of manufacturing. Examples include automobiles, air-
planes, ships, home appliances, computers, and furniture. The list goes on. But how
do these products get made, and what are the issues facing those who manufacture
these goods?

One major issue for manufacturers is competition. In a free-market economy, anyone
with a good idea and some money can start a manufacturing business. Competitive
pressures force manufacturers to look at different ways of doing business so they can
continue to produce. Manufacturing and industrial engineers are tasked with finding
ways to improve operations through analysis.

Another issue is managing change. To stay competitive, manufacturers are changing
their operations constantly. The companies that manage change most effectively come
out on top. Change is inevitable, and those companies that resist it often find themselves
out of business.

Since manufacturing covers a wide range of products and manufacturing methods, it
would take an entire book to address every possible manufacturing operation and how
simulation applies. This chapter gives an overview of the key issues in manufacturing
operations as they relate to simulation. Manufacturing can be broken down into two
types, discrete and batch. Discrete manufacturing involves individual pieces or parts.
Batch manufacturing applies to work-in-process that is handled as a fluid or bulk solid.
Simulation has been applied to both types of manufacturing; however, most applications
have been in the discrete area.

Before manufacturing issues are discussed in detail, it is important to cover some
"commonsense" guidelines for model level of detail. Although this topic has been dis-
cussed in other chapters, a brief review will help the reader decide which details are
important to their application.

14.2 MANUFACTURING SYSTEMS 523

Model Validation Time -
Figure 14.1 Model detail during validation.

14.2.1 Guidelines for Simulation Model Level of Detail

Every model is an approximation of the real world. It is a given that a modeler will
leave out some details when building a model of the actual system. In the simulation
community, this concept is referred to as the level of abstraction. The model will be
an abstraction, or approximation, of the actual system. The important point to note is
that some details will be omitted from a model, and choosing the right details to omit
determines whether a simulation study will be successful. For example, do we include
the janitor who sweeps around a drill in a machine shop? If the sweeping operation is
not critical to the output of the machine shop, the answer is no.

Engineers are trained to be detail oriented. It goes against the grain to ask an engineer
to omit information from a model. Simulation modelers often discuss the accuracy of their
models in terms of a percent. The percent is usually how close the model gets to the results
of the actual system. To get from a 95% accurate model to a 98% accurate model may take
more effort than it takes to build the original model. Thus some compromise must be made
or the simulation becomes impractical. A good rule is that it is easier to add detail later than
it is to recoup time lost by adding unnecessary detail. Figure 14.1 shows how details are
added as the model validation process proceeds. Note that during model validation, details
are added as the model approaches an acceptable level of accuracy.

The process of validation is an iterative one. The modeler adds new details to the
model, runs the model, and furnishes results to the project team. If the results are not
sufficiently accurate, the project team identifies other details that should be included.
The modeler adds these details, and the cycle starts anew. At some point, the project
team must agree that the model is "close enough" to provide useful information, and
the validation process gives way to experimentation.

14.2.2 Components of Manufacturing Systems

Although there are many types of manufacturing systems used to make the wide array
of products available today, there are some common elements that describe most man-
ufacturing operations. These common elements should be the basis for input data used

524 SIMULATION OF MANUFACTURING AND MATERIAL HANDLING SYSTEMS

TABLE 14.1 Manufacturing Components

Product Resources Demand Control

Parts/pieces Equipment layout Customer orders Warehouse management
Routings Number of machines Start date Inventory control
Process times Downtime Due date Shop floor control
Setup times Preventive maintenance WIP inventory WIP tracking
Bill of materials Storage areas PLCs
Yield Tools/fixtures Station rules
Rework Labor-classification

Shift schedules

by a simulation model. Table 14.1 shows these common elements in manufacturing
systems. To build an accurate simulation model, the data in this table should be available
and verified to be accurate. We briefly describe the data from this table in the following
sections.

Product. Part, lots, or products are being manufactured. Products may move in man-
ufacturing groups called lots that are made up of a number of pieces. Products may
also proceed through the manufacturing process one at a time, like an automobile on an
assembly line. Products have routings, which define the processing sequence. Product
routing can be quite complex, as in a semiconductor wafer fabrication process, or it
can be sequential, as in an automotive assembly line. The routing defines how product
flows through the manufacturing process. For each operation, the processing and setup
times determine how long a machine or operator will perform the given task. These
times can be deterministic (constant) or stochastic (random), and can be machinelpart
determined or purely machine determined.

The bill of materials defines the subassemblies that comprise constituent final assem-
bly. These subassemblies must be available for processing to proceed. Subassemblies
also have a processing sequence of their own and must be either produced or purchased
with sufficient lead time to be available for final assembly. Some simulation systems
have features that allow the bill of materials to be modeled easily.

Yield and rework are found in many manufacturing operations. Because of imper-
fections in the manufacturing process, occasionally, products have to be scrapped or
reworked. Both these factors affect the overall throughput of the operation, as well as
other performance metrics. Yield and rework should be considered where their impact
is noticeable.

Resources. Resources are used to manufacture products. Resources include machines
and human beings as well as tools, fixtures, material handling systems, storage areas,
and so on. The equipment layout affects the flow of operations, and if material handling
is an issue, the layout should be included in a simulation.

Machines have both random failures as well as scheduled preventive maintenance.
There are times when these machines are unavailable to do work, even though other
machines are still working. Rerouting of work during machine down periods can have
a major affect on the operation and should be included in a simulation model.

14.2 MANUFACTURING SYSTEMS 525

Human resources have skill levels and work on shift schedules. It is important to
model shifts and downtimes when not all areas in a manufacturing facility are on the
same schedule. If all machines and labor start and stop at the same time, and startup
effects are negligible, it is not necessary to model shifts.

Demand. The demand on a manufacturing system is defined by customer orders. Cus-
tomers usually order specified quantities of products and want them delivered on a par-
ticular date. The manufacturer is responsible for determining when to start products so
that due dates can be met. Simulation can help determine the latest start date that will
allow due dates to be met.

In a manufacturing operation, there is always some work-in-process. Most simulation
models assume that the facility starts empty and idle. Often, simulation models need to
be executed for a certain period of time to initialize the WIP inventory. If the model is
large, this initialization time can be quite long, and it becomes necessary to find a way
to get faster execution from the model. The answer is to read initial inventory from an
external data source into the model. This allows the model to start just as the facility
starts, with some WIP.

Control. Computer-based control systems make decisions about how product should
be routed, collect information about current status of product, or maintain proper inven-
tory levels. These control systems interface with simulation in two ways. First, they can
provide input data to be used in the simulation. Examples are shop floor control sys-
tems that collect processing times and WIP tracking systems that can provide up-to-date
inventory levels. Second, these systems often make operational decisions that should be
represented in a simulation. Replication of control algorithms in a simulation model is
one of the bigger challenges faced by model builders.

Local scheduling decisions are also called station rules. For each work center, the
station rule is really an answer to the question "What do I work on next?" Station
rules can be as simple as first in, first out (FIFO), or the rule can use a very complex
decision tree with many steps. Making intelligent decisions at the machine level has
been the topic of many a master's thesis, and there are many views on how best to
make local scheduling decisions. For simulation it becomes important to be able to
represent what happens in the real world with a high degree of accuracy. One should
explore the complexities of manufacturing process decision making with the modeler
to determine the right level of abstraction and the simulation tool that is most appro-
priate.

14.2.3 Downtime

Downtime is an aspect of manufacturing that is sometimes overlooked when building
a simulation. Downtimes and failures can, however, have a significant effect on the
performance of manufacturing systems. Banks et al. (1996) state that there are four
options for handling downtime:

I. Ignore it.

2. Do not model it explicitly but adjust processing time appropriately.

526 SIMULATION OF MANUFACTURING AND MATERIAL HANDLING SYSTEMS

3. Use constant values for time-to-failure and time-to-repair.

4. Use statistical distributions for time-to-failure and time-to-repair.

Of the four options, using statistical distributions for time-to-failure and time-to-
repair is preferred. What this means to the manufacturer is that sufficient downtime data
have to be collected to fit statistical distributions correctly. There are software packages
available that help the modeler fit collected data to statistical distributions. One of the
requirements for fitting distributions to data is that enough samples have been collected.
In most cases, the more samples available, the better the chances that an accurate fit can
be achieved. A practical starting point is at least 20 samples, but 50 to 100 is preferred.
If at least 20 samples of downtime for a particular machine cannot be collected, that
machine may not go down enough to have an effect on the operation.

In the absence of good downtime data, but where downtime is suspected to have
an effect, the simulation model should be used to determine the effects of downtime
on the system. Using the model, a sensitivity analysis can be performed with different
time-to-failure and time-to-repair values and distributions. When analyzing the effects
of downtime, the simulation analyst should not only look at the overall performance
measures such as throughput and cycle time, but also at the local queueing and conges-
tion found at work centers.

Preventive maintenance (PM) is also considered a type of downtime, but it is often
scheduled at regular intervals. PMs can occur during a particular time of the day or after
a specified number of operations have been completed by the work center. In some cases,
PMs are scheduled during an off shift and thus do not affect the operation. When a PM
interrupts normal operations at a work center, it should be included in a simulation.

One method used to validate models is to allow downtime to be toggled on and off
for all equipment. By turning off all downtime, the model will produce the theoretical
maximum value for throughput. As an example, consider an automotive assembly line
that is expected to manufacture 55 jobs per hour (JPH). Downtime of all subsystems is
included in the model, and with downtime turned on the model achieves only 50 JPH.
If the downtime is turned off, the throughput is 53 JPH, 2 JPH short of the 55 JPH goal.
Through careful analysis of the model, it was determined that the synchronization of two
material handling devices was responsible for the 2 JPH shortfall. With downtime turned
on, it would have been difficult to determine the exact cause of the production shortage.
The use of simulation in the automotive industry is such an important application area
that it is the focus of Chapter 15.

Catastrophic and rare events are downtime that can effect system performance. In
most cases, rare events are ignored for one of several reasons:

The effort to model the rare event is too great.

The effect of the rare event is not significant.

Not enough data exist to model the rare event accurately.

Events such as acts of nature, labor strikes, and power failures can literally shut
down a manufacturing operation. Because they are not part of normal operation and
are very difficult to predict, catastrophic events can be ignored for most simulation
activities. A simulation model can be used to determine recovery strategies from rare
and catastrophic downtimes.

14.2 MANUFACTURING SYSTEMS 527

Rework Re-entrancy

Figure 14.2 Rework and reentrancy. (From Mittler et al., 1995.)

14.2.4 Rework and Reentrancy

Reentrant process flow occurs when a particular station or work cell must be visited
more than one time by the same part. Rework occurs when a part must be run through a
work cell because the prior processing step was not completed successfully. Figure 14.2
shows the difference between rework and reentrancy. Using simulation it is possible to
determine the effects of rework and reentrancy on a system. Rework is typically given
as a percent of the parts processed, while reentrancy is provided in the part routing as
explicit steps where the same machine(s) must be used. In either case, the true effects on
queueing and congestion can be determined using simulation. Rework and reentrancy
should not be overlooked. Additional information about the reentrancy phenomenon and
the role of simulation is available from Banks and Dai (1997).

14.2.5 Handling Stochastic (Random) Events

For most manufacturing systems, one of the reasons to model is the presence of ran-
dom events. Random number generation and random variate generation are discussed
in Chapters 4 and 5 , respectively. In this chapter, some of the common random events
encountered in manufacturing systems are discussed. Random events in manufacturing
systems are associated with:

Processing time

Setup time

Downtime (time to fail and time to repair)

Yield percentages

Transportation time

Truck arrivals at receiving docks

For all random events it is important to represent the distribution of randomness
accurately in the simulation model. As mentioned earlier, there are several distribution-
fitting software packages that can assist in finding the right distribution for collected
data. Choosing the right distribution is a very important part of the simulation process.
When a known distribution cannot be found for a set of data, an empirical distribution
can be used. Two types of empirical distributions, discrete and continuous, are discussed
in Banks et al. (1996).

An example illustrates the importance of fitting the correct distribution to a given
data set. For time to repair on a lathe, 100 samples have been collected over a one-year

528 SIMULATION OF MANUFACTURING AND MATERIAL HANDLING SYSTEMS

Samples

Time-to-repair

Figure 14.3 Empirical and exponential distributions.

period, the longest being 3 hours. Input data-fitting software show that the exponential
distribution fits but only poorly. It is decided that an empirical distribution for the lathe
mean time to repair (MTTR) is to be used. Figure 14.3 shows the empirical and expo-
nential distributions for the data. Notice that the empirical distribution has a maximum
while the exponential approaches the x-axis asymptotically. The empirical distribution
does not generate values greater than the observed maximum, but the exponential distri-
bution does. The events that occur on the tail of the exponential distribution could have
a major effect on the system. Using the exponential distribution, it is possible to get
values of 10 or even 20 hours for MTTR, although the probability is low. This example
illustrates the importance of choosing the right distribution.

Bratley et al. (1987) recommend a mixed empirical and exponential distribution. This
approach provides for the tail effects that are seen as rare events in the actual system.
Like any distribution, the mixed distribution should be used with caution. Thorough
sensitivity analysis should be performed to understand the effects of using an incorrect
distribution.

An option to the empirical distribution is to use the actual data in a simulation model.
An example would be trucks arriving at a receiving dock. Models that use actual data
are called trace driven by Banks et al. (1996). Trace-driven models read actual data
from files outside the simulation model. An important concern when using trace-driven
models is that only the values observed historically will be repeated in the simulation.

14.2.6 Measures of Performance

The methods used to measure model performance should be the same as those used
in the real system. Otherwise, it may be difficult to validate the model. With any of
the performance measures discussed in this section, it is important to collect the aver-
age as well as the variability. Variability is usually indicated by the standard deviation,
but maximum and minimum are also helpful in measuring performance. The follow-
ing statistics are typically collected from manufacturing systems and should thus be
provided by models of such systems:

14.2 MANUFACTURING SYSTEMS 529

Throughput (aggregate as well as for different areas in the system)

Cycle time (makespan)

Queueing at work locations

Response time of material handling equipment
WIP (work in process)

Utilization of resources (equipment and labor)
System specific performance measures (scrap rate, waiting time at a process)

It is important to note that optimizing on one measure of performance can adversely
affect another measure of performance. For example, if WIP is reduced, equipment uti-
lization usually goes down. Understanding the relationships between measures of per-
formance can help in the experimentation phase of a model.

14.2.7 Analysis Issues

Using the performance measures described in Section 14.2.6, model users (analysts and
engineers) experiment with a model to understand the behavior of the system under
varying conditions. The issues often encountered in analysis include:

Determining the bottleneck

Determining required staffing levels
Evaluating the scheduling of tasks

Evaluating the control system
Recovery strategies for random events and surges

One of the most often asked questions of a simulation analyst is: "Where is my
bottleneck?'Bottleneck identification can be an arduous task, as there are possibly many
factors that contribute to a bottleneck. As changes are made to the model to find the
bottleneck, the bottleneck itself can move from one work center to another. The analyst
needs to look at performance measures at both the local and global level within the
model to determine the bottleneck. Once the bottleneck is found, proposed solutions
should be tested using the model.

Manufacturing system models can also be used to determine staffing requirements
for an operation. The number of operators as well as operator certification levels should
be used as input, with operator utilization used as the evaluation criteria. Order launch
and resource scheduling can also be evaluated using simulation-based finite-capacity
scheduling (FCS) systems, as discussed in Chapter 21. Scheduling decisions can be
evaluated with a simulation model prior to implementing them on the shop floor.

In modem manufacturing systems, the computer controls many decisions affecting
performance. No software system is without defects. Thus tools such as simulation can
be used to test the control algorithms before they are connected to the physical equip-
ment. The more intricate the control system, the greater the need to do simulation-based
testing prior to commissioning.

14.2.8 Manufacturing Example: Wheel Shop

Let us now use a hypothetical machine shop to illustrate some of the simulation issues
germane to manufacturing. This machine shop makes aftermarket specialty wheels for

530 SIMULATION OF MANUFACTURING AND MATERIAL HANDLING SYSTEMS

Figure 14.4 Wheel shop layout.

cars and light trucks. The wheels come in two types, custom and standard, and a variety
of sizes are manufactured to accommodate different tire sizes. A picture of the machine
shop layout is shown in Figure 14.4.

There are five machines in the shop; a grinder, polisher, lathe, mill, and inspection
station. At present only three operators set up and process jobs at the machines. There
are two different processing sequences, or routings, for the two types of wheels made.
The routings are shown in Table 14.2. As shown in the table, there are two different
routings. The machine order is the same; however, the processing times, setup require-
ments, and setup times are different for the two types of wheels. The format shown
for the routing is generic. For a manufacturing application, it is good practice to read
input data, like routings, in the user-supplied format. To facilitate experimentation and
reduce errors, a model should read data as is, and modification of the data for simulation
purposes should be kept to a minimum.

At this point we've described the equipment and logical routing of parts in the wheel
shop. Table 14.3 shows one week of customer orders to be produced in the wheel shop.

TABLE 14.2 Typical Routing

Route Process Setup
Name Step Machine Time Units Setup Time Units

Custom 1
2
3
4
5

Standard 1
2
3
4
5

Lathe
Drill
Grind
Polish
Inspect
Lathe
Drill
Grind
Polish
Inspect

Custom
Custom
Custom
Custom
Custom
Standard
Standard
Standard
Standard
Standard

hr
hr
min
hr
min
hr
hr
min
hr
min

14.2 MANUFACTURING SYSTEMS 531

TABLE 14.3 Weekly Customer Orders

Order P~ecer Start Due

15 Custom

15 Standard

I6 Custom

15 Standard

I6 Custom

17 Standard

16 Custom

16 Standard

16 Custom

16 Standard

The orders are for three different-size wheels, 15, 16, and 17 in., in both standard and
custom configurations. The orders will all be started on Monday, October 26 and must
ship by the end of the week, which is October 30.

The questions to be answered are as follows:

1. How many operators are needed for the orders that are scheduled?
2. If the operating rule is changed for the machines, can the orders be completed in

a more timely fashion?

3. What is the utilization of the equipment?

4. What is the utilization of the operators?

To answer the first question, the simulation will be run with two, three, and four
operators, and the results compared. The number of orders completed and operator uti-
lization will be used to measure the results. From Table 14.3 there are I0 orders to be
processed in the week. Table 14.4 shows the simulation results of three scenarios. It
appears that four operators are needed to handle the workload required by the current
orders. Figure 14.5 shows a Gantt chart of the operation using four operators.

TABLE 14.4 Determining the Number of Operators Required

Number of Operators Orders Completed Operator Utilization

532 SIMULATION OF MANUFACTURING AND MATERIAL HANDLING SYSTEMS

Lot5
Lot6
Lot 7
Lot8
Lo19

Lot lo
Day 1 Day 2 Day 3 Day 4

Figure 14.5 Gantt chart of wheel shop.

As can be seen from Figure 14.5, the orders are completed but not by their due date.
A little overtime has to be worked to get the last two orders shipped. Also notice that
there are many setups for each one of the wheel lots. In fact, almost every processing
step has a setup before it. This raises the second question. There is an option of changing
the operating rule for each work center. Currently, the shop uses a first in, first out (FIFO)
rule, working on the jobs as they appear in the work queue. What if this FIFO rule is
changed to a rule where jobs that require the same setup are taken first? This kind of
a rule would minimize setup time at the machines. Figure 14.6 shows the results of
running with a same setup operating rule. Note that the orders are now completed by
their due date at the end of the week. Also, there are fewer setups. In this model the
setup time as a percent of total time was reduced from 10% to 2% by changing the
decision rule used at the work centers.

Equipment utilization is provided in Table 14.5. Note that the lathe and drill have
the highest utilization, 82% and 73%, respectively. Most manufacturers consider a uti-
lization of 85% maximum. Thus, to increase production, another lathe, and probably a
drill, would be purchased. The simulation can determine where the bottleneck operation
is located and can be used to determine when to purchase equipment.

Operator utilization was shown in Table 14.4. The number of operators needed to
complete the orders on time was determined to be four. Operator utilization is about 67%

Figure 14.6 Improved processing with same setup rule.

14.2 MANUFACTURING SYSTEMS 533

TABLE 14.5 Work Center Utilization

Work Center Utilization (%)

Lathe
Grinder
Polisher
Drill
Inspection

using four operators. This could be improved by decreasing the number of operators,
but at the expense of delivery dates. Simulation can be used to support decisions such
as the number of operators to employ.

As shown in this example, simulation can be used to make decisions about how to
operate a manufacturing system. Through the judicious use of an accurate simulation
model, manufacturers can run their operations more efficiently, and thus at greater profit.

14.2.9 Manufacturing Case Studies

Three case studies are given as examples of how simulation has been used in the man-
ufacturing industry. Some details of these applications cannot be published because of
the proprietary nature of the information.

Case Study 1: Appliance Manufacturing Line. A large appliance manufacturer
in the midwest was introducing a new line of refrigerators. An assembly line already
existed for older models, but a reconfiguration of the line was required for the new
models being introduced. This assembly line used a closed-loop transport system to
move units between about 100 assembly stations. At each assembly station there are
several queue positions to compensate for the variability between processing at adja-
cent stations. I t was determined through sampling that processing time tit a lognormal
distribution. Once an operator finishes processing a unit, the unit is released to queue
for the next station. The assembly line also contained a side loop where the refrigerator
compressor must be evacuated before it can be charged with refrigerant. Units must
stay in the evacuation loop for a set period of time to assure complete evacuation of
the compressor. A simulation model was used to:

Verify line balancing and queueing
Determine the number of transporter carriers required

Determine the maximum production possible for the line

The performance measures used were:

Queueing at each assembly station

Utilization of the operators at each station

Throughput of the system at maximum input

Congestion of the transport system

A line balance had been performed prior to the simulation. It was discovered that

534 SIMULATION OF MANUFACTURING AND MATERIAL HANDLING SYSTEMS

some of the processing times from the line balance needed to be adjusted because several
processing stations were causing bottlenecks in the operation. Once processing times
had been adjusted, the number of carriers on the transportation system was varied until
the maximum line throughput was achieved. Adding more carriers caused more conges-
tion on the transportation system, causing stations to be blocked, that in turn decreased
throughput. At maximum throughput, the variability of the throughput was at the high-
est value observed. This was because when the system reaches its optimum, there are
few constraints on throughput, and variations in random events translate directly to the
performance metrics.

Simulation showed that the new refrigerator model could be accommodated on the
existing assembly line with minor modifications. The line balancing was verified and
corrected. and the number of carriers determined.

Case Study 2: Printer Semiconductor Wafer Fab. A major printer manufacturer
in the Pacific Northwest was building a new semiconductor wafer fabrication facility.
Semiconductor chips are used in the printer heads to control ink flow and other printer
functions. The main goal of the simulation was to determine the level of automated
material handling required to meet performance requirements. As with most semicon-
ductor production facilities, other concerns are the release policy, cycle time, and the
scheduling policy for the equipment. Lu et al. (1994) indicate that yield is affected
directly by the time that product spends waiting to be processed, so reducing cycle
time is nearly always an important goal in semiconductor manufacturing.

In the semiconductor processes, wafers are loaded into carriers called cassettes. Cas-
settes are transported between the processing equipment and storage areas called srock-
ers, as shown in Figure 14.7. The processing equipment is usually organized into groups
of similar machines, called bays.

In this example, a simulation model was developed to determine the extent to which
automation would be required and the best management strategy for operating the pro-

Bay 1

rn
Bay 2

\ Process Equipment - interbay AGV
Iti
I/

Figure 14.7 Typical semiconductor layout.

14.3 MATERIAL HANDLING SYSTEMS 535

cessing equipment. Several alternatives for automation were evaluated, including dif-
ferent combinations of manual and automated material handling. Automated material
handling equipment from several suppliers was also evaluated, and different track con-
figurations were tested using the model.

Strategies for keeping bottleneck operations highly utilized were also evaluated using
simulation. One such strategy, called construint-based WIP Management (CBWM), was
tested with the simulation model. In CBWM, the bottleneck process(es) are identified,
and WIP levels are maintained at the bottleneck machines so that they never become
idle. In CBWM, the process is managed from the very beginning to keep the bottleneck
machines as busy as possible. The model helped determine the right level of automation
for the facility. Additionally, scheduling strategies were evaluated to help run the facility
as efficiently as possible.

Case Study 3: Aircraft Manufacturing. The Boeing Company was evaluating the
manufacturing process for the new 777 aircraft to be built at their Everett, Washington
assembly facility. The facility is currently used to manufacture the 747 and 767 aircraft
as well. Large aircraft parts such as wings, fuselage sections, and engines are handled
by an elaborate overhead crane system. Boeing needed a way to evaluate the crane
handling capacity and to determine a realistic build rate for the new aircraft.

The model was used to choreograph crane movements on large parts. Visualization
provided by three-dimensional animation allowed Boeing engineers to see how these
large parts would flow between the assembly processes. Through the use of the model,
Boeing was able to determine a realistic build rate to meet customer demands for the
new aircraft.

14.3 MATERIAL HANDLING SYSTEMS

Material handling is one of the most important elements of manufacturing and one that
is simulated often. For many operations, product can spend as much time moving around
as it does being processed. Banks et al. (1 996) say that material handling time can be as
much as 85% of total manufacturing time. Additionally, material handling equipment
involves large capital expenditures. Simulation provides the insurance that the material
handling solution will work in the desired application, before any equipment is pur-
chased.

In many applications of material handling systems, equipment from many suppliers is
integrated into the total system. Since each supplier is responsible only for the equipment
provided by them, it becomes necessary to have a way of testing the integrated solution.
Simulation can help ensure that the system components work well together.

When evaluating the application of material handling systems, there are often many
different solutions to the same problems. Should conveyors or fork trucks be used?
Should the storage be manual or automated? The comparison of different alternatives
can be accomplished using simulation. For these reasons, simulation has been used for
material handling systems to help find the most efficient ways to move product. In this
section the various types of material handling systems, both automated and manually
operated, are described. The discussion includes both manufacturing and nonmanufac-
turing applications of material handling systems (e.g., airport baggage handling, ware-
housing, and distribution).

When modeling material handling systems, Norman (1984) says that equipment

536 SIMULATION OF MANUFACTURING AND MATERIAL HANDLING SYSTEMS

TABLE 14.6 Input Parameters for Automated Material Handling Systems

Automated storage and retrieval
systems

Horizontal and vertical speeds
Acceleration and deceleration rates
Shuttle cycle time
Storage rack configuration
Storage depth (single or double)
Random storage vs. storage zones
Priorities for double-ended rack
Input-output locations
Multiple load handling capability

Pallet conveyors
Conveyor type (transport, queueing,

accumulation)
Speed
Minimum load spacing
Load size (length, width)
Right-angle transfer time

Case conveyors
Speed
Load size
Transfer time
Recirculation requirements

Power-and-free towline conveyors
Speed
Transfer time
Carrier spacing
Carrier size
Number of carriers
Area counters for carriers
Carrier bias banking requirements

Bridge cranes
Speeds
Acceleration and deceleration rates
Load and unload times
Area interference
Scheduling rules
Input-output locations

Automatic guided vehicles
Guide-path layout
Control point location
Horizontal and vertical speeds
Acceleration and deceleration rates
Load and unload times
Vehicle blocking rules
Empty vehicle management rules
Battery charging rules
Area counters and antideadlock prevention

Source: Norman (1984)

capacity, speed, and arrangement are the most important considerations. The capacity
is the amount of product that can be handled by the equipment. Speed is the operating
velocity of the equipment, which may include acceleration, deceleration, and different
speeds, depending on the product begin carried. The arrangement is the layout of the
material handling system. How do the fork trucks get from the receiving docks to the
storage area? Should a new conveyor system be routed on the floor, or overhead?

Material handling systems can be classified as being either of vehicle type or non-
vehicle type. Vehicle systems use a transporter to carry the load along a path that may
or may not be predefined. Vehicle systems include fork trucks, pallet jacks, automated
storage and retrieval systems (AS/RS), automated guided vehicles (AGV), and bridge
cranes.

Conveyors are examples of nonvehicle systems. They have a fixed path and do not
require that a vehicle be assigned to the load being transported. Conveyor systems can
be made up of many individual conveyor sections, each with a drive motor that moves
loads on the conveyor surface.

Each automated material handling system has its own set of input parameters that
are important to simulation modeling. These parameters are shown in Table 14.6.

14.3.1 Conveyors

Conveyor systems can be classified by the type of conveyor as well as the size of the
load moving on the conveyor. Conveyors can be either accumulating or nonaccumulat-

14.3 MATERIAL HANDLING SYSTEMS 537

ing. On nonaccumulating conveyors, when one load stops, the entire conveyor stops,
maintaining spacing for all loads. On accumulating conveyors, loads continue moving
and can bunch up behind a load that has stopped. Conveyors can also have fixed win-
dows that require all loads to be equally spaced, or they can have variable windows.
There are larger conveyor systems that handle full pallets, and other conveyor types
that handle smaller loads such as cases.

Another type of conveyor, the power-and-free conveyors, have carriers that attach to
the load being transported. The conveyor has hooks called dogs that the carrier connects
to in order to move. The dogs on a power and free conveyor are regularly spaced, like
the fixed intervals on other conveyor types. Power-and-free conveyors are often seen
in automotive paint applications.

For all conveyor types, the parameters indicated in Table 14.6 should be available
to build an accurate model.

14.3.2 Vehicle Systems

Vehicle systems are defined as having a transporter that is assigned to one or more
loads for movement. The transporter could be an AGV, fork truck, pallet jack, person,
or a storage and retrieval machine (SRM). From Table 14.6, AS/RS, bridge cranes, and
AGVs would all be considered vehicle systems.

Some vehicle systems, such as manually operated fork trucks, do not always follow a
fixed path. These types of vehicles often have traffic patterns that can be defined by fixed
paths. Most simulation software today requires that the user define the vehicle paths.
Fork trucks and other manually operated vehicles can be modeled using the path-guided
transporter modules available in simulation software. One difference between manually
operated systems and automated systems is how deadlocks and collisions are avoided.

In most cases, human beings can resolve deadlock conditions "on the fly" for man-
ually operated systems. For computer-controlled AGV systems, algorithms need to be
implemented in the control software to avoid deadlocks. Most of the simulation soft-
ware available today allows the user to define the control algorithms used in automatic
systems. Modeling manual systems becomes more of a challenge. Representing human
decisions in a simulation tool can be expensive and the additional effort may not bring
improved accuracy in the results. Thus it may be necessary to make simplifying assump-
tions when modeling manual systems. One such assumption might be that fork trucks
can pass through each other in the simulation as they would navigate around each other
in the real world.

AS/RS systems are used for storage of all sizes of products, from cars to pallets to
totes carrying small parts. In some cases there is a storage and retrieval machine (SRM)
in every aisle. Other times one SRM may service multiple aisles. SRMs are vehicles, and
the racks are a storage system. In most systems the SRM capacity is the main concern.
Thus simulation is used to test the moving capacity of the cranes, and the individual
storage locations are not tracked in detail. The size of an AS/RS rack can, in most cases,
be determined without simulation. In some cases, such as semiconductor fabrication
facilities, the stocker (AS/RS) storage capacity is determined using simulation.

Human beings are sometimes used to transport material and would thus fall into
the category of vehicle systems. In this case one must consider the walking speed as
well as pickup and setdown times. Additionally, whenever human beings are used for
transport, or interact with other material handling equipment, the variability associated
with human activities should be included in the model.

538 SIMULATION OF MANUFACTURING AND MATERIAL HANDLING SYSTEMS

14.3.3 Other Material Handling Systems

Robots are sometimes used as material handling devices. Examples include palletizers,
pick-and-place machines, package orientation devices, and so on. Robots can be mod-
eled in detail to include rotation and translation speed of joint axes, or delay times can
be taken for robot actions.

Carousels are a combination storage and material handling device. There are hor-
izontal as well as vertical carousels. In a carousel, bins move along a closed loop to
a picking point, usually at one end of the carousel. Most carousels are used for pick-
ing in distribution facilities. Carousels can be single or bidirectional and are usually
grouped into a pod of several carousels with one human picker working between them.
For simulation, the carousel speed and configuration are the main input parameters.

Vertical lifts are often used to move material from one elevation to another. Lifts can
act like elevators, servicing several levels with bidirectional movement, or they can be
moving continuously like a fixed window conveyor oriented vertically. Lift input usually
includes the speed as well as the control algorithms for what the lift does when empty
and full. Also, lifts usually have to coordinate with other material handling systems,
such as fork trucks and conveyors. The details associated with lifts are important when
queueing and lift capacity can have an effect on material flow.

14.3.4 Modeling Material Flow

Material flow between processes can be modeled in many ways. One common method
used to evaluate material handling systems is the from/to method. For each source of
material to each destination, a rate is given for the number of units that must be moved
per unit time. A typical material flow diagram might look like Figure 14.8. These flow
rates can be tabulated and used to drive a simulation model. If the model is built to be
table driven, it is easy to experiment with different rates by changing the data in the
from/to flow tab.

14.3.5 Modeling Random Events in Material Handling Systems

Ask a material handling equipment supplier about equipment downtime and you are
likely to receive an optimistic estimate. Ask someone who operates a facility with auto-
mated material handling equipment and you are likely to hear a pessimistic estimate
of the frequency with which a particular piece of equipment has gone down. Realis-
tic equipment failure data are somewhere between what the vendors say and what the
operators experience.

Storage Picking
A

100/hr 50/hr

T

Receiving Shipping

Figure 14.8 Material flow diagram.

14.3 MATERIAL HANDLING SYSTEMS 539

Downtime for material handling equipment can exhibit itself in many ways, includ-
ing motor or bearing failure, control system glitches, conveyor jams, battery failure for
AGVs, and sensor malfunction. Usually, all the possible downtime types are distilled
into a time-to-fail and time-to-repair description for a piece of equipment. If enough
data exist, a probability distribution can be fit to the downtime data.

Where manual operations interact with automated equipment, the variability inherent
in the manual operations should be included. Operator availability, cycle time, and break
schedules can all have an adverse effect on the operation of automated equipment where
the two interface. Care must be taken to capture and model manual variability.

Modeling downtime is important not only to understand system performance under
downtime conditions. Simulation can also be used to formulate and test downtime recov-
ery strategies. For example, when an SRM goes down in a storage system aisle, how
can we continue to get to every type of product stored in the system'? One strategy is
to store like material in every aisle, so that if one aisle goes down, it is still possible to
retrieve material stored in the other aisles.

14.3.6 Control Systems

Control systems are implemented in software that runs material handling systems. The
control system can be as large and complex as a warehouse management system (WMS)
or as simple as the programmable logic controller (PLC) that controls a set of conveyor
sections. In either case the control system contains decision-making logic that should
be tested as early as possible in the design of the system. Many simulation tools include
languages that can be used to replicate control system algorithms. Some simulation tools
can actually communicate with control system programs directly to help test the code.
The earlier that control system defects can be found, the better the material handling
system will operate.

14.3.7 Material Handling System Performance Criteria

In addition to the performance measures mentioned in the manufacturing section of this
chapter, there are specific performance measures used to evaluate the performance of
material handling systems. We describe performance measures for each type of material
handling device.

Vehicles. Vehicle systems include automated as well as manual transportation devices.
Their performance measures include:

Utilization

Time in different states (retrieving, delivering, parking)

Number of trips made

Congestion

Response time

Average number of loads on board . Guide-path use and queueing . Percent of time at top speed

540 SIMULATION OF MANUFACTURING AND MATERIAL HANDLING SYSTEMS

Conveyors. Conveyor systems are made up of individual sections that link together
to form a transportation network. Performance measures include:

Entries per section
Average time a load spends on a section
Queueing (maximum, average number on a section)

Recirculation events
Number of start and stop events for the motor

A S / R and Bridge Crane Systems. AS/R and bridge crane systems are combina-
tion vehicle and storage devices. Performance measures include:

Utilization (crane and storage area)

Time in different states (retrieving, delivering, parking)

Number of trips made
Number of dual cycles made (full in and out trips) . Average number of loads on board

Percent of time at top speed

14.3.8 Material Handling Example: Packaging Line

We will use an example to show how material handling issues can be solved using sim-
ulation. The example is a packaging line that includes case sealing, inspection, repack,
and shipping operations. Figure 14.9 shows a layout of the system. Conveyors are used
to move cases of different sizes from the manufacturing area through the case sealers,
inspection, and onto shipping. All conveyors run at 60 ft/min, and all are accumulation
type. Cases come from the manufacturing area at the rate of 600 per hour. Table 14.7
shows the case sizes and frequencies per hour from manufacturing.

Case sealing time takes 18 seconds. Every 8 hours, sealing material and labels must
be restocked on the sealing machines. Restocking takes 10 minutes per machine. Inspec-
tion takes 6 seconds, and if a package is rejected, it takes 1.5 minutes to repack.

The questions to be answered by the simulation are:

Should four or five case sealers be used?

What is the utilization of the inspectors?

Is there enough accumulation space on the conveyors prior to the case sealers?

Upon running the simulation with four case sealers, it is found that the sealer han-
dling the higher-volume boxes backs up after a short time, and utilization is very high
(>95%). It is determined that five case sealers are needed to handle the proposed pack-
age volume. Inspector utilization is about 46%, so it is possible for the system to work
with one inspector.

The maximum number of boxes on the conveyor section prior to the case sealer is
eight, which is the maximum that the section can hold. This happens for sealer 1 . If
one more box arrives for this case sealer when the queue is full, cases stop along the
main line. This causes the other case sealers to be blocked. So it looks like some length
needs to be added to the accumulation conveyors prior to the case sealers.

14.3 MATERIAL HANDLING SYSTEMS 541

n From

I I

r Repack

Case Sealers / ..
Figure 14.9 Packaging line layout.

14.3.9 Material Handling Case Studies

Once again we will use three case studies as examples of how simulation has been used
in material handling system design.

Case Study 1: Chicago O'Hare Baggage Handling. In 1992 a new international
terminal was added at O'Hare International Airport in Chicago. A baggage handling sys-
tem was required for the new terminal. The system would handle luggage from ticket
counters as well as connecting flights. A simulation was used to design the baggage
handling conveyor system. The purpose of the model was to test several different con-
veyor layouts and strategies for storing bags. For some flights, passengers arrive up to
3 hours before departure, and their luggage must be stored until an aircraft has been
assigned a gate and luggage can be loaded.

Each piece of luggage in the system was to be identified by a bar code label. Since
some sections of the conveyor system moved at very high speed (>360 ft/min), iden-
tifying luggage became a key issue addressed by the simulation. If a bag could not be
identified, it was sent to a manual encoding area where it was rescanned by an opera-
tor. Because of the high volume of bags being handled by the system, slight variations
in the scanner no-read percent could flood the manual encoding area and shut down part

TABLE 14.7 Case Sizes and Frequencies

Size
Case Number (in.) Number/Hour

1 18 x 30 120
2 24 x 30 120
3 30 x 30 120
4 28 x 28 240

542 SIMULATION OF MANUFACTURING AND MATERIAL HANDLING SYSTEMS

of the system. The simulation was used to determine how many operators would be
required in the manual encoding area.

Case Study 2: Cereal Material Handling Center. A major cereal producer in cen-
tral Michigan was introducing some new products to an existing material handling sys-
tem. In the system, cases of cereal are transported from production areas to a material
handling center, where they are sorted, palletized, and loaded onto trucks. Conveyors
are used to transport the cases, which have different sizes. Cases are accumulated into
slugs for better control of the sorting process. Once pallets have been created, they
are transported by an AGV system to queueing stands at the loading docks. Manually
operated fork trucks load the pallets on the trucks.

A simulation model was built to design the material handling system, and the same
model was used over a 5-year period to aid in the operation of the facility. For new
products, the simulation was used to answer the following questions:

How will the PLC logic need to change?

Will there be enough AGVs to handle the higher-volume new products?

Will there be enough sortation lanes?

The simulation found that some of the existing PLC logic would have to change to
accommodate the new products. Also, it was determined that the existing number of
AGVs would handle the increased volume of new products.

Case Study 3: Box Beef Handling System. A beef producer was evaluating a
revolutionary new concept for box sortation and shipping for one of its plants in Texas.
In this facility, beef products are boxed, sorted, and palletized for shipment. Some ship-
ments are made using loose boxes, which is calledjoor loading of the trucks.

The proposed system contained sortation and transport conveyors, a unit load AS/RS
for pallets, and two miniload AS/RS systems for cases. One of the miniload systems
was for low-volume stock-keeping units (SKUs), while the other was for high-volume
SKUs that need to be stored for short periods of time (<8 hours). The main questions
addressed by the simulation were:

Can the proposed system handle the current product volume and mix?

Can the system handle a 20 to 30% increase in SKUs?

Can the system handle an increase in production of 30%?

What is the best ratio of floor and pallet loading at shipping'?

The model found that current volume could be handled, but the proposed system
could not handle an increase of 30%. Several design changes were made based on out-
put from the simulation, and a new system configuration was discovered to handle the
projected increase in volume. Increasing the number of SKUs caused problems in the
sortation area, but these problems were solved with minor modifications in the control
logic used at sortation. A ratio of about 80% pallet to 20% floor loading seemed to
work best based on the results of the simulation.

14.5 CONCLUSIONS 543

14.4 ADDITIONAL EXAMPLES

An outstanding source of information about the application of simulation in manufac-
turing and material handling systems is the annual Proceedings of rhe Winter Simulu-
tion Conference. In 1996, there were 20 papers on the topic, including 19 papers in
a track entitled 'Manufacturing Applications' and a tutorial on manufacturing applica-
tions. Many of the papers concern material handling. Four examples of these papers are
given in the next paragraphs.

The first example is that by Jefferson et al. (1996), in which material transport in a
semiconductor factory (wafer fab) is discussed. Movement of wafers in the fab creates
risks, as the wafers are easily damaged. One solution to reduce handling is automated
intrabay movement. A simulation model was developed to analyze the effects of using
this type of movement system at Intel.

A second example, that by Bakst et al. (1996), concerns improving the towline mate-
rial handling system at Random House, one of the largest publishing houses in the world.
Even though a towline is a rather low-tech material handling system, the control issues
that surround it are fertile grounds for simulation.

As a third example, Gunal et al. (1996) modeled chain conveyors and their equipment
interfaces. These types of conveyors are prevalent in the manufacture of automobiles,
particularly in the body and paint shops. Modeling chain conveyors requires much con-
cern for detail. Of particular importance are the dimensional aspects of the interfaces,
such as lift tables.

Finally, a fourth example of material handling is that by Takakuwa (1996), in
which simulation of a large-scale material handling system is discussed. Takakuwa has
expanded the details of this large-scale system over a series of papers beginning in 1989.
The system under consideration consists of an AS/RS with stacker cranes, a looped track
AGV system, aisle conveyors connecting these two systems, and outgoing conveyors.
A modular simulation model was constructed, then experiments were performed. Ana-
lytical results are presented for major selected alternatives.

Many of the manufacturing examples in the WSC Proceedings concern semiconduc-
tor manufacturing systems. Sandell and Srinivasan (1996) evaluate lot release policies
for semiconductor manufacturing systems using simulation. A full-factorial experiment
with five factors was designed and executed. The result of the analysis is that no one
release policy dominates for all scenarios.

Another semiconductor manufacturing application is that of Hallas et al. (1996). The
study investigates a number of operational issues, such as lot size, test wafer proportion,
and tool productivity on cost and production performance. Results indicate minimal dif-
ferences between 24 and 48 wafer lot sizes, with significant differences in performance
at 12 wafer lot sizes. The overall results indicate extreme sensitivity of a variety of fab
performance measures to constraints determined by the operating characteristics, such
as raw processing time and setups.

Kunnathur et al. (1996) describe a rule-based expert system driven by a simula-
tion model that performs dynamic shop rescheduling. A heuristic was developed by the
authors based on flow-time prediction strategy. Numerous experiments were conducted.

14.5 CONCLUSIONS

Simulation is an indispensable methodology for solving problems concerning manufac-
turing and material handling as these systems have become so complex. The literature

544 SIMULATION OF MANUFACTURING AND MATERIAL HANDLING SYSTEMS

is rich with successful examples. In modeling manufacturing and material handling sys-
tems, attention to details concerning the product, the resources, the nature of the demand,
and the control system is important. Similarly, the way that downtime is treated, what
to d o about rework and reentrancy, and the modeling of random events must be treated
properly. Selection of the appropriate measure or measures of performance is required.
Model input data must be verified for accuracy. Examples of the application of simula-
tion to specific problems help to understand the use of simulation in modeling manufac-
turing and material handling systems, but there is n o substitute for experience. The use
of simulation to solve manufacturing and material handling systems problems is based
on the validity of the model that is being used.

REFERENCES

Bakst, J., J. Hoffner, and K. Jacoby (1996). Evaluation of a distribution center tow-line material
handling system through simulation modeling, in Proceedings ofthe 1996 Winter Simulation
Conference, J. M. Charnes, D. J . Morrice, D. T. Brunner, and J . J. Swain, eds., Association
for Computing Machinery, New York, pp. 1099-1 106.

Banks, J., and J. Dai (1997). Simulation studies of multiclass queueing networks, IIE Transactions,
Vol. 29, NO. 3, pp. 21 3-220.

Banks, J., and R. R. Gibson (1996). Getting started with simulation modeling, IIE Solutions,
November.

Banks, J., and R. R. Gibson (1997). Don't simulate when: ten rules for determining when simu-
lation is not appropriate, IIE Solutions, September.

Banks, J., .I. S. Carson 11, and B. L. Nelson (1996). Discrete-Event System Simulation, 2nd ed.,
Prentice Hall, Upper Saddle River, N.J.

Banks, J., M. Spearman, and V. Norman (1997). Uses of simulation: traditional and nontraditional,
Computer Integrated Manufacturing and Engineering, Winter.

Bratley, P., B. L. Fox, and L. E. Schrage (1987). A Guide to Simulation, 2nd ed., Springer-Verlag,
New York.

Gunal, A. K., S. Sadakane, and E. J. Williams (1996). Modeling of chain conveyors and their
equipment interfaces, in Proceedings of the 1996 Winter Simulation Conference, J . M. Chames,
D. J. Morrice, D. T. Brunner, and J. J. Swain, eds., Association for Computing Machinery, New
York, pp. 1 107-1 1 14.

Hallas, J. F., J. D. Kim, C. T. Mosier, and C. Internicola (1996). An investigation of operating
methods for 0.25 micron semiconductor manufacturing, in Proceedings of the 1996 Winter
Simulation Conference, J. M. Charnes, D. J. Morrice, D. T. Brunner, and J. J. Swain, eds.,
Association for Computing Machinery, New York, pp. 1023-1030.

Harrell, C., and K. Tumay (1996). Simulation Made Easy: A MunagerS Guide, Industrial Engi-
neering and Management Press, Norcross, Ga.

Jefferson, T., M. Rangaswami, and G. Stoner (1996). Simulation in the design of ground-based
intrabay automation systems, in Proceedings of the 1996 Winter Simulation Conference, J.
M. Charnes, D. J. Morrice, D. T. Brunner, and J. J. Swain, eds., Association for Computing
Machinery, New York, pp. 1008-1013.

Kunnathur, A. S., S. Sampath, and P. S. Sundaraghavan (1996). Dynamic rescheduling of a job
shop: a simulation study, in Proceedings of the 1996 Winter Simulation Conference, J. M.
Charnes, D. J. Morrice, D. T. Brunner, and J. J. Swain, eds., Association for Computing
Machinery, New York, pp. 1091-1098.

Law, A. M., and W. D. Kelton (1991). Simulation Modeling and Analysis, 2nd ed., McGraw-Hill,
New York.

REFERENCES 545

Lu, S. C. H., D. Ramaswamy, and P. R. Kumar (1994). Efficient scheduling policies to reduce
mean and variance of cycle-time in semiconductor manufacturing plants, lEEE Transactions
on Semiconductor Manufacturing, Vol. 7, No. 3, pp. 374-388.

Mittler, M., M. Purm, and 0. Gihr (1995). Set management: minimizing syncronization delays of
prefabricated parts before assembly, in Proceedings of the 1995 Winter Simulation Conference,
C. Alexopoulos, K. Kang, W. R. Lilegdon, and D. Goldsman, eds., Association for Computing
Machinery, New York, pp. 829-836.

Norman, V. B. (1984). Simulation oj'Automated Material Hundlirz~ cmd Storage Systems, Auer-
bach, Princeton, N.J.

Sandell, R., and K. Srinivasan (1996). Evaluation of lot release policies for semiconductor man-
ufacturing systems, in Proceedings of the 1996 Winter Sim~clation Conference, J . M. Charnes,
D. J. Morrice, D. T. Brunner, and J. J. Swain, eds., Association for Computing Machinery,
New York, pp. 1014-1022.

Savolainen, T., D. Beeckmann, P. Groumpos, and H. Jagdev (1995). Positioning of modeling
approaches, methods and tools, Computers in Industry, Vol. 25, pp. 255-262.

Takakuwa, S. (1996). Efficient module-based modeling for a large-scale AS/RS-AGV system,
in Proceedings of the 1996 Winter Simulation Conference, J . M. Charnes, D. J. Morrice,
D. T. Brunner, and J. J. Swain, eds., Association for Computing Machinery, New York, pp.
1141-1 148.

CHAPTER 15

Simulation in the Automobile Industry

ONUR ULGEN

Production Modeling Corporation and University of Michigan-Dearborn

ALl GUNAL
Production Modeling Corporation

15.1 INTRODUCTION

In this chapter we discuss the use of computer simulation in design and operation of
car and truck assembly plants as well as automotive components manufacturing plants.
Most of the automotive manufacturers worldwide and, in particular, the big three U.S.-
based companies (General Motors Corporation, Ford Motor Company, and Chrysler
Corporation) currently require that all new and modified manufacturing system designs
be verified by simulation analysis before they are approved for final equipment pur-
chases. In fact, there is a general push in the big three automotive companies that any
new equipment purchase or manufacturing line modification costing more than several
million dollars should be verified by simulation modeling before approval. Studies per-
formed in the past are indicators of how useful simulation could be in the design and
operation of production systems of all kinds, including vehicle manufacturing. Examples
can be found in refs. 1 to 8.

In what follows, we discuss mainly the applications of discrete-event simulation in
the automotive industry, with some discussion of the emerging role of robotics simu-
lation. Applications of discrete-event simulation in the design and operation of vehicle
manufacturing systems can be categorized in two different ways. The first classifica-
tion is based on the stage of the development of the design of the system. Four cate-
gories are observed in this classification: conceptual design phase, detailed design phase,
launching phase, and fully operational phase. The conceptual phase refers to the ini-
tial stage where new methods of manufacturing and material handling are tested by the
engineers. Discrete-event simulation packages with three-dimensional animation capa-
bilities are the popular simulation tools at this phase. The detailed design phase refers

Handbook of Simulation, Edited by Jerry Banks.
ISBN 0-471-13403-1 O 1998 John Wiley & Sons, Inc

548 SIMULATION IN THE AUTOMOBILE INDUSTRY

to the stage where detailed layout plans and equipment specifications are verified for
the system. The principal factors considered here include equipment justifications (e.g.,
the number of hold tables, power and free carriers, the size of buffers), cycle-time ver-
ifications (e.g., conveyor speeds, line throughput), and line operational and scheduling
issues (e.g., logic for evacuating ovens and paint booths, repairs, and product mix deci-
sions). Discrete-event simulation packages with built-in detailed equipment features and
three-dimensional animation features appear to be the most popular packages used at
this stage. The launching phase refers to the stage where the plant operates below the
designed operational conditions. In some cases it may take up to 6 months for the plant
to operate under maximum-capacity conditions. Simulation studies performed at this
stage are generally used to test operational policies (e.g., operate one of the two paint
booths at a time, run each shop for one-half of the total available time, use different
product mixes). Discrete-event simulation packages used at this stage do not typically
require the detailed equipment features or the three-dimensional animation features. The
simulation program generators with user-friendly features are the most popular packages
used at this phase, as models tend to be at a macro level rather than a micro level. An
explanation of macro and micro models, and an example of their interactions, appears
in ref. 9. The fully operational phase refers to the stage where the plant is operating at
its anticipated capacity. The simulation studies done at this phase consider product mix
decisions, new product introductions, new operational policies, and line modifications.
Simulation software used at this phase generally require the same capabilities as those
used at the launching phase.

The second classification of the use of discrete-event simulation in automotive manu-
facturing plants is based on the nature of the problem to be investigated. Four major cat-
egories can also be identified in this classification: equipment and layout design issues,
issues related to variation management, product-mix sequencing issues, and other oper-
ational issues. The equipment and layout design issues include typical problems such
as number of machines required, cycle-time verification, identification of buffer storage
locations, buffer size (strip conveyors and buffers for sequencing) analysis, and con-
veyor length and speed determination. Examples of typical problems in the variation
management area are repair and scrap policy analysis, order-size variation, and paint
booth scheduling. The product-mix sequencing issues typically include trim line and
body shop sequencing, shift scheduling, and trim and final assembly line balancing.
In the other operational issues area, typical applications involve priority assignment at
traffic intersections, assembly-line sequencing, and shift and break scheduling. Table
15.1 summarizes various uses of simulation in vehicle assembly plants. The x-marks
indicate typical phases(s) where simulation can play an essential role for the application
area listed and where certain types of problems are more likely to be attacked by the
designers or managers. For example, cycle-time verification problems are more likely
to arise at earlier stages of the design and operation cycle. However, shift scheduling
problems are likely to be solved once all equipment and layout design issues are final-
ized. It should be noted, however, that the table constitutes only a broad framework
since, in reality, each type of problem area can be attacked in any phase of the design
cycle.

In the following sections of this chapter, we discuss applications of discrete-event
simulation in assembly plants, major-component plants, and small-components plants.
Then we consider the nonmanufacturing applications of discrete-event simulation. In
the following section we discuss the role that corporate groups, simulation service ven-
dors, and equipment suppliers play in applying simulation in the automotive industry.

15.2 APPLICATIONS IN ASSEMBLY PLANTS 549

TABLE 15.1 Classification of the Applications of Simulation in the Automotive Industry

Phase

Application Conceptual Detailed Full
Category Example Application Design Design Launch Operation

Equipment and
layout

Variation
management

Product mix
sequencing

Detailed
operational
issues

Buffer size analysis
Surge bank locations
Cycle time verification
Conveyor length and speed
Test-repair loop analysis
Scrap analysis
Paint gun spray purge

scheduling
Trim line sequencing
Body shop sequencing
Shift overlap
Traffic priority management
Assembly sequencing
Shift and break scheduling

Simulation model life-cycle approaches are discussed next. In the final two sections of
the chapter we review the emerging role of robotics simulation and discuss trends in
the future of simulation in the automotive industry.

15.2 APPLICATIONS IN ASSEMBLY PLANTS

An automotive assembly plant typically has three major sections with respect to the
stages of the assembly process: body shop, paint shop, and trim and final assembly
(Figure 15.1). Each of these areas has different types of processes with unique features.
There are many issues in an assembly plant that are addressed effectively through sim-
ulation. Following is a discussion of the typical issues.

The major components of a vehicle body are assembled in the body shop. The major
components typically come from stamping plants. The inner and outer faces of doors,
the inner and outer faces of body sides, the hood, and the trunk lid are some of those
parts that go into body shop operations. The process to assemble body parts includes
stations to bring components loosely together, stations to weld the components, and
stations to inspect the structural integrity of the welded components. In the body shop,
the emphasis is on the process more than on material movement. The operation times
are very dependent on the model of the vehicle being made. Most operations require
subassemblies to stop at a station for processing. The reliability of process machinery
is the critical part of many problems that can be observed in a typical body shop. Con-
sequently, adequate representation of the machine breakdowns and cycle times is an
important part of a body shop simulation. Additional discussion of downtime modeling
appears in ref. 10.

Once all major body parts are assembled, the body is sent to the paint shop as the
second major phase in the assembly process. A typical paint shop will consist of several
painting processes. In rough order, those processes include electrocoating, sealing, prime

550 SIMULATION IN THE AUTOMOBILE INDUSTRY

Paint Shoo - --.

Body Shop --------..---.-.-.----------.---- . 4 Electrocoat and Phosphate h : . ' .
j 1 Body Sides h I Selectivity i Sealer and Prime Buffer

i I Under Body 4 ' Main Color

, Auxiliary Color
Framing

Selectivity + Buffer '__.._.__.______..
......... mm S??P.. ..

: 1- Engine and Transmission Brakes, Headlights, Etc. I :
+

Tire Installation Other Parts Test and Repair
..

Figure 15.1 Parts of and job flow in a typical automotive assembly plant.

painting, main color painting, inspection, and auxiliary painting operations. The paint
shop processes are such that many of the operations can be performed without stop-
ping the vehicle at a station. Therefore, the capability and the reliability of the material
handling equipment (conveyors in almost all cases) is important in a paint shop.

One of the typical problems in a paint shop is to sort the incoming sequence of
vehicles to minimize the color changes in paint booths. Since changing colors involves
a setup time, it is desired to sequence same color vehicles back to back. To achieve
such color blocking, however, there is a need for a temporary storage place. Once a
sufficient number of units are accumulated, vehicles of the same color can be pulled
from this bank in order of color. Similar temporary storage banks are required to have
the ability to empty the ovens that are used for baking different coats of paint. If for
some reason, the processes ahead of a paint oven are blocked, there must be sufficient
space to unload the units once they come out of an oven.

Another source of variation in a paint shop is the yield of the painting processes.
Since the yield of processes is relatively low (in a typical paint shop, the first pass rate
could be as low as 65%), the chances of rework are high. Because of the randomness in
the process, it is always a challenge to keep vehicles in the same order as they arrived
in the paint shop. Vehicles requiring rework would need additional passes through the
paint booths. Keeping vehicles in a certain order is one of the critical problems in a
typical assembly plant. The movement of material to stations is dependent on the type
of vehicles to be assembled next. Consequently, there is a need to schedule a certain
order of vehicles ahead of time. Once a schedule is made and issued to all workstations,
changing the sequence may cause loss of production by creating material shortages at
various points in the plant. Therefore, it is a common practice to accumulate the vehicle
bodies in temporary storage areas after the paint process. Such temporary areas allow
sufficient time for the late units to catch up to their position in the assembly sequence.

Once vehicles come out of a paint shop, they go into the trim and final assembly area.
This area is where all the major and minor components of a vehicle are put together.
In a typical setup, some of the minor components are assembled to the vehicle body in

15.2 APPLICATIONS IN ASSEMBLY PLANTS 551

the trim shop. The brake system, headlights, and taillights are examples of those minor
components. Then the major components are assembled: the engine, power train, and
chassis. Finally, the vehicle is put on a final assembly line. Most of the operations in
those areas are done by manual labor. Usually, vehicle bodies are not stopped for an
operation except for major component assemblies. Consequently, the capability of the
material handling equipment (almost all cases involve conveyors) is an important issue.
Another issue is the ability to make available the required parts at the time they are
needed at every operation.

15.2.1 Case Study: Body Shop Material Handling System Analysis

This simulation study was performed during the conceptual design phase of a new vehi-
cle program for a major U.S. car manufacturer. The system studied consisted of the
following components: (1) a car track system with several sections, (2) 90' turn tables
between various sections of the car track system, (3) several robotic spot welding sta-
tions, (4) two load/unload stations for two different car models, and (5) a variable num-
ber of carriers for each car model. Figure 15.2 depicts a snapshot of a part of the model
that shows the car track system. The objectives of the study were threefold:

1. Determine the best equipment configuration and the corresponding line through-
put under a given set of operating parameters.

2. Determine the maximum allowable cycle time at the loading stations for either
car model.

3. Determine the best number of carriers for each car model.

Some of the model assumptions were as follows:

Figure 15.2 Snapshot of a section of a body shop simulation model

552 SIMULATION IN THE AUTOMOBILE INDUSTRY

TABLE 15.2 Results of Four Scenarios

SCENARIO

Parameters
RA station type I I1 I I1
Main welding station type Manual Robotic Robotic Robotic
Flexible station configuration? No No Yes Yes

Results summary
Number of model A completed/hour 32.47 33.29 33.44 33.57
Number of model B completed/hour 15.64 16.33 16.48 16.59
Average production ratelhour 48.11 49.62 49.92 50.16

Target production rate is 38 model A and 18 model B cars.

There will always be a vehicle waiting for loading at either load station.

Each station has a randomly distributed downtime and a random repair time. The
mean values and distributions of those random variables were known based on
historical data from similar systems.

The transfer time between two stations on the line is 6 seconds if the carriers do
not stop at a station. If the vehicle stops at a station, the transfer time would be 8
seconds, taking acceleration and deceleration into account.

A station is assumed to break down only after a full cycle of operation, not during
a cycle.

The following parameters and variables (evaluated in the what-if scenarios) were
used in the simulation model: (1) two different equipment configurations distinguished
by cycle times and downtime data, (2) number of carriers allocated to each of two
job types, (3) loading/unloading station cycles times. The performance statistics from
the model included the line throughput for each type of car and the utilization of each
station.

The system was modeled using the AutoMod software such that most operating
parameters could be input from data files rather than by modifying the model. The
system capacity was evaluated under equipment downtimes with different equipment
configurations, ranging from labor-intensive to robotic processes. In particular, the type
of equipment for the robotic alignment (RA) station was considered in detail. Table
15.2 summarizes the results from some of the scenarios investigated during the course
of the study.

The results in the table indicate that the last alternative, with a flexible line config-
uration and a type I1 RA station, would provide the most output from the line. Other
scenarios that are not displayed in the table also showed that the system performance
was not highly sensitive to the number of carriers. In addition to those results, it was
also found that the loading operation could be done manually for model A cars without
affecting the throughput, although a longer cycle time was needed. Consequently, a line
configuration with a best mixture of robotic and manual operations was determined and
submitted to the project team.

15.2 APPLICATIONS IN ASSEMBLY PLANTS 553

15.2.2 Case Study: Paint Shop Material Handling and Model Mix
Scheduling

This study involved simulation modeling and analysis of a paint shop and an adjoining
automated storage and retrieval system (AS/RS) during the conceptual and detailed
design phases. In addition to evaluating the design, the animation of the model was
used as a visual tool to facilitate the brainstorming sessions of the design team. The
objectives of this study were as follows:

During the Conceptual Design Phase:

Evaluate the conceptual design at each iteration of the design cycle to determine
the potential bottlenecks and identify alternative solution strategies.

During the Detailed Design Phase:

Determine the throughput capability of the system.

Assess the feasibility of the proposed shift schedules and paint booth strip
sequences.

Investigate the best stock levels of various products in the AS/RS.

Analyze the impact of different trim line operation schedules on the number of
out-of-sequence conditions.

The system consisted of the following subsystems in sequence: (1) electrocoat and
phosphate, (2) sealer lines and sealer gel oven, (3) prime booth and prime oven, (4) main
enamel booth and enamel oven, (5) inspection lines, (6) spot repair area, (7) second-
coat paint booth and oven, (8) paper masking and repair lines, and (9) the AS/RS (see
Figure 15.3). The material handling equipment in the system consisted of many two- and
three-strand chain conveyors, lift tables, turntables, and power roll beds.

SEALER PHOSPHATE and ELECTROCOAT 1
I II ENAMEL PAINT SYSTEM I
I scuw li SECOND COAT PAINT SYSTEM I

I

I and 11 I

I PRIME 11 INSPECTION and POLISH

U I REPAIR

-

Figure 15.3 Rough layout o f a pant shop

554 SIMULATION IN THE AUTOMOBILE INDUSTRY

The following parameters and variables (evaluated in what-if scenarios) were used
in the simulation model: (1) conveyor speeds, spacing, and speed-up section data; (2)
cycle times at repair and mask lines; (3) cycle times at spot repair area; (4) product and
paint mixes; and (5) major and minor repair percentages.

The model also required a front-end scheduling routine that was customized using
a programming language (e.g., FORTRAN and C). Because some of the units required
several passes through paint booths, they took a longer time to be ready for delivery to
the trim lines. However, since the product mix showed significant differences between
shifts, and since the trim lines operated on a different shift pattern, the jobs that required
long processing times were pulled ahead of their original sequence. Thus even though
they would be taking more time than the other jobs, by the time they were completed,
they would be able to catch their original position in the assembly sequence. Because of
the randomness of the defect rate, there would be a good chance that some units would
miss their sequence if they were not moved sufficiently ahead in the paint sequence. On
the contrary, if they were moved too much ahead of their sequence, they would finish
the paint process much earlier than the rest of the units. Therefore, to protect against
such random variations in the makespan of different job types, a buffer storage bank
was held in the adjoining AS/RS. This buffer would be sized to allow sufficient time
for all units to catch their original sequence. The following are some of the original
rules of resequencing the jobs:

Jobs with two colors were moved ahead by 100 jobs for two product types.

Jobs with three colors were moved ahead by 200 jobs for only one of the models.

Pattern color jobs were moved ahead by 200 jobs.

A job with more than one matching criterion is moved ahead by the sum of the
jobs required by each criterion (e.g., a two-color job with patterns would be moved
ahead by 400 jobs).

Some of the model assumptions were as follows:

The two vehicle models, A and B, are considered. Model A vehicles have up to
two coats of paint, whereas model B vehicles have up to three coats of paint.

The model mix was known and assumed constant within a day.

The major repair percentage is 22% and the minor repair percentage is 9% on
average with random occurrences.

Minor repair times are randomly distributed between 30 and 120 minutes and are
performed at a dedicated area. Major repairs go through the second paint loop as
necessary.

Shift patterns are known and constant. The first shift is dedicated to model B and
the second shift is dedicated to model A at the paint shop. The trim shop runs only
one shift and makes both products.

A11 conveyors run at full speed with negligible downtimes.

Analysis of the model involved an evaluation of the alternative job sequencing poli-
cies to choose one that will eliminate late jobs at the trim lines for all job types. In
addition to sequencing concerns, the model was used to investigate the selectivity sys-
tem (AS/RS) utilization. The runs of the model indicated that there was no reason to

15.2 APPLICATIONS IN ASSEMBLY PLANTS 555

TABLE 15.3 Results of Investigation

Total Missed Jobs in a Week

With Resequencing Without Resequencing

Single Double Single Double
Model A Buffer Coat Coat Coat Coat

resequence model B vehicles since the plant was planning to store a full day's worth
of buffer in the AS/RS for this type. The model showed that during the second shift
in the paint shop all of the longest paint jobs would be completed for the next day's
production at the trim lines. Results from some of the scenarios investigated are sum-
marized in Table 15.3 for model A only. The table depicts the results with and without
resequencing. In either case, different levels of model A buffer in AS/RS were tested
to find a level that will balance the buffer size and the number of missed jobs.

The results in the table indicate that a buffer size of 180 vehicles would be sufficient
to avoid the missing jobs for the vehicle model A. It was also determined that with
chosen buffer sizes, the utilization of the AS/RS was at a feasible level. The plant
would make substantial cost savings by avoiding the reprogramming of their production
monitoring system for vehicle model B.

15.2.3 Case Study: Trim and Final Assembly Lines

This simulation study was performed during the detailed design phase of a new conveyor
system. An assembly plant would be making several different models of cars on one
trim line. The process and flow of jobs in the system showed differences with respect to
the model of cars. The conceptual design of the new system was completed following
the previous version of the system. However, to accommodate the variety of the product
assembly sequence, many new hardware pieces were needed. To ensure that the system
could move the desired product quantities between various parts of the system, a detailed
simulation model was built. An important parameter of the design was the mix of models
in the target production rate. The objectives of the simulation study were:

. Verify the capability of the conveyor system to move the target number of vehicles
through the trim system by considering various product mixes.

Investigate various scenarios of assigning the size and location of empty carrier
buffers by considering different product mixes.

Analyze the impact of building a new buffer area to hold additional empty carriers.

Determine the maximum allowable cycle times at several transfer stations by con-
sidering different product mixes.

Some of the important assumptions of the study were as follows:

556 SIMULATION IN THE AUTOMOBILE INDUSTRY

All manual operations can be completed within the given cycle time.

All materials are always present.

The line speed would be set up higher than the required rate so that occasional
downtimes could be tolerated.

There are three models of cars and eight possible mixes of those models.

The system consisted of a chassis buildup system, an engine delivery system, a frame
buildup system, and a final trim line. All material movement were made by using power
and free conveyors except for the frame buildup area where a chain conveyor was used
to move the units continuously. The transfer of units and subassemblies between major
areas required complicated equipment that was prone to mechanical failure. Since there
was limited room for buffers, an additional storage space was designed at the mezzanine
level. The size of the buffer was being questioned since there were random downtimes
at major transfer points. Since there were no detailed data, the system was designed
to run at a speed 12% higher than the speed required, to allow time for breakdowns
and shift breaks. However, the designers wanted to confirm that the system would be
capable of delivering an average number of vehicles to meet the weekly production
target at a 5 to 10% downtime rate. Based on past data, only an average recovery time
of 5 minutes was specified. Also, the newly designed engine assembly area required the
proper number of pallets in the system to support the production of all different types
of jobs. Since there could be a variety of job mixes to be produced in the system, it was
necessary to determine a number of pallets that would work with all possible product
mixes.

During the simulation study, first an evaluation of possible product mixes were made
by using a baseline layout. This portion of the study helped to determine the maximum
allowable cycle times at critical stations to accommodate a variety of product mixes.
Then the study focused on evaluation of the size of the empty carrier buffer. Three
different layout alternatives were investigated. The simulation runs indicated that there
would be no difference between layouts with respect to the average throughput capabil-
ity. However, the utilization of various subsystems would be greatly affected by alloca-
tion of the empty carriers. Table 15.4 depicts, for all three layout alternatives, the time it
takes to starve various subsystems after a catastrophic breakdown at one of the critical
stations. The table clearly demonstrates that the first layout alternative is significantly
better than the latter two in protecting the chassis buildup system against long periods
of breakdowns.

The model (see Figure 15.4 for a snapshot of a section) showed that at the transfer
point from the engine build line to the engine deck area, the control logic and buffer size

TABLE 15.4 Time to Starve Subsystems After Breakdown

Subsystem Layout 1 Layout 2 Layout 3

Chassis buildup 1 and 2 20.0 7.0 7.5
Chassis buildup 3 12.0 4.5 5.0
Chassis buildup 4 4.5 2.0 2.5
Engine load 37.0 37.0 37.0
Final line 2.0 2.0 2.0

15.3 APPLICATIONS IN MAJOR COMPONENT PLANTS 557

Figure 15.4 Snapshot of a section of a trim shop simulation model

originally proposed would not support the cycle-time requirement of the engine assem-
bly area. Also, the simulation showed that the final assembly line would be starved
immediately if the downtime at the body assembly area were longer than 3 minutes. It
was also determined that the buffer storage space placed in the mezzanine level would
be sufficient only for breakdowns of relatively short duration. An evaluation of an alter-
native design showed that additional empty carrier lanes were required to support the
system for a longer time should downtime occur at a body assembly point.

15.3 APPLICATIONS IN MAJOR COMPONENT PLANTS

Two of the major components in a vehicle include the sheet metal portions of the body,
such as the frame, body sides, doors, roof, and hood, and the cast iron parts used to build
the engine and transmission components. A typical automotive manufacturer would have
a different plant for each major component. These manufacturing processes, however,
could have a higher rate of production than that of cars built at an assembly plant.
Consequently, it is usual that a single component plant feeds several assembly plants for
several different car models. Due to the unique nature of each type of process, the nature
of design problems shows variations among those component plants. In an engine plant,
for example, the emphasis is on the reliability of the manufacturing machinery rather
than the material handling equipment. In a stamping plant. on the contrary, the problems
might be around production schedules and material movement within the plant. Two
case studies are given in the following sections. Each case study is related to one type
of component plant.

558 SIMULATION IN THE AUTOMOBILE INDUSTRY

15.3.1 Case Study: Stamping Plant Material Handling Study

The stamping plant involved in this study had several stamping lines that made the
sheet metal parts and several subassembly lines that built subassemblies to be used in
the assembly plant. For a new vehicle program, a new panel assembly line was going to
be put in operation. However, due to the required production volumes and complicated
material flow patterns, choosing an efficient method for racking excess panels at the
front end of the panel assembly line was going to be an integral part of the solution. The
dynamism of the system could be captured only in a simulation model. Consequently,
the study involved developing a model of the material handling system supporting the
new assembly line. The main objective of the study was to find the best combination
of material handling system parameters and operating rules, with an emphasis on the
racking methods for excess panels.

The material handling system modeled was divided into the following four areas: (I)
monorail delivery system, (2) panel assembly line, (3) empty racks load area with excess
panels, and (4) full racks storage area. The simulation model also included material han-
dling processes, job routing logic, and the operating procedures/policies. Through sim-
ulation, the system's capabilities were evaluated, resulting in improvements and modifi-
cations to the proposed system. More specifically, the study allowed plant engineers to
understand product flow, identify bottlenecks, evaluate buffer space requirements, and
analyze staffing, equipment, and operating plans. The results from simulation showed
that one of the racking methods provided sufficient capacity to handle the racking of
excess panels in a relatively inexpensive setting. Furthermore, by varying the number
of forklift trucks in simulation, the best number that yielded the required throughput
and minimum traffic congestion was determined.

15.3.2 Case Study: Die-Casting Cell Cycle-Time Study

In this study, a model of a die-cast cell was built to investigate the cycle time. The model
included two die-cast machines, an operator, and a press machine. Parts were cast in
one of the two die-cast machines that fed a single press machine to trim the cast parts.
The die-cast machines were automatic needing no operator. However, an operator was
required at the press. The operator was responsible for loading and unloading the parts
from the press. After the parts were trimmed, they moved on to a series of operations
that were not investigated in this study. The specification of a press was the decision to
be made. More expensive machines had shorter cycle times. A short cycle time at the
press allowed the operator a wider time window for loading and unloading.

Because of the variable nature of the manual operations and the randomness in the
rate of scrap parts, a simulation model was needed to analyze the problem in more
detail. The objective of the investigation was to determine the operating conditions for
the system to achieve maximum throughput. To facilitate a detailed investigation, a
model of the system was built to determine the press cycle time for a given range of
operator utilization. The model was built so that it could be used to address the impact
of the following issues on the system throughput: (1) operator utilization, (2) equipment
downtimes, (3) material handling equipment cycle times, (4) individual job processing
times, and (5) scrap rates.

The results from simulation analyses indicated that the two die-cast-machine
approach will meet production at an acceptable rate of utilization for the operator. The
study also concluded that the throughput of the system would be increased if three die-

15.4 APPLICATIONS IN SMALL COMPONENTS PLANTS 559

cast machines were used. The latter configuration would also improve the operator and
press machine utilization if some of the flexibility issues could be resolved.

15.4 APPLICATIONS IN SMALL COMPONENTS PLANTS

All components of a vehicle other than the major components (stamped sheet metal
parts, cast metal parts, and the power-train parts) can be viewed as small components
for the purposes of this chapter. Manufacturing of small components is typically done in
much smaller areas. However, a small-components manufacturing plant could be as big
as an assembly plant, due to the variety of the components and the required production
volumes. A small-components plant typically feeds many assembly plants, thus requir-
ing a high volume of production. Many of the problems associated with such plants are
due to the high volume of production. The cycle times are much smaller and the parts
are smaller in size.

Many small components, such as alternators, starters, and fuel injectors, are made
in separate assembly areas in a typical small-components plant. The material handling
within such assembly areas is done by small but efficient and reliable conveyors. Con-
sequently, many of the problems that constitute good opportunities for the use of sim-
ulation arise in the analysis of the part-making and assembly manufacturing processes.
Reliability of machinery, scrap rates, machine setup requirements, product mix deci-
sions, scheduling conflicts, and the efficiency of interdepartmental material handling
equipment are some of the common problems with which simulation models can effi-
ciently be of help. The following three case studies provide good examples of typical
problems and their solutions using simulation.

15.4.1 Case Study: Machining Cell Design Study in an Electrical
Components Assembly Plant

This study involved the study of a coil winding cell. The purpose of the study was to
determine a combination of the machine configuration and operating parameters that
provided the maximum possible throughput. The coil winding area consisted of robotic
winding cells which (1) receive bobbins on trays, (2) insert two terminals, (3) wind
bobbins, (4) trim excess wire, (5) crimp the terminals, (6) flux and solder terminals, (7)
test and reject assemblies electrically, and (8) place finished coils back into the trays.
Each of these operations was performed in a separate cell. An accumulating conveyor
system transported trays between operations.

Numerous system parameters needed to be evaluated to determine the best configu-
ration that would yield both satisfactory resource utilization and overall system through-
put. Since the study was being performed in the very early stages of the design cycle,
many of the line configuration parameters, such as the size and location of buffers and
the number of machines, were variables. In addition to such higher-level variables, the
length and speed of conveyors and the number of operators were lower-level variables
that could be fine tuned to obtain the maximum throughput from the system.

Random downtimes and random changes in the product mix were the main con-
tributors to the variation of the system. To represent such variation adequately and obtain
meaningful performance predictions, a simulation model was needed. The model would
be built to determine the operating conditions for the system to achieve maximum pos-
sible throughput. The model was built to enable a detailed study of the proposed coil

560 SIMULATION IN THE AUTOMOBILE INDUSTRY

winding process by analyzing the impact of the following operating issues on through-
put: (1) buffer sizes and locations, (2) unscheduled equipment downtimes, (3) individ-
ual part processing times, (4) conveyor parameters, (5) scrap generated, and (6) labor
involved in maintaining and repairing the equipment.

By analyzing the performance of the system under various operating conditions, the
best combination of the system parameters (among those tested) was determined. The
simulation showed that some of the originally proposed buffer sizes would have to be
modified to improve system performance. Some other buffers, however, could be much
smaller than proposed. Consequently, simulation played an important role in the design
of this assembly line.

15.4.2 Case Study: Car Seat Assembly Material Handling System Study

The plant involved in this study manufactured most of the upholstered components that
were put inside a vehicle. For a new vehicle program, the plant was undergoing a
revamping process by installing new lines to support the production targets and cost
reduction goals. The proposed seat assembly process depended on an automated guided
vehicle (AGV) system for material movements within the assembly area. At distinct
assembly islands within the system, front and rear seats are assembled, then joined.
The general flow of the assembly process is to transport car seat parts on AGVs through
the following sequence of operations: (1) pallet loading; (2) front seat parts kitting; (3)
assembly islands 1, 2, and 3 (front seat assembly); (4) front seat oven heating; (5) assem-
bly island 4 (front seat fit, finish, and inspection); (6) front seat repair; (7) rear seat parts
kitting; (8) assembly islands 6 and 7 (rear seat assembly); (9) rear seat oven heating;
(10) rear seat inspection and repair; (1 1) stretch wrapping; and (12) pallet unloading.

For a cost-effective design, several issues would have to be addressed. First, the
best number of AGVs should be determined. Adding more vehicles to the system can
help increase the capability of the system, but congestion might prevent an increase
in the throughput. Second, the number of assembly lanes must be decided. Also, the
impact of various lane assignment rules on the system performance should be evaluated.
Instead of the current rule, which is relatively complicated, it was desired to simplify
the operating policy for the new system. In addition, an assessment of the impact of the
productivity of manual operations on overall system throughput was needed. Finally,
the possibility of increasing the pace of manual operations would be weighed against
more work-in-process and congestion in the system. Considering the complexity of the
traffic control system, the randomness of operation cycle times, and availability of the
vehicles, the simulation approach was found to be an effective analysis tool for the
problem. The main objective of the study was to determine the operating parameters
that would enable the seat assembly area to achieve maximum hourly throughput.

The results from simulation indicated that adding more AGVs to the current fleet,
originally contemplated by the design team, would not significantly increase overall
system throughput. Thus unnecessary expenditure on capital equipment was avoided.
Overall system throughput increased with higher operator efficiency levels but was lim-
ited by the stretch wrapper. The throughput did not increase with further increases in
worker efficiency once the bottleneck shifted to that operation. Different sequences of
assigning available lanes to AGVs arriving at assembly islands did not affect over-
all system throughput. Opening more lanes in one assembly island did not necessarily
translate to higher throughput, because of the interdependencies between consecutive
assembly islands.

15.5 NONMANUFACTURING APPLICATIONS 561

In this study, simulation provided a detailed picture of the behavior of the system
under the assumptions of increased efficiency at various operations. Analyses clearly
showed that unless some of the existing processes were improved, adding more capacity
to the material handling system could not be justified. The plant engineers were able to
determine the root causes of the problems, which were not evident by observation of
the system or by statistical analysis of data.

15.4.3 Case Study: Instrument Panel Assembly Line

In a small-components plant, prior to installing a new instrument panel assembly line,
the engineering and management teams wanted to detect potential bottlenecks that may
limit capacity and to assess the utilization of resources. The new design included a
conveyor system unfamiliar to the plant management and line personnel. In addition,
there was a need to determine the best scheduling and loading patterns for the new
system.

The system consists of a closed-loop powered roller assembly line. Each 10-ft section
of conveyor has a variable-speed driver and a mechanical stop. One of two part types is
loaded onto a pallet at the start of the system. The pallet enters several manual assembly
stations and operations are performed on both part types. After the pallets pass through
these stations, they are separated according to part type. Part A pallets are transferred
across to the top of the line, where they are unloaded. Part B pallets continue on the
lower line through more assembly stations and are then transferred up to the top section
of the line. Then part B pallets enter one of four test cells. Following this operation,
empty pallets are sent to a buffer in front of the loading station, while part B pallets
merge back into the main line with part A for unloading.

The goals of this study were to (1) evaluate different line configurations identifying
and correcting any problems (blockages, bottlenecks, etc.), (2) evaluate the throughput
of the system using different loading patterns, and (3) determine the number of required
pallets. Using the simulation model, process engineers were able to determine the buffer
capacity required for empty pallets, line speeds, and control logic required at transfer
and intersection points. The final system was robust enough to handle any type of prod-
uct mix that could enter the system. Results showed the number of pallets required to
achieve maximum system throughput to be 28, whereas the original estimate was 48,
resulting in 42% savings.

15.5 NONMANUFACTURING APPLICATIONS

15.5.1 Case Study: Distribution Chain Management

A European car manufacturer was reengineering its vehicle distribution system over
its North American dealership network and required a detailed study of the existing
and proposed systems and recommendations on improvements to the system. Vehicles
are manufactured abroad, and the distribution system uses several U.S. ports to satisfy
North American demand. Dealerships in metropolitan markets get their shipments from
port inventories.

The company feels that building distribution centers closer to metro markets should
reduce costs and improve customer service metrics in terms of first-choice deliveries
(i.e., ability to deliver to the customer immediately what she or he is asking for). There

562 SIMULATION IN THE AUTOMOBILE INDUSTRY

was a need for flexible analysis tools to generate and evaluate various alternatives. The
objective of the study was to develop a set of models for predicting the performance
of a given distribution system configuration. The performance criteria were the rate of
matching customers' first choice and the total cost of installing and operating a given
configuration of the distribution network.

In this study, a mathematical optimization model was developed to generate dis-
tribution center alternatives that minimize transportation-related costs per year. Once a
solution is generated, the configuration was input into a simulation model that explicitly
considered the probabilistic and dynamic elements in the system, and hence estimated
the overall performance of the given alternative more realistically. Using an algorithm
that iterated between the optimization and simulation models, a configuration was found
that satisfied most of the evaluation criteria. The new design showed that it was possible
to reduce transportation costs by about 25% while improving customer service.

15.5.2 Case Study: Warehousing Study

This project studied the proposed changes to a warehouse and the proposed material han-
dling equipment. The modifications to the system were needed as a result of increased
storage, shipping, and receiving volumes anticipated due to packaging changes in exist-
ing products and introduction of new product lines. It was desired to determine alterna-
tive ways of increasing both cubic storage space and material handling (shipping and
receiving) capabilities. The challenge was to optimize the layout of the warehouse and
select the most suitable material handling equipment to provide adequate service based
on planned future volumes.

The goals of the study were to identify system constraints that could limit future
space and handling requirements and to suggest potential improvements and modifica-
tions to the system design. The design alternatives were based on the following system
parameters: (1) dedicated versus random storage rules, (2) original rack orientation ver-
sus rotated (perpendicular to the docks) orientation, (3) aisle width and overall storage
space utilization, and (4) capacity of material handling equipment, most notably the
number of lift trucks.

The results from the simulation model demonstrated that (1) randomized storage was
better suited to this situation than dedicated storage, (2) the rotated orientation with the
corresponding narrower aisle configuration resulted in an 85.96% increase in overall
unit load storage capacity, (3) the rotated orientation also resulted in an increase from
23.57% to 41.95% in total storage space utilization, and (4) the existing number of lift
trucks was sufficient to service the increased volumes.

15.6 ROLE PLAYERS AND STANDARDS

15.6.1 Role Players

Interest in determining the best use of simulation in building efficient manufacturing
systems (see refs. 11 to 13) in the automotive industry continues to increase. Advances
in computer hardware and software and an increasing awareness of the capabilities of
simulation have helped to achieve this higher level of interest. There are several groups
of people with close interests in using simulation as a productivity enhancement tool.
First, almost all major manufacturers have their own consulting groups providing simu-

15.6 ROLE PLAYERS AND STANDARDS 563

lation modeling and analysis services within the corporation. These groups act as inter-
nal consultants and are closely tied to industrial engineering departments. An important
function of these groups is to increase the awareness of simulation across the corpora-
tion. Working closely with process and material handling engineers, these groups help
establish simulation technology as an indispensable computer-aided engineering tool.
For further discussion, see ref. 14. In addition to corporatewide groups, some of the
divisions of the corporation and most of the plants have access to internal personnel as
simulation analysts. Another important function of these internal resources is to coor-
dinate the acquisition of modeling services when needed. By ensuring that the models
delivered are accurate and are in usable form, these internal resources also act as liaisons
between simulation modeling vendors and the corporation [15].

Simulation service providers are a second group dedicated to enabling simulation
technology to be used properly and to achieve its maximum benefits. Smaller compa-
nies show a high degree of variation in size and the breadth of services offered. Many
simulation service providers would typically use only a few of the commercially avail-
able simulation software packages. There is only a very small number of vendors that
provide expertise in all simulation software. An important contribution of simulation
service providers is the expertise and focus to turn projects around at a faster rate than
with the typical internal resources of a corporation. Also, simulation services providers
have the ability to play a mentorship role in use of the methodology. Such mentorship
programs offer an opportunity for speeding up the learning of the proper methodology.
Guiding relatively novice users of the technology through complicated modeling and
analysis situations is a very critical task in establishing simulation as a powerful tool
in designing and operating a manufacturing system.

As indicated previously, each of the major automotive manufacturers has made it a
practice to simulate new systems prior to their installation in a plant. Consequently, more
and more machine tool sellers are increasing their use of simulation. Besides concurring
with the requirements of the automotive companies, simulation is being used by some
machine tool sellers and material handling equipment suppliers in designing, specifying,
and planning the production line.

Machine tool sellers and material handling suppliers have different needs when they
use simulation. From a machine tool seller's viewpoint, the objective is to evaluate the
capability of the equipment to deliver the required throughput. Consequently, individual
machine downtimes, machine cycle times, scrap rates, and buffer sizes become the most
typical inputs to a simulation model. The typical results from a study of the machin-
ery include the location and size of each buffer, an assessment of the line throughput,
and identification of potential bottlenecks should the product mix change. A material
handling equipment supplier is, however, concerned with providing the right material
at the right time and at the right place. Consequently, the speed, routing and traffic
logic, and capacity of the material handling equipment become predominant inputs to
a simulation. Identitication of congestion problems, evaluation of the speed and capac-
ity of material handlers, and an assessment of the throughput capability of the material
handling system are the typical results from a simulation study.

An examination of models built for a material handling supplier and for a machine
tool seller would reveal that the simulations on each side have ignored the other even
though they are ultimately for the same production line. A machine tool seller assumes
that material handlers would always be present and that they would have sufficient
capacity. The material handling supplier would assume that the process would always
yield the target throughput. Obviously, the interactions between the two systems are

564 SIMULATION IN THE AUTOMOBILE INDUSTRY

seldom captured in simulation models. It is the responsibility of the buyer of the sys-
tem to ensure that a complete model of the production system is built by considering
both components of the manufacturing hardware. However, in a typical organization, the
material handling group and the process engineers work in separate areas and, perhaps,
use different simulation models. Therefore, it is seldom the case that the members of one
group would gain an insight from the simulations performed by the other group. Conse-
quently, inefficiencies, redundant effort, and even misleading conclusions are possible.
Thus the management of simulation modeling for large-scale integrated design projects
has some room for improvement.

15.6.2 Standards

Standardization of simulation models could have many benefits for an automotive com-
pany. A typical automotive company would have many geographically dispersed plants
that are likely to be very similar in nature. For example, many of the assembly plants
of the same vehicle manufacturer would look very similar. The designers of the same
type of facility tend to be the same across different car programs. By keeping the same
design teams on similar car programs, a vehicle manufacturer attempts to maintain and
utilize the know-how generated among other programs. By the same token, building
simulation models by adhering to a well-defined set of standards can reduce the costs
of development. In addition, standardized animation, source codes, and reports can all
help to minimize communication problems between analysts and the users of simulation
results.

As discussed previously in this chapter, simulation models are being built for many
reasons at many different points in a vehicle program by many different parties. Since
it is spread across many functions and departments within an automotive company, the
use of simulation shows a significant degree of variation.

Considering the multiplicity of users of simulation among the vendors, internal and
external simulation consultants, and many facilities of a large company, structuring a set
of standards for simulation modeling is a very challenging task. Furthermore, developing
standards on model building, animation, analysis, and report generation has not been
recognized as a problem.

Modeling tools that allow building of application templates have been an attempt
at standardization on the software side of the technology. However, an important road-
block in standardization is the fact that simulation modeling is a cognitive task. Models
are developed by people with different levels of education, skills, and experience. The
perception of problems and understanding of the capabilities of the software tools are
highly dependent on the individual. Consequently, there are differences between models
of similar systems developed by different people. Furthermore, as there is a learning
process and different timing requirements on different projects, even the models devel-
oped by the same person show significant differences over time.

There have been efforts toward standardizing a methodology for application of the
simulation methodology. For example, refs. 16 to 20 report significant benefits from
applying such methodologies. Those studies indicate that the success of a simulation
study is determined primarily by how well certain guidelines on project management
and model building are followed and communicated to the project team. However, at
the date of this writing, there have been no published common standards of modeling
and model building techniques, particularly for the automotive industry.

15.8 ROBOTICS SIMULATION 565

15.7 SIMULATION MODEL LIFE-CYCLE CONSIDERATIONS

Simulation models may have a short or long life cycle based on the use of the model
through the life of the system. Short-life-cycle simulation models are developed for a
single decision-making purpose at a certain point during the life of the system (e.g., con-
ceptual design issues, detailed design issues), and once the decision is made, the model
is discarded. On the other hand, long-life-cycle simulation models are built to be used
at multiple points in time during the life of the system and are maintained and revali-
dated as conditions change in the system. Currently, about 70 to 80% of the simulation
models built can be categorized as short-term models, while the rest are longer term in
that they will be reused after the initial simulation study has been completed. Long-term
simulation models require long-term ownership (i.e., use, control, and maintenance) of
the model by a modeler and/or engineer. Long-life-cycle models are generally built for
the purposes of (1) training, (2) reuse at the launch phase, and (3) reuse at the fully
operational phase for changes in design and operation of the system. Training-focused
long-life-cycle models are used to train engineers on the stochastic nature of the system
that they are controlling and/or teaching simulation to them. Models built at the detailed
design phase of a system may be used for partial personnel allocations and line segment
operations in the launching phase of a new manufacturing system. The reuse of models
at the fully operational phase of a system are generally for product-mix decisions as
the demand for products change or as new products are introduced into the system. The
successful use of long-life-cycle simulation models may require the following tasks to
be accomplished in addition to the traditional steps of simulation model building [16]:

1. Construct user-friendly model input and output interfaces.

2. Determine model maintenance and training responsibility.

3. Establish data integrity and collection procedures.

4. Perform field data validation tests.

It is important that the long-life-cycle nature of the model be specified as part of
the original objectives of the study because the model design is highly influenced by it.
For the long-life simulation model to be effective, the simulation project team should
include at least one person who is a long-term user of the model.

15.8 ROBOTICS SIMULATION

15.8.1 Overview of Robotics Simulation Technology

Robot applications are becoming more and more widely used in industries from man-
ufacturing to health care. The most common utilization of robots is in manufacturing.
In the automotive industry, primary areas of robotics applications include arc and spot
welding, painting, material handling, assembly, and testing and inspection. There are
many automotive assembly plants in the United States that use robots, for example,
for all welding operations in body shops. Similarly, almost all new paint shops uti-
lize robots for most paint applications. Also, many small-components manufacturing
plants have robots for a significant portion of the assembly operations. In addition, in
electronic component assembly lines, robots are very common. Consequently, there is

566 SIMULATION IN THE AUTOMOBILE INDUSTRY

a strong need for effective analysis and design tools for applying the technology suc-
cessfully. With its flexibility to address a wide range of design and operational prob-
lems in robotics applications, simulation technology proves to be such a tool. Some
commonly used software includes IGRIP from Deneb Robotics, ROBCAD from Tech-
nomatrix Technologies, CimStation from SILMA, and Workspace from RWT. All of
these software can display a work cell in three-dimensional graphics. They also pro-
vide inversive kinematics calculations to facilitate a wide range of analyses on robotic
systems, such as robot selection, robot placement, reaching capability assessment, and
interference checking.

Robotics simulation applications can be categorized into four areas: (1) conceptual
design and presentation applications, (2) robotics work cell design applications, (3) off-
line programming, and (4) integrated simulation with ergonomics and discrete-event
simulation. The first category includes applications where a proposed or existing sys-
tem is modeled for demonstrating a concept, marketing, training, or documentation of
different designs. A typical simulation in this category consists of machines, robots,
robot tools, jigs and fixtures, material handling devices, and human operators. The main
objective of these types of models is communicating the ideas and concepts through a
realistic graphical representation of system operation.

The second category of robotics applications involves mostly engineering applica-
tions. Designing and evaluating the layout of a work cell, selection of robots, designing
tools and fixtures, eliminating colliding motion paths, optimizing robot movements, and
cycle-time assessment and task allocation are among the typical uses of robotics simu-
lation models. Clearly, those models require a high degree of accuracy in the geometric
representation of cell components.

All of the software tools mentioned above provide the capability to create robot
programs in their native language (i.e., ARLA for ABB robots and KAREL for FANUC
robots). Once an accurate model of a work cell is created, it is possible to develop
programs for the robots. Those programs can then be downloaded to the robot controllers
on the floor, eliminating the need for teaching by using a pendant. For some applications,
however, there might be a need to calibrate the off-line program since there are always
differences between a simulation model and real-life implementation of the work cell,
due to installation errors and manufacturing tolerances. Off-line programming using
robotics simulation software is explained in more detail in the following section.

Integrating a robotics simulation study with a discrete-event simulation study benefits
both in various ways. The most important interaction, however, is the cycle-time deter-
mination. An assembly-line simulation can determine a time window for the cycle time,
which can then be fed to a robotics simulation model for determining feasibility. On the
other hand, a robotics simulation model can help determine the best and worst estimates
of the cycle time in a robotics work cell. Those estimates can then constitute a basis for
what-if scenarios by using a discrete-event simulation of the entire production line.

15.8.2 Off-Line Programming Using Robotics Simulation Software

The traditional "teach" method is by far the most common method of programming a
robot. This method is usually satisfactory if the complexity of an application allows a
relatively short programming time. With this technique, the robot program is generated
by using the robot itself in its production environment. The off-line approach makes it
possible to develop robot programs using a computer model. ROBCAD and IGRIP are
commonly used robotics modeling and simulation software programs used for off-line

15.8 ROBOTICS SIMULATION 567

programming (OLP) purposes. As exciting as it can be, off-line programming through
such software could be an inefficient, expensive, and frustrating experience if precau-
tions are not taken.

The process of generating robot programs using kinematics simulation software has
three major phases: (1) preparation, (2) calibration, and (3) program development. The
preparation phase is involved primarily with the generation of solid models of the
related work-cell components. This phase is completed when a model of the work
cell is put together using those component models. In the calibration phase, the differ-
ences between the simulated and actual environments are measured and a mathematical
approximation of the actual system is constructed using techniques mostly external to
the simulation software. In the third phase the actual robot programs are developed
using the simulated environment. Clearly, the third phase can start immediately after
the preparation phase is completed. However, the calibration phase can help determine
special programming requirements that should be considered in developing final robot
programs (e.g., additional work locations to compensate for deflections under heavy
payloads). Consequently, those three phases follow each other in a typical OLP project.

15.8.3 Case Study: Gear Machining Cell Design

In this study, a simulation model of a proposed robotic operation that interfaced two
CNC machines was developed. The operation was part of the gear-making process in an
engine and transmission assembly plant. By replacing manual operations with a robotic
system, it was expected that the reliability of the system would increase as the cycle
time is reduced. A proposal for a robotic work cell was developed and investigated
through the models built during the study.

The present process to load parts on machines was labor intensive. By using robots
it would be possible to increase the efficiency and reliability of the entire operation.
However, the feasibility of a robotic operation should be investigated thoroughly before
taking any serious action. Among the issues that must be addressed were:

What type of robot was required to accomplish the tasks involved in the operation?

Where should the gantry robot and its supporting facility be placed?

How should the robots and the existing machinery be interfaced'?

How can the robot movements be optimized to ensure that cycle-time constraints
are satisfied?

What type of gripper is required to handle both parts and containers?

To answer those questions, a model of the work cell was developed (see Figure 15.5
for a snapshot of part of the model) using a robotic simulation software tool with the
following objectives:

To develop a cell layout based on geometrical constraints, work locations, and robot
work envelope.

To develop a conceptual gripper design.

To determine whether the robot can perform the tasks within the allowcd cycle
time.

To demonstrate the initial feasibility of the robotic operation.

568 SIMULATION IN THE AUTOMOBILE INDUSTRY

Figure 15.5 Snapshot of a section of the gear loading cell simulation model.

The work cell consisted of one gantry robot, a part container, two CNC machines, and
conveyors for inbound and outbound containers. The model allowed experimentation
with several parameters, including various gripper designs, and robot movement param-
eters, such as speed and acceleration. An arrangement for the work cell was developed
by considering geometrical constraints and cycle-time limitations. The gripper design
was tested and interference were eliminated. Cycle-time analysis showed that the robot
could easily load two machines within the allowable cycle time. Consequently, a sec-
ond gantry requiring a significant investment was avoided. The monetary savings from
using simulation were much more than the cost of simulation. Also, by testing the sys-
tem in a virtual environment, an efficient design was developed by testing many design
alternatives in a very short amount of time. Such comparisons would take months if tra-
ditional tools of design were to be used. Finally, a videotape of the three-dimensional
animation was used to demonstrate the proposed system to plant personnel.

15.9 FUTURE OF SIMULATION IN THE AUTOMOTIVE INDUSTRY

In many ways, the automotive industry was a leader in the application of discrete-event
and robotics simulation in the last 35 years. Some of the earliest manufacturing simula-
tors were developed by automotive companies in the 1970s [21] and a number of new
applications of simulation are currently being tested in this industry for the first time
(e.g., multiple computers running multiple manufacturing simulations in an integrated
fashion, combining layout optimization with layout simulation, off-line programming
of welding robots). In looking at the next 5 years, one may see the following trends in
simulation in the automotive industry: (1) development of more rigorous model-building

REFERENCES 569

and validation procedures, (2) creation of model databases for effective model archiv-
ing and reuse, (3) development of databases for plant machinery and equipment for
model input, (4) development of megamodels incorporating supply chain models with
final assembly plant models, (5) use of models at various detail levels by different lev-
els of management in a plant environment concurrently, (6) integration of kinematics
models-robot, ergonomic worker with discrete-event models, (7) integration of real-

time scheduling with simulation models for more effective shop floor control, and (8)
expanding the virtual reality applications in simulation of manufacturing systems.

ACKNOWLEDGMENT

Edward J. Williams, Senior Simulation Analyst, Ford Motor Company, provided valu-
able suggestions that contributed to the clarity and organization of this chapter.

REFERENCES

1. Fox, J. G. (1991). Effective application of simulation in the life cycle of a manufacturing cell
project, in Proceedings ofthe 1991 Winter Simulation Conference, B. Nelson, W. D. Kelton
and G. M. Clark, eds., IEEE, Piscataway, N.J., pp. 41 1 4 1 8 .

2. Graehl, D. (1992). Insights into carrier control: a simulation of a power and free conveyor
through an automotive paint shop, in Proceedings of the 1992 Winter Simulation Conference,
J. J. Swain, D. Goldsman, R. C. Crain, and J. R. Wilson, eds., IEEE, Piscataway, N.J., pp.
925-932.

3. Gupta, T., and S. Arasakesari (1991). Capacity planning in wood products industry using
simulation, in Proceedings o f the 1991 Winter Simulation Conference, B. L. Nelson, W. D.
Kelton, and G. M. Clark, eds., IEEE, Piscataway, N.J., pp. 435440.

4. Jeyebalan, V. J., and N. C. Otto (1992). Simulation of material delivery systems with dolly
trains, in Proceedings of the 1992 Winter Simulation Conference, J. J. Swain, D. Goldsman,
R. C. Crain, and J . R. Wilson, eds., IEEE, Piscataway, N.J., pp. 916-924.

5. Gunal, A., E. Grajo, and D. Blanck (1994). Generalization of an AS/RS model in
SIMAN/Cinema, in Proceedings of the 1994 Winter Simulation Conference, J . D. Tew, S.
Manivannan, D. A. Sadowski, and A. F. Seila, eds., IEEE, Piscataway. N.J., pp. 857-865.

6. Satyhadev, D., S. Upendram, E. Grajo, A. Gunal, 0. Ulgen, and J. Shore (1995). Model-
ing power and free conveyor systems, in Proceedings of the Autosimulations Symposium,
Autosimulations, Bountiful, Utah.

7. Upendram, S., and 0 . Ulgen (1996). Methods for implementing AGV parallel server lane
selection rules in automod, paper presented at the Autosimulations Symposium.

8. Gunal, A,, S. Sadakane, and J. Shore (1996). Modeling chain conveyors in automod. in Pro-
ceedings of the Autosimulations Symposium, Autosimulations, Bountiful, Utah, pp. 21-3 1 .

9. Williams, E. J . , and I. Ahitov (1996). Integrated use of macro and micro models within a
simulation study, in Proceedings of the AutoFact Conference, Society of Manufacturing Engi-
neers, Dearborn, Mich., pp. 169-1 79.

10. Williams, E. J. (1994). Downtime data: its collection, analysis, and importance, in Proceed-
ings of the 1994 Winter Simulation Conference, J . D. Tew, S. Manivannan, D. A. Sadowski,
and A. F. Seila, eds., IEEE, Piscataway, N.J., pp. 1040-1043.

1 I . Vasilash, G. (1995). Chrysler's CAD/CAM commitment, Production, November, pp. 46-50.

12. Black, J., J. Bulat, B. Colwell, R. Combs, and H. Potvin, Simulation in automotive industry:

570 SIMULATION IN THE AUTOMOBILE INDUSTRY

today and the next five years, panel session chaired by 0 . Ulgen, Proceedings of the Autofact
Conference, SME, Dearborn, Mich., November, pp. 947-961.

13. Berkin, D., M. Brazier, R. Klungle, A. Menawat, and H. S. Na (1995). Management of simu-
lation technology in large companies, panel session chaired by U. Olgen, Proceedings of the
Summer Computer Simulation Conference, T. 1. Oren, L. G. Birta, eds., Society for Computer
Simulation, San Diego, Calif., pp. 361-366.

14. Williams, E. J. (1996). Making simulation a corporate norm, in Proceedings of the Summer
Computer Simulation Conference, V. W. Ingalls, J. Cynamon, and A. V. Saylor, eds., Society
for Computer Simulation International, San Diego, Calif., pp. 627-632.

15. Williams, E. J. (1993). Selection of a simulation-service vendor, Industrial Engineering, Vol.
25, No. I I, pp. 18-19.

16. Ulgen, 0 . M., J. J. Black, B. Johnsonbaugh, and R. Klungle (1994). Simulation methodology
in practice, Part I: Planning for the study, International Journal of Industrial Engineering,
Vol. 1 , No. 2, pp. 119-128.

17. Ulgen, 0. M., J. J. Black, B. Johnsonbaugh, and R. Klungle (1994). Simulation methodology
in practice, Part I: Selling the results, International Journul of Industrial Engineering, Vol.
1, No. 2, pp. 129-137.

18. Ulgen, O., A. Gunal, and J. Shore (1996). Pitfalls of simulation modeling and how to avoid
them by using a robust simulation methodology, in Proceedings of the Autosimulations Sym-
posium, Autosimulations, Bountiful, Utah, pp. 2 1-3 1.

19. Grajo, E., A. Gunal, D. Sathyadev, and 0 . Ulgen (1994). A uniform methodology for discrete-
event and robotic simulation, in Proceedings of the Deneb Users Group Meeting, Deneb
Robotics, Inc., Auburn Hills, Mich., pp. 17-24.

20. Ulgen, O., A. Gunal, E. Grajo, and J. Shore (1994). The role of simulation in design and
operation of body and paint shops in vehicle assembly plants, in Proceedings of the European
Simulation Symposium, Society for Computer Simulation International, San Diego, Calif., pp.
124-128.

21. Ulgen, 0 . (1983). Society for Computer Simulation, "GENTLE: GENeralized Transfer Line
Emulation, in Proceedings ofthe Conference on Simulation in Inventovy and Production Con-
trol, Society for Computer Simulation, San Diego, Calif., pp. 25-30.

CHAPTER 16

Simulation of Logistics and
Transportation Systems

MAN1 S. MANIVANNAN
CNF Transportation, Inc.

16.1 INTRODUCTION

In highly industrialized nations, a sophisticated and widespread transportation system is
an inherent need to provide both passenger and freight movements. Due to the unprece-
dented need for nationwide mobility, there is a requirement not only for various modes
of transport but also increasingly sophisticated interfaces between customers, suppli-
ers, and-manufacturing and service industries (Wright and Ashford, 1989). Five modes
account for all but a fractional percentage of all ton-mileage of freight and passenger
mileage of person-travel: motor vehicles (Parsonson and Thomas, 1976; May 1990;
Afshar and Azadivar, 1992; Schulze, 1993; Joshi et al., 1995), railroads (Hay, 1977;
Atala et al., 1992), air transport (Ashford and Wright, 1984), water transport (Quinn,
1972; Bruun, 198 I) , and pipelines (Wolbert, 1979).

In this chapter we describe the application of discrete-event simulation techniques
in the design, analysis, and management of logistics and transportation (L&T) sys-
tems. First, we outline the current approaches to solving various business problems and
explain briefly why simulation methodology is appropriate for this industry. Next, var-
ious domains and fundamental issues that are important within L&T systems are iden-
tified. The entities, resources, and activities to be considered in the simulation model,
and factors and responses (output reports) that are essential for strategic, tactical, and
operational analysis of L&T systems are described in detail. Throughout the chap-
ter we present readers with some of the common hurdles encountered during appli-
cation of simulation methodology and implementation of results within the L&T do-
main.

Handbook of Simulation, Edited by Jerry Banks.
ISBN 0-47 1 - 13403- 1 O 1998 John Wiley & Sons, lnc.

572 SIMULATION OF LOGISTICS AND TRANSPORTATION SYSTEMS

16.2 BACKGROUND

16.2.1 Direct and Indirect Resources in L&T Systems

Typically, an L&T system is built on a network composed of one or more terminals or
hubs connected by a set of traffic lanes. Accordingly, the networks form hub-and-spoke
arrangements and/or direct linkages between origin and destination (Lee and Fishwick,
1995). These networks and the associated topologies have evolved over long periods
of time. Hence it is very expensive and often consumes enormous amounts of time and
effort to make radical changes in a network. The L&T systems utilize many resources
and we can classify them broadly as (1) direct resources used in physical transporta-
tion of freight (or physical goods) from one geographic location to another, and (2)
indirect resources involved in sorting, storing, handling, retrieving, and consolidating
at the various transit locations known as flowthrough centers, terminals, or hubs.

In a trucking system, trailers, tractors, and drivers are the direct (moving) resources, and
the dock doors at terminals, refueling stations, fuelers, and maintenance crews are the indi-
rect (stationery) resources. The terms moving versus stationery are used to distinguish the
resources that move longer distances either on the road, air. or water versus the resources
that tend to stay at one location (although the resource may have its mobility limited to
one geographic location). Similarly, in a warehousing and distribution system, the trucks,
aircrafts, and cargo ships are the moving resources; the docks, doors, forklifts, carts, stor-
age bins, and racks inside the warehouse are the stationery resources. The moving (direct)
resources are used to transport freight from plants to warehouses, distribution centers to
customer sites, and so on. Again, in an air transportation system, the direct resources are
aircraft, pilots, and air containers, and the scissor lifts, tug and dollies, forklifts, and hub
personnel are the indirect resources (Horonjeff and McKelvey, 1983).

It is important that these two types of resources operate together in the most efficient
manner for smooth and balanced operation of the entire L&T network. In addition,
management and deployment of these resources must ensure the least amount of delay
at terminals and hubs, maximum availability and utilization of resources, and on-time
pickup and delivery of physical goods. A well-structured scientifically proven approach
is required to accomplish these goals.

16.2.2 Challenges of L&T Systems Modeling

For the past several decades, the design, analysis, and control of transport systems were
carried out mostly by field engineers (civil, structural, and traffic engineers) and oper-
ations research (OR) scientists (Ashford and Covault, 1978; Hamzawi, 1986; Ashford,
1987). A large number of L&T systems have evolved over time and become fairly huge
and complex. The primary goals of an L&T business enterprise are to store, distribute
and/or transport freight of varying size, form, and shape from its origin to its desti-
nation at the lowest cost in order to deliver the right quantities at the right time to its
customers who are geographically dispersed; however, the underlying L&T systems that
are built to guarantee on-time, damage-free, shortage-free delivery to customers have
become extremely complex and often require expensive administrative, information, and
decision support systems (Ashford and Clark, 1975).

Conventional L&T planning involves the development of analytical models for trip
generation (Moore, 1957), trip distribution (Schneider, 1967), modal split (Wilson, 1969;
Smith and Cleveland, 1976), and traffic assignment (Parsonson and Thomas, 1976).

16.2 BACKGROUND 573

Numerous OR models were developed and applied during the past four decades in the
design and configuration of L&T systems (Schiller and Marvin, 1956; Miller 1971;
Agerschou et al., 1983; Gibson et al., 1992). In recent years, descriptive modeling of
L&T systems has been gaining momentum in transportation companies (Frolow and Sin-
nott, 1989; Hsin and Wang, 1992; Atala and Carson, 1995; Blair et al., 1995). Computer
simulation models are built to evaluate a set of operation policies prior to the irnplemen-
tation of large and complex L&T systems (Nilson and Nicolaou, 1967; Abdus-Samad,
1977; Soros and Zador; 1977).

Major challenges face the analysts in applying simulation technologies to the L&T
domain. These can be broadly listed as follows:

L&T networks are quite complex and involve a very large number of entities and
resources.
Existing simulation software do not support all the modeling/analysis features
required.
There is unfamiliarity of simulation technology in L&T industry.

Optimization/heuristic methods are widely applied.

Closed-form solutions are available for many design problems.

However, there are many problem domains within L&T systems, where the simula-
tion approach is best suited if applied properly. For instance, simulation is highly desired
for evaluating alternative strategies to operate a terminal (Koh et al., 1994; Manivannan,
1996) or a warehouse. Similarly, the impact of dynamic arrival and departure times of
trucks and aircraft at a central hub on time windows and expected service performance
can best be understood via computer simulation (Manivannan and Zeimer, 1996).

16.2.3 L&T Problems for Simulation Modeling and Analysis

In general, L&T problems appropriate for simulation studies are divided into three major
categories:

1. New design

2. Evaluation of alternative designs

3. Refinement and redesign of existing operations

Accordingly, simulation models in L&T domains are built for the following purposes:

Models for strategic planning
Models for tactical planning

Models for networkltraffic control

Off-line control
Real-time satellite/telecommunication control

Models for scheduling and dispatching
Off-line scheduling
Exception handling

Real-time monitoring

574 SIMULATION OF LOGISTICS AND TRANSPORTATION SYSTEMS

In this section we outline a list of problems and issues that fall under each of the three
categories. Although the list is not exhaustive, it provides critical issues that require
effective solution strategies for an L&T business to be successful. The problem areas
described in category 1 are solved, in general, using optimization/heuristic approaches.
Often, the optimized new L&T designs are verified and validated using computer sim-
ulation. The problems outlined in Categories 2 and 3 can be solved using several well-
known techniques; however, many L&T businesses tend to utilize simulation modeling
and analysis (Kell and Fullerton, 1991; Kelsey and Bisset, 1993; Mabry and Gaudiot,
1994).

1. New Design

Network design

Hub and spoke

Direct move

Terminal/hub planning

Number of terminals

Location

Size (dock dimensions, number of doors)

Fleet planning

Route planning

Least-cost transportation modes

2. Evaluation of Alternative Designs

Transportation mode alternatives (based on the type of resources)
On-the-road (trucks)

Relay operations

Sleeper operations

Rail (trains: single/double stacked)

Air (planes, helicopters)

Ocean (ships, barges) . Intermodal alternatives

Combine sleeper with rail

Combine relay with sleeper

Combine rail with relay

Combine trucks with air

Combine trucks/air with ocean

Service performance alternatives

Overnight service

Two-day service

Premium service

16.3 SIMULATION OF WAREHOUSING AND DISTRIBUTION SYSTEMS 575

3. Refinement and Redesign of Existing Operations

Operational performance analysis

On-the-road movements

Linehaul, regional, and group operations

Terminal operations

Operating rules

Hooking, unhooking, hostling, and fueling

Trailer loading and trailer offloading

Dock operations

Dispatching

Rail movements

Loading strategies at the railyard

Train timetables

Capacity requirements

Air transportation

Origin terminal operations

End-of-line operations

Central/distributed hub operations'

In the following sections we discuss briefly the application of simulation methodol-
ogy in four L&T problem domains: (1) simulation of warehousing and distribution sys-
tems, (2) simulation of trucking operations, (3) simulation of truck docks, and (4) simu-
lation of ramp operations in aircargo hubs. For each problem domain we describe the (I)
simulation modeling issues; (2) purpose of building the model; (3) entities, resources,
and critical processes that need special attention; (4) what-if scenarios; (5) input data
required; and (6) outputs for statistical analysis.

16.3 SIMULATION OF WAREHOUSING AND DISTRIBUTION SYSTEMS

16.3.1 Purpose of the Simulation Model

A growing number of logistics firms utilize discrete-event simulation concepts to model
the various issues of large-scale logistics networks. In one extreme, a logistics simulation
model may be developed to investigate and improve the operations of a warehouse; on
the other extreme, it may involve modeling and analysis of the operations of an entire
supply chain. In most cases there is a common goal for developing the simulation model,
which is to evaluate the performance of individual value-adding (indirect) resources,
facilities, and operations as well as the flow of transportation entities (direct resources)
between the plants, warehouses, and customers.

The simulation models are developed to perform a variety of what-if scenarios to
accomplish the objectives of a logistics network management or its customer. These
include (to name a few):

576 SIMULATION OF LOGISTICS AND TRANSPORTATION SYSTEMS

1. To evaluate strategic decisions
Warehouse location and allocation
Warehouse/distribution center designs

Transportation mode analysis
2. To test tactical solutions

Inventory management policies

Pull ordering between customers and plants
Push ordering between warehouses

Service levels
3. To identify operation problems on an ongoing basis

Changes in transportation modes
Changes in warehouse operation parameters

Changes in parts and finished products
Customer demand fluctuations

16.3.2 Simulation Model Development for a Logistics Application

A simulation model of a logistics network is developed to investigate the impact of the
variabilities associated with production schedules, customer demand, and transporta-
tion delays. The simulation model must combine the behavior of a physical logistic
network with the activities and operations of the various logistics entities within the
problem domain. In general, the simulation model may emphasize the internal logistics
and operations of a warehouse, or the pickup and delivery of freight within a city or a
zone, or the movement of physical goods across an entire country or continent. In this
section our focus is to develop a simulation model of a logistics network comprised of
plants, warehouses (or distribution centers), and customers located all over the world.
The simulation model can be built using several world views and/or paradigms (process
interaction, event scheduling, object-oriented , etc.); however, in this section we iden-
tify a list of unique processes and activities that require special attention to adequately
represent the various components of a logistics simulation model.

Often, logistics simulation models incorporate a geographic map showing the physi-
cal relationships among plants, terminals/hubs, warehouses/distribution centers, and
customers. It is suggested that activities at the plants, warehouses, and customer loca-
tions are separately modeled at appropriate levels of detail. These individual models
are then integrated with the underlying logistics network superimposed on a geographic
map. Often, a hierarchical modeling approach is preferred to represent the logistics net-
work as well as the operations at the individual nodes (a node may refer to a plant,
a customer, or a warehouse). In this way the logistics user/designer can visualize the
movement of transportation entities at the map level as well as the operations at the
plant or warehouse level.

Figure 16.1 indicates the movement of orders from customers to plants and the prod-
ucts and parts from plants through warehouses to the customers in a logistics system.
Various modes of transportation are used to move items between the origin and destina-
tion locations. Most manufacturing, retail, and service industries embrace this logistics
system. Depending on the level of detail specified to generate the desired results, the

16.3 SIMULATION OF WAREHOUSING AND DISTRIBUTION SYSTEMS 577

To Warehouses I". Countries in Foreign

(via AirlSea)

To Warehouses
and Customers

Figure 16.1 Orders and products flow between plants and customers through warehouses

simulation modeler/analyst may represent some or all of the entities, resources, and
activities in a logistics system.

An exhaustive list of processes/activities modeled and represented in a logistics sim-
ulation model follows.

Order processing at the warehouse (manual, EDI) . Pull ordering system
Push ordering system . Terminal operations at plants, warehouse, and customers (domestic/foreign)

Grouping and palletizing

At a production plant before shipping to a warehouse

At a warehouse before shipping to a customer
Ungrouping

At a warehouse once the parts arrive from a plant
Transportation mode selection

At production plants

At warehouses

Handling shortages (or surplus inventory)

Creation at a warehouse (domestic/foreign) . Send an order message to another warehouse . Movement of parts (raw materials, semitinished)
From domestic plants to domestic warehouses

578 SIMULATION OF LOGISTICS AND TRANSPORTATION SYSTEMS

From foreign plants to foreign warehouses

From domestic plants to foreign warehouses

From foreign plants to domestic warehouses
Movement of finished products

From domestic warehouse to domestic customers
From foreign warehouse to customers abroad
Between domestic warehouses
Between foreign warehouses
Between domestic and foreign warehouses

Customer orders

From US. customers to domestic warehouses
From foreign customers to warehouses abroad

Customer locations (geo-coded)
Transportation mode selection

Based on a specified service level

Based on the availability of resources
Based on shipment priorities (direct)

Direct shipments from plant to customers
ltems in shortage

Emergency items (a percentage of total shipped)
OEM products

16.3.3 Entities and Resources in a Warehousing and Distribution
Simulation Model

Entities are physical things whose behavior change over time. Primarily, there are two
sets of entities in a warehousing/distribution problem domain. Again, the level of detail
depends on the goals and objectives set forth by the decision maker of logistic systems.

Product-related entities
Primary and nonprimary parts

Produced in-house

Vendor supplied
Products (semifinished, finished)
Palletized (or grouped) items

Parts
Semifinished products

Finished products
Information-oriented entities

Orders from customers
Orders for shortage

The following resources are encountered in the simulation model to fully represent

16.3 SIMULATION OF WAREHOUSING AND DISTRIBUTION SYSTEMS 579

the behavior of a logistic systems. Once again, the level of detail depends on the purpose
of the simulation model. Both direct and indirect resources should be considered.

Trucks

Between plants and warehouses
Between warehouses

Between warehouses and customers
Airplanes

Between plants and warehouses
Between warehouses
Between warehouses and customers

Ships and barges

Between domestic plants and foreign warehouses
Between foreign warehouses
Between domestic (foreign) warehouses and foreign (domestic) customers . Internal (warehouse/plants/distribution centers/customer sites) equipment
Forklifts
Carts
Pallet trucks
Conveyors
AS/RS systems

Guided vehicles

All the static and dynamic entities, together with the resources, must be either fully or
partly represented in the simulation model, depending on the level of detail desired by
the logistics user(s).

16.3.4 Data Requirements for a Warehouse Simulation Model

In general, the simulation models are developed within this domain to evaluate ware-
house locations and transportation modes between plants, warehouses, and customers.
The input data required for these models include the following:

Number of plants . Number and location of warehouses
Number of customers . Customer demand to warehouses
Part numbers produced at different plants

Bill of materials
Transportation times
Between plants and warehouses
Between warehouses and customers

It should be mentioned that the customer demand, transportation times, and so on,

580 SIMULATION OF LOGISTICS AND TRANSPORTATION SYSTEMS

are stochastic in nature and vary over time. Accordingly, these data elements correspond
to probability distributions generated using the information collected over several days,
weeks. or months.

16.3.5 Simulation Outputs and Responses

Following is a list of responses that a logistics system designer or user is often interested
in knowing about.

Average utilization
Warehouse

Trucks

Airplanes

Other resources inside a warehouse

Inventory levels

Production plants

Warehouse

Transportation delays

Between the plant and a warehouse

Between a warehouse and customers

Customer orders

Average waiting times at a warehouse

Number waiting at a warehouse

In summary, a good understanding of the importance and purpose of building sim-
ulation models for logistics applications, together with a list of entities, resources and
critical activities that require special attention during the model-building phases, and the
key data inputs and output responses required for logistics users is essential to derive
valid and useful conclusions.

16.4 SIMULATION OF TRUCKING OPERATIONS

In a trucking industry, the freight may be transported in trailers either directly to its
destination with no stops or transported via several intermediate terminals where freight
(in trailers) is picked up and/or dropped off. Most trucking companies move freight
either in LTL (less than truckload) or in DL (direct load) mode. Accordingly, freight
is often transported by straight trucks or by a tractor-trailer from an origin terminal
or hub or consolidation center to the destination. A straight truck is one in which the
power unit (with the driver cabin) is connected to the trailer and cannot be dislodged.
In the case of a tractor-trailer pair, one, two, or three loaded trailers are hooked to
a tractor by the hooking personnel (hostlers) at the yard in a terminal. Truck drivers
arrive at the terminal at prespecified times to drive the hooked trucks (often referred to
as a schedule or truck-tractor-driver set). The number of trailers hooked to a tractor
may vary depending on the amount of freight to be transported, the number of trailers
available to carry freight, and most important, the geographical location of the origin
and/or destination terminal. These concepts are illustrated in Figure 16.2.

16.4 SIMULATION OF TRUCKING OPERATIONS 581

-
Direct Truck Load

TI , T2, T3 and T4 are Intermediate Terminals

i-...,: Dashed lines are used to show truck movements

e-, Solid lines are used to show driver movements in relay mode

Figure 16.2 Fundamental concepts in a trucking operation.

A set number of loaded trailers are transported by relay, by sleeper, by meet-and-
turn drivers, or by rail from each terminal, hub, or consolidation center. Occasionally,
empty trailers may be transported, due to load imbalance. Load imbalance may occur
when more freight moves in one direction than in another direction. For instance, more
automobile components and parts may move from northeast toward midwest sections
of the United States, whereas not much freight may move from the midwest toward the
northeast, causing a load imbalance. This often leads to more loaded trucks going in
one direction and returning empty in the opposite direction. In general, the driver pool
is divided into three categories:

1. Pickup und delivery drivers, whose primary function is to stay within a city zone.

2. Relay drivers, who drive trucks from one terminal to the next for a shorter period
(say, 8 to 10 hours) and return back to the origin terminal, which is their domicile
location.

3. Sleeper drivers, where two drivers alternate driving and drive to farther destina-
tions with minimum number of stops for a longer period.

In relay operations the freight tends to move through several intermediate terminals
before reaching its destination. Tractor-trailer sets with LTL and straight trucks with
direct loads both move between the origin and destination terminals using either relay
or sleeper modes. When a truck driver is at a terminal location that is not his or her
domicile point, the driver is at a foreign terminal and is referred to as a foreign driver.
At foreign locations, drivers will be provided accommodation to rest for a period of time
(say, 8 to 10 hours) before driving back to the domicile location. This depends on the
availability of a schedule (and freight). In general, foreign drivers have higher priority
over drivers domiciled at that terminal location, so as to reduce the cost of managing
the foreign drivers. Once the drivers return to their domicile location, they go home and
wait until their next assignment.

To reduce the cost of managing drivers when they are at foreign terminals, truck-
ing companies often set up a pool of meet-and-turn drivers. These drivers are used to
exchange trucks from two terminals moving toward each other when the total trans-
portation time is within 8 to 10 hours. In such cases the drivers meet at a central point

582 SIMULATION OF LOGISTICS AND TRANSPORTATION SYSTEMS

(or a predetermined point such as rest areas along U S . highways), swap their trucks and
turn back to their domicile terminals. Therefore, drivers will start from their domicile
terminal and end up at their domicile location.

Once the trucks arrive at the terminal, if it is a straight truck, it will arrive at the yard
and wait its turn to offload. If it is a tractor-trailer pair, the set is unhooked and waits
at the yard for offloading. The unhooked tractor may be taken for maintenance checks,
refueling, and so on. Each terminal has a dock with sufficient doors for the loaded
trailers or trucks to arrive at a prespecified door and offload. Offloading may involve
use of manual handling or forklifts or other material handling equipment. The simulation
modeling and analysis of truck docks has been studied by the terminal management to
evaluate the best dock procedures.

In general, truck docks are divided into areas specifically for offloading trucks (or
trailers) and reloading trucks or trailers. However, there are truck docks where the
offloading and reloading may be planned to occur in the same area to reduce the length
of time the freight needs to be staged before it is reloaded for transportation to its final
destination.

Essentially, computer simulation is applied to several areas of trucking operations.
These are divided into three major topics: (1) dock simulation, (2) terminal simula-
tion, and (3) linehaul simulation. Dock simulation refers to modeling and analysis of
the activities of dock processes and improve the overall performance of truck docks.
Terminal simulation refers to modeling and analysis of all activities that take place in
the terminal. Linehaul simulation combines dock operations and terminal operations at
several terminals, either along a single traffic lane or across an entire transportation net-
work. The complexity level increases as we move from dock simulation modeling to
linehaul simulation modeling.

16.4.1 Simulation Model Development for a Linehaul Trucking Operation

In this section the application of discrete-event simulation techniques to evaluate and
redesign linehaul operations is discussed. This involves the (1) origin and destination
terminals, (2) arrival and departure events of trucks, (3) hooking rules and driver assign-
ment procedures, and (4) movement of trucks (tractors, trailers, and drivers) along a lane
(Northern Transcon in the United States, for instance).

Fundamental Problems and Modeling Issues. The simulation model is built to
perform strategic, tactical, and operational analysis and to address a variety of problems:

Current methods of hooking trailers

Current procedures used to assign drivers to schedules
Load imbalances within any lane at any terminal
Equipment needs at any terminal in the lane
Driver needs at any terminal within the lane
Management of these resources within the lane

This simulation model can serve not only as an operational tool to address these
issues within a specific lane but can also be used to serve as an early warning system
to provide dock, terminal, and linehaul management with the capability to better control
and contend with exceptions that occur during day-to-day operations.

16.4 SIMULATION OF TRUCKING OPERATIONS 583

A unified, hierarchical, object-oriented, layered architecture is necessary to represent
the linehaul and trucking operations. The modeling objects are designed to be more
generic and flexible. Depending on the decisions to be made by the dispatchers or the
operations managers, one or more simulation models may be required for an analyst
or a decision maker to evaluate the impact of moving trailers by means of relay and
sleeper modes, sleeper only/relay only mode, and so on. All the necessary graphical
user interfaces should be part of the modeling environment so that the user can quickly
modify parameter values during and at the end of simulation.

Modeling Critical Input Processes. To perform trucking simulation, the model
must be built to depict the following;

1. Trailer Closing Times at Docks. The trailers are loaded with freight each day
at each of the origin terminals according to a trailer closing process. The trailer
closing times during a day are often defined in the form of a probability distribu-
tion. Most L&T companies have either centralized or distributed data processing
centers that maintain on-line databases for time and freight information.

2. Truck Arrival Process at the Docks and Terminals. The arrival processes associ-
ated with trailers, tractors, and drivers from other terminals or hubs that are not
part of the lane under study.

3. Terminal Open Time and Close Time

4. Trailers Transported by a Specijic Mode

All these features must be built into the model so that the transportation user or
analyst need only to enter the information for each terminal location.

Critical Processes at the Terminals. The trucks arriving at a terminal can be one
of three types (Figure 16.3):

I . Trucks that originate from a terminal along a traffic lane under study and end up
in a terminal along the same lane.

2. Trucks that originate from a terminal outside a traffic lane, enter the lane, utilize
part of the lane, go through one or more terminal(s), and leave the lane and end
up in a terminal outside the traffic lane.

(Columbus: (Bo!

Figure 16.3 Identification of lane-specific trucks and foreign trucks.

584 SIMULATION OF LOGISTICS AND TRANSPORTATION SYSTEMS

3. Trucks that originate from a terminal inside a traffic lane, travel along the lane,
utilize all or part of the lane, and leave the lane and end up in a terminal outside
the traffic lane.

The terminals connected by solid and/or dashed lines form a traffic lane (under
study). The trucks that originate and end up at any of the terminals along the dashed line
are type 1 trucks. Trucks moving along thick solid lines are type 2 trucks. Type 3 trucks
are those moving along thin solid lines. A better understanding of how these types of
trucks (along with drivers) are handled at various terminals is essential to represent the
truck arrival and departure process in a simulation model. Type 2 and type 3 trucks are
often called foreign trucks.

Modeling details at each terminal include:

Creation of loaded trailers (dock process)

Trailer grouping (hook assignment) rules, depending on the type of truck

Hooking grouped trailers with a tractor
Equipment preparation for relay or sleeper runs (hostler, hooking times associated
with preparing the equipment)
Driver assignment and management for relay, meet and turn, or sleeper runs (by
employing a prespecified resource pool)
Schedule arrival process for different types of trucks
Unhooking trailers

Offloading at the dock
Schedule departure process for different types of trucks

Critical Processes at Relay Stations. The major processes and activities per-
formed at the relay stations must be represented in the model, including:

Driver changes (relay drivers only)

Refueling, if needed

Equipment preparation, if needed

Modeling Modes of Trucking Operations. Modeling details associated with the
movement of trailers, tractors, and drivers include:

Sleeper operations only (direct moves)

Relay operations only (transport via terminals)

Sleeper and relay operations only (transport via terminals)

Sleeper, relay, and meet-and-turn operations (direct moves and transport via termi-
nals)

Modeling Intermodal Issues. Often, trucking companies utilize rail to transport
their loaded and empty trailers to reduce load imbalances. In this case, terminal opera-
tions are closely tied to railyard operations. The various activities related to rail oper-
ations (departure at origin and arrival at destination) should be depicted by the model.
The critical processes include:

16.4 SIMULATION OF TRUCKING OPERATIONS 585

Move rail-trailers to railyard.

Hold trailers until train departure times.
Split trailers at the railyard.

Move trailers from the railyard to the terminal.

Strip trailers and count the number of trailers.

Level of Detail Along the Traffic Lane. The simulation model must depict the flow
from one or more origin terminal(s) to one or more destination terminal(s). Further, it
must be easy to expand the model to handle any number of origin and destination termi-
nals. In other words, the simulation model must encompass a variety of key processes,
such as (1) truck arrival process, (2) unhooking tractors and trailers, (3) assignment of
foreign and domicile drivers, (4) tractor management, (5) dock process to simulate the
off loading and loading of freight from and to trailers, (6) hooking assignment, and
(7) hostling and dispatch process. Each process may be parameterized individually to
represent the behavior of a terminal, hub, or consolidation center.

As mentioned previously, a hierarchical modeling paradigm is preferred for simulat-
ing the trucking operations in order to represent the behavior or the various entities and
resources. If object orientation is considered, the model can be built rapidly through
the use of a template of objects, simply by placing the consolidation center object on
a geographic map. The consolidation centers are linked together by arcs that are either
(1) static and/or (2) dynamic links. The static arcs essentially used for offline analysis
(i.e., during scenario playing or in strategic studies), whereas the dynamic links between
terminals are used to visualize the actual movement of trucks on a lane in real time (pri-
marily for monitoring and control purposes). Each consolidation center object placed
on the map is parameterized or modified using the model-building tools to represent the
specific behavior or characteristics of the terminal.

Once the simulation model is developed to represent a specific scenario, the model is
tested and verified. The scenario under study is simulated for a prescribed time period,
say for a period of 3 to 4 weeks of linehaul operations. The results generated is exhibited
to the user in the form of visual graphs and/or tabular outputs. These are discussed in
Section 16.4.3.

16.4.2 Entities, Resources, and Activities

The following entities, resources, and activities are considered in a typical simulation
model. The movement of trailers, tractors, and drivers and linehaul operations at ter-
minals or hubs or consolidation centers are focused on in this section. Sample entities,
activities, and resources are provided below.

Entities

Empty trailers at terminals

Loaded trailers (through or closed at terminals)

Waiting to be grouped with other trailers
Waiting to be sent by relay, sleeper, or meet-and-turn (or rail) mode

Transport operators (sleeper, relay, meet-and-turn drivers)

586 SIMULATION OF LOGISTICS AND TRANSPORTATION SYSTEMS

Tractors (currently all tractors are considered equal)
Trains at the railway station (if the rail mode is activated)

Resources

Hostlers

Dispatchers

Fuelers

Activities/Processes That Require Special Attention. The processes that
require special attention while developing the simulation model are divided into two
categories.

1. If only sleeper, relay, and meet-and-turn operations are considered, the following
activities are performed in a model:
(a) Off load the loaded trailers after a trip at the dock.

(b) Load the empty trailers at the dock.
(c) Unhook trailers at a terminal.

(d) Prepare (hostle) equipment at a terminal.

Get service from the hostler to hook/unhook trailers with tractor.
Get service at the fueling land or the inspection area.

(e) Drive the truck to the next location (may be destination) via sleeper mode.
(f) Drive the truck to the next location (may be destination terminal) via relay

or meet-and-turn mode.

2. If the rail mode needs to be modeled, the following activities are performed:
(a) Move trailers to the railyard.

(b) Transport the trailers from the railyard to the terminal (no capacity restrictions
on the pickup and deliver drivers working within city limits).

(c) At the destination terminal, split trailers at the railyard and dispatch to the
terminal.

Dynamic Processes and Associated Information. Various stochastic processes
should be represented in the simulation model. These include:

Trailer information

Trailers that are closed at a terminal on this lane and end up in a lane
Trailer closing time distribution (or)
Freight creation process and trailer loading time distribution

Through trailer arrival process

Trailers that travel a lane but are not closed at a terminal on a lane

Originate from a terminal not part of a lane but end up at a terminal on a lane
Originate from a terminal part of a lane but do not end up at a terminal on a lane

Originate from a terminal not part of a lane but do not end up at a terminal on
a lane

16.4 SIMULATION OF TRUCKING OPERATIONS 587

Scheduled arrival time distribution

Trailer information for each schedule

Lane destination

Load destination

Empty trailer availability information

Sleeper team arrival process at the origin terminals (call time frequency, etc.)

Relay (or meet and turn) driver arrival process at the origin terminals

Tractor availability information

Other pertinent information related to any other dynamic process

16.4.3 Data Requirements and Outputs from the Model

The simulation model involves the following data for sleeper, relay, meet and turn, and
rail (if included in the study) combination along a specific traffic lane under study:

Operation Data
Hostling times (hooking or unhooking) at each terminal for tractors . A set of intermediate locations where sleeper (or relay) trucks stop for unhooking
and/or hooking and/or refueling

Fueling/inspection times at a terminal

Fueling/inspection times at a third-party vendor location

Tractor service (inspection, etc.) times at terminals

Current number of hostlers per shift at each of the terminals under consideration

Current number of sleeper, relay, and meet-and-turn drivers

Standard driver roster

Arrival times at the terminal

Number of drivers

Assigned destination

Extra driver roster

Number of drivers

Driver work rules and DOT regulations associated with sleepers, relay, and meet-
and-turn drivers

Outputs from the Simulation Model. Using the operations data and the simulation
model with features specified in Sections 16.4.1 to 16.4.2, several output statistics are
collected during a simulation run. Each of these output statistics may be generated on-
line as the simulation is in progress or by accumulating the results over a period of
time. In the former case it is preferred that the outputs be generated in the form of
visual graphs and expected arrival times (ETAS); however, in the latter case, the outputs
may be created as cumulative statistics (e.g., average number and/or time, minimum
and maximum values, standard deviation, etc.) in the form of tables stored in external
files for further analysis and dissemination. Although the specific output reports vary
depending on the purpose of the simulation study, some of the most useful outputs
generated in a trucking simulation study include the following list:

588 SIMULATION OF LOGISTICS AND TRANSPORTATION SYSTEMS

Utilization of empty trailers at each terminal

Empty trailer buildup rate and its usage rate over a period of time

Utilization of drivers at each terminal (both foreign and domicile) over a period
of time

Tractor utilization at each terminal and tractor buildup rate and usage rate at a
terminal over a period of time

Number of trailers transported by sleeper teams, relay drivers, or meet-and-turn
drivers separately at all destination terminals for each day

Number of trucks on the road over a period of time (both time-persistent statistics
and cumulative statistics)

Number of trailers delayed at each terminal due to the unavailability of tractors

Delay times for trailers at each terminal due to the unavailability of tractors

Number of drivers delayed due to the unavailability of schedules at all terminals

Delay times for the drivers at each terminal due to unavailability of schedules

Number of tractors delayed due to the unavailability of trailers at each terminal

Delay times for tractors at each terminal due to unavailability of trailers

Hostler utilization

Sample Simulation Outputs for Conducting Operational Analysis. Two kinds
of outputs may be generated from a simulation model used to design, evaluate, and
improve the linehaul operations. These include (1) daily, weekly, monthly behavior; and
(2) snapshots at any point in time. In this section, sample output reports generated by
the simulation model are presented for further analysis and communication to trucking
management.

Among other reports that are essential for strategic, tactical, and operational control,
some of essential reports from the simulation model include (1) traffic summary, (2)
empty trailer usage, (3) driver by type usage, (4) tractor by type usage, and (5) schedule
delays at terminals. The sample outputs are shown in the following tables (the values
in tables are provided to illustrate the concepts and are fictitious).

Traffic Summary Report (Daily, Weekly, Biweekly, or Monthly). Table 16.1 provides
the throughput information, which can be used as an effective measure to determine the
operational performance of the lane being studied.

TABLE 16.1 Traffic Summary

Total Average
Lane Load Number of Number of

Origin Destination Destination Trucks Trucks in
Terminal Terminal Terminal Available Use

Chicago Buffalo Akron 53 14.89
Chicago Boston Akron 48 23.56
Chicago Akron Akron 64 19.44

16.4 SIMULATION OF TRUCKING OPERATIONS 589

TABLE 16.2 Empty Trailer Usage

Average Average
Terminal Average Number Waiting Time Percentage Trailer
Location of Trailers Waiting (hours) Utilization

Akron 4.5
Buffalo 0.5
Boston 2.5

Empty Trailer Usage Report (Daily, Weekly, Biweekly, or Monthly). This is an
important statistics that assists dispatchers at various terminals along a traffic lane to
learn about trailer usage at different points in time (see Table 16.2). This report also
helps decision makers to identify load imbalances and potential bottlenecks along a
traffic lane and take appropriate remedial actions to relieve the problems.

Driver-by-Type Usage Report (Daily, Weekly, Biweekly, or Monthly). This infor-
mation, shown in Table 16.3, is highly critical to understanding the need for different
types of drivers at various locations. Using this statistic the decision maker can evaluate
several options to utilize the most critical resource in a linehaul trucking operation: the
drivers.

Tractor Usage Report (Daily, Weekly, Biweekly, or Monthly). This information,
depicted in Table 16.4, is essential to understanding the need for additional tractors
at various terminal locations. Using this statistic the decision maker can evaluate sev-
eral options to ensure an adequate supply of tractors, thereby keeping a smooth linehaul
operation along the traffic lane.

Schedule Delays at Terminals (Daily, Weekly, Biweekly, or Monthly). This infor-
mation, provided in Table 16.5, is the single most important performance measure for
the decision maker to evaluate the alternative policies. The set of policies that lead to
the least amount of delay time at various terminals or consolidation centers is ideal for
deriving the best performance from a linehaul trucking system.

In summary, the results are generated in the form of tables and visual graphs (both
off-line and real-time) to include (1) rate of change of quantities with respect to empty
trailers, tractors, and drivers at each terminal due to the new arrival and movement of
freight; (2) average utilization levels of empties, tractors, and drivers during a speci-

TABLE 16.3 Driver Utilization

Average Average
Number of Average Percentage

Terminal Driver Drivers Waiting Time Driver
Location by Type Waiting (hours) Utilization

Akron Relay only 5 2.5 85.65
Buffalo Relay and 2 1.5 74.56

sleeper
Boston Sleeper only 3 I .0 35.00

590 SIMULATION OF LOGISTICS AND TRANSPORTATION SYSTEMS

TABLE 16.4 Tractor Usage Summary

Average Average
Terminal Average Number Waiting Time Percentage Tractor
Location of Tractors Waiting (hours) Utilization

Akron 5
Buffalo 2
Boston 3

fied time period; (3) average number of trucks (or schedules) moved between terminals
during a time period; (4) average number of trailers, tractors, and drivers delayed due
to unavailability of resources; and (5) average delay times associated with the unavail-
ability of one or more transportation resources.

16.4.4 Benefits of Trucking Simulation

By performing a series of what if scenarios and establishing a gaming environment
(frequently set up by large trucking companies in a "war room" format), both terminal
management and central planners can gain many benefits. We categorize these benefits
as follows:

a strategic tool

Evaluate and test operational strategies through an interactive, user-friendly
gaming environment (via simulation and animation) before actually imple-
menting the strategies.

Determine the load imbalances caused by loaded trailers, drivers, and tractors
at various terminals by visual graphs.

Determine the equipment needs at various terminals, empty trailers, and trac-
tors.

Evaluate the number of drivers (sleeper/relay/meet-and-turn drivers) and
their domicile locations.

a tactical tool

Estimate the resource requirements (empties, drivers, tractors) on a weekly
basis based on the freight movement characteristics at different terminals.

TABLE 16.5 Cumulative Statistics to Evaluate the Overall Performance

Maximum Average Average
Lane Number of Number of Delay

Origin Destination Trucks Trucks Time
Terminal Terminal Delayed Delayed (hours)

Chicago Buffalo 12 1.49 3.49
Chicago Boston 7 1.05 1.25
Chicago Akron 4 1.66 3.20

16.5 SIMULATION OF TRUCK DOCK OPERATIONS 591

3. As an operational tool

(a) Manage resources, reduce the delay times at terminals, and cut down penalty
pay by performing simulation experiments on a daily basis.

(b) Handle exceptions through an early warning capability, thereby accom-
plishing better control. This is done by visualizing the progress of freight
over time, tractor-trailer-driver movements among terminals, hostling and
hooking/unhooking, and expected arrival times and departure times of sched-
ules on one or more computer screen(s).

16.5 SIMULATION OF TRUCK DOCK OPERATIONS

Application of computer simulation techniques to model, analyze, and improve the per-
formance of a truck dock has been gaining enormous impetus in recent years. A typical
truck dock includes five major components: (1) a yard where trucks arrive and wait
for an empty door; (2) doors; (3) transporters operating at the dock, such as forklifts
and conveyors; (4) staging areas where the freight is temporarily stored prior to sorting
and shipping; and (5) sorting systems. Trucks arrive at the yard as straight trucks or as
tractor-trailer combinations. Different types of freight from the trucks are offloaded by
forklifts at the doors. Depending on the freight type and its destination, they are moved
either directly into another truck or staged on the dock for reloading to trucks at a later
time. In most situations, a truck dock is nothing but a flowthrough center.

Primarily, forklifts move the freight from the trucks to various locations. As trucks
arrive at the yard, they are assigned to doors depending on (1) the current trailers being
offloaded or reloaded at the dock, and (2) the availability of dock handlers and forklifts.
Only one truck is assigned to a door and offloading/loading begins immediately. The
pickup and dropoff times for the forklifts depend on the freight being offloaded. As the size
and shape of each type of freight vary, there is greater variation in the offloading/reloading
behavior. Further, the forklift speeds, movement times, forklift turning behavior, and the
level of congestion at the dock change depending on the freight type.

Several work rules are used to assign, manage, and control forklifts during the
offloading or reloading process. Forklifts are assigned to a specific door or a set of
door(s). During the offloading process, the forklifts may transfer loads to other trailers
being loaded or to a staging area. However, they tend to stay with the doors assigned
until the current truck is fully offloaded.

The staging areas are commonly located between the dock doors. These are among
the most congested areas, where loose freight is offloaded from all doors by forklifts.
This means that forklifts need to travel to this area more often than to other areas of
the truck dock. The size, number, and exact location of staging areas play a vital role
in determining the overall dock space, as do the number of doors and assignment of
doors to trucks arriving from an origin terminal and departing to destination terminals.
Figure 16.4 shows the facility layout of a simple truck dock in which the inbound trucks
arrive at one end of the dock and depart at the opposite end. In other configurations,
the inbound and outbound trucks are assigned adjacent to each other on the same side
of the dock.

Often, two fundamental objectives are set forth for the simulation study: (1) studying
the ways and means of increasing the throughput of a truck dock, and (2) studying the
impact of changes in a facility design before implementing it, to avoid making very

592 SIMULATION OF LOGISTICS AND TRANSPORTATION SYSTEMS

TmckslUnhooked Trailers Arrive at the Doors for Offloadine.

Figure 16.4 Truck dock showing the offloading and reloading processes.

costly errors. Although hundreds of what-if scenarios using a truck dock simulation
model are investigated, those most frequently studied ones are:

1. To develop a simulation model that has the ability to show operation managers
the existing processes, trouble spots, and changes in behavior of the existing truck
dock as it undergoes changes in terms of new equipment, facility, and operations.

2. To study the impact of changes in processes and policies within each area of the
truck dock.

3. To change the distances traveled and capacity/size/number of forklifts and deter-
mine the impact on performance at the truck dock area.

16.5.1 Input Data for Truckdock Simulation

For the purpose of building a truck dock simulation model, two types of input data are
collected.

1. The first type involves freight types, door information, resources used, and equip-
ment specifications.

Door information (number of doors, door size, door locations)

Freight types [containerized, bulk (sorted/unsorted), loose (hand-carried, top loads)
freight]
Resources [doors, forklifts, sortation conveyors (indexing)]

Operators (forklift drivers, freight handlers, dock workers, loaders/unloaders)

Queue locations (staging, sortation conveyors, door locations)

Forklift specifications (number and types, length and width of forklifts by type,
acceleration and deceleration, top speeds, forklifts by type, loaded speed by freight
type, unloaded speed by forklift type, park locations, work assignment, turning
rules, pickup and deposit rules)

16.5 SIMULATION OF TRUCK DOCK OPERATIONS 593

Conveyor specifications [conveyor type (indexing, roller, belt, etc.), number of seg-
ments, input station characteristics, output station characteristics, segment speed,
conveyor selection rules, freight movement/stopping rules]

2. The second type of data involves rigorous data collection at the truck dock. This
includes statistical distributions describing the behavior of truck dock operations, which
change from day to day or night to night. These include the truck (by type) arrival
process at different locations of the truck dock; pickup and dropoff times for forklifts
based on freight type; operational times at the sort conveyor, staging, and so on; and
the truck contents.

Arrival process

Type of trucks based on freight carried

Frequency of truck arrivals (type of truck and Percentage of occurrence)

Truck contents (freight type and Statistical distribution w/parameters)

Truck hostling time distributions . Door preparation time before offloading (when the truck is full)

Door occupancy time by trucks after offloading (when the truck is empty)

Loading/offloading times . Forklift pickup time by freight type (at staging area, sortation conveyor, and inside
trucks)

Forklift set-down time by freight type at destination points

Both types of information are incorporated in the simulation model to describe the
truck dock as well as day-to-day variabilities.

16.5.2 controllable Factors and Performance Measures

In truck dock operations, several factors are controllable, and the decision maker is often
interested in knowing about their impact on the output performance. In this section a list
of factors and responses (output reports) usually generated using a truck dock simulation
model are outlined. The essential factors are:

1. Number of dock doors

2. Number of forklifts

3. Number of operators

4. Number of trucks

5. Forklift operating speed

Similarly, the responses are (1) capacity, measured in number of pieces moved; (2)
average number of trucks unloaded; (3) forklift utilization, measured in percentage of
time the equipment is busy; and (4) average time to move a piece across a dock mea-
sured in units of time and on an hourly basis. The simulation model should be built to
provide answers to many issues involving these factors. The report generator should be
designed to provide all the responses listed in this section.

594 SIMULATION OF LOGISTICS AND TRANSPORTATION SYSTEMS

16.5.3 Simulating Critical Processes in a Truck Dock

Several processes and activities need to be simulated to represent the behavior of the
truck dock operations. An exhaustive list of the fundamental processes that require spe-
cial attention during the simulation model building phase follows.

1. Determine door assignments to trucks (based on arrival behavior) at the unloading
(inbound) doors.

Option 1: Assign trucks to doors starting from left to right.
Option 2: Assign trucks based on origin or destination terminal to the preas-
signed door.

2. Determine door assignments to trucks (based on departure process) at the loading
(outbound) doors.

Employ a round-robin method of door assignment, if not waiting at the yard
Send trucks directly to next-available door, if not waiting at the yard

Send trucks to doors based on origin or destination terminal
Send trucks to a common waiting area and to next-available door

3. Capture door arrival process.
Enter the dock door area for offloading.
Consider truck/door preparation time.

Read the information pertaining to the type of truck.
Read the information pertaining to the contents of the truck.

Wait for one or more forklift(s) to offload the truck contents.

4. Specify doors to forklifts

Assign each forklift to its door location for offloading or reloading.
5. Assign, schedule, move, and control forklifts for offloading trucks

Move forklift into truck to begin offloading.
Determine the freight picked up for transport.
Keep the fork forward/backward, depending on freight type.

Transport forklift to freight destination.
Drop off freight at its destination.

Move forklift back to its door.

Repeat until the entire truck is offloaded.

6. Assign, schedule, move, and control forklifts for loading trucks
Determine the freight picked up for loading.

Pick up freight from either staging area or a truck.
Keep the fork forward/backward, depending on freight type.

Transport forklift to the truck depending on freight destination.

Move forklift into truck to begin loading.
Drop off freight at its destination inside the truck.
Move forklift back to staging area or truck where freight is offloaded.

Repeat until the entire truck is offloaded.

16.5 SIMULATION OF TRUCK DOCK OPERATIONS 595

7. Pickup and dropoff times for truck dock forklifts

Specify the pickup and dropoff times by freight type.

8. Select a sortation conveyor (if required)
Specify a list of segments for each door using one of the selection rules.

Nearest-neighbor rule

Next-available-segment rule
Waiting rules if no segment available . Select an appropriate conveyor to offload or pickup for reload.

The processes described in this section are representative of a typical truck dock and
there may be some variations depending on the function, size, and purpose of the truck
dock.

16.5.4 Experimental Setup to Perform What-If Scenarios

One of the fundamental reasons for developing a truck dock simulation model is to eval-
uate its behavior and make necessary strategic changes to facility design, work rules,
and/or operational characteristics. The simulation model is usually linked with an exper-
imental setup. These setup programs are developed to include many predesigned truck
dock configurations. Occasionally, it may be necessary to make changes to both the
model and the input data prior to conducting a prespecified set of simulation experi-
ments (or scenarios). However, in the majority of cases, changes are made with the input
data (and not with the model). Essentially, the experimental setup for the truck dock
simulation model is developed to facilitate this function as well as to keep track of all
the simulation results for further analysis. This, in essence, helps to keep the simulation
model as a blackbox and make intelligent decisions. During strategic design and analy-
sis, each experiment for a scenario is executed 10 (to 30) times and the average values
for each of the responses are computed to generate statistically valid conclusions. This
is mainly because the operational behavior of the truck dock varies nightly (stochastic
in nature) and one replication of the simulation model is not sufficient to make useful
recommendations to truck dock management.

16.5.5 Analysis Using Truck Dock Simulation Results

In this section, sample analyses and scenarios generated for improving the performance
of a truck dock are discussed. As mentioned earlier, a simulation analyst may virtually
perform many what-if scenarios using the truck dock model. However, a few represen-
tative case examples that are critical and often studied by a truck dock management
team are described.

Impact of Eliminating Certain Truck Types at Inbound Dock. Table 16.6 shows
the impact of eliminating certain types of trucks on the performance of a truck dock. For
instance. the elimination of trucks carrying a certain type of freight (say, containerized
freight) from the inbound doors during busy periods may affect the average trip time
for forklifts. However, it may not affect greatly the averuge number oj'trucks unloaded
during a certain time period. Similarly, the removal of trucks carrying bulk freight for
an origin-destination pair from the doors during busy periods may affect the average
number of trucks unloaded.

596 SIMULATION OF LOGISTICS AND TRANSPORTATION SYSTEMS

TABLE 16.6 Impact of Eliminating Certain Classes of Trucks

Description
Average Process Time Average Number
at the Dock (minutes) of Trucks

Trucks carrying no containerized
freight 88.407

Trucks carrying containerized
freight 93.082

Trucks carrying bulk parcels -
Trucks carrying no bulk parcels -

lmpact of Additional Doors. Another interesting scenario involves the impact of
changes in the total number of doors at the inbound and outbound ends of a truck dock.
In such cases the decision maker is interested in knowing about the average increase
in truck dock capacity, forklift utilization (one forklift per door), average trip time, and
so on. Table 16.7 summarizes the estimated forklift utilizations, average trip times, and
average number of trucks unloaded for a fictitious truckdock with 18-door (existing)
and 40-door configurations, respectively. New end refers to the outputs associated with
the additional 22 doors only.

lmpact of Forklift Assignment Policies to Doors. The assignment of number of
forklifts per door at the inbound and outbound ends of a truck dock is critical to operate
and manage a truck dock effectively. This simulation study often leads to identifying
the work rules on the dock, the number of forklifts and dock workers, and the best
scheduling policies. Let xl denote the number of forklifts assigned to each door at the
inbound side of the truck dock, and let xz denote the number of forklifts assigned to
each door at the outbound side of the truck dock. A total of four scenarios are possible,
depending on the number of forklifts assigned per door at the inbound and outbound
ends as shown in Table 16.8.

For each of these four cases, the truck dock simulation model may be set up and
executed for a prespecified number of replications. Several responses, including the
average throughput, average utilization of forklifts at inbound and outbound ends, and
average operation times, can be collected in each case. The results may be compared to
estimate the best procedures for forklift assignment at the inbound and outbound ends
of a truck dock.

In essence, the truck dock simulation models are set up to perform operation plan-

TABLE 16.7 Estimated Forklift Utilization, Average Trip Times, and Trucks
OMoaded/Loaded

Forklift Utilization Average Trip Time Average Number of
(%) (minutes) Trucks

Doors 18 Doors 40 Doors 1 8 Doors 40 Doors 18 Doors 40 Doors

Inbound 63.742 59.705 88.407 96.536 34.387 14.9
Outbound 48.740 53.867 113.506 112.142 12.00 12.0
New end - 38.141 - - 35.5 102.207

16.6 SIMULATION OF RAMP OPERATIONS IN AN OVERNIGHT AIR CARGO HUB 597

TABLE 16.8 Four Forklift Assignments to Inbound and
Outbound Doors

Number of Number of
Forklifts/Door Forklifts/Door

Option (Inbound), xl (Outbound), x2

ning on an ongoing basis in a variety of logistics, trucking, and other transportation
applications. Following is a list of operations planning issues studied on an ongoing
basis for a given truck arrival and departure process:

Peak and lean hours during an operating period (day, week, or month)

Number of doors required and forklift assignment policies

Time window to complete offloading, staging, and reloading all the trucks

Amount of workload expected at all areas that may receive freight during a time
period

16.6 SIMULATION OF RAMP OPERATIONS IN AN OVERNIGHT AIR
CARGO HUB

In this section we describe the design, development, and testing of a simulation model
depicting the operations of ramp operations at a central hub in an air cargo company.
During the past two decades, several air cargo operations and airport terminals (Hart,
1986) have been modeled (Thompson, 1964; Stafford and Stafford, 1969; Walton and
Rosenbloom, 1977), analyzed, and redesigned (Harris, 1974; Crawford, 1977; Horo-
jeff and McKelvey, 1983; Hamzawi, 1986). However, a growing number of air cargo
companies have recently begun to apply computer simulation techniques. The major
benefits of an air cargo simulation model are as follows:

1. On an ongoing basis, pinpoint strategic and operational improvements on cur-
rent plane offloading and reloading processes, equipment use, and facility layout
due to changes in the behavior of the freight handled at the hub. This helps deci-
sion makers to improve continuously the productivity and throughput of air cargo
operations.

2. Determine a priori, the appropriate levels of capital equipment, equipment needs,
and a suitable facility layout due to an increase (or decrease) in the number of
planes, changes in the amount and/or characteristics of freight, and unexpected
exceptions. This helps decision makers to better utilize the investment dollars
before spending on new equipment purchases.

3. Utilize the simulation model, on a daily (or nightly) basis, to estimate the ramp
completion time for the number of planes specified and their expected times of
arrival (ETAS).

598 SIMULATION OF LOGISTICS AND TRANSPORTATION SYSTEMS

Often, a simulation model built for studying the air cargo ramp operations utilizes the
aircraft tail sheet information, chronological order of plane arrivals and departure data,
and ATC rules that designate gates for arriving aircraft. A variety of material handling
equipment, such as tug and dolly (to transport freight in containers), forklifts, and K-
loaders, are used to load and offload aircraft on the ramp. The number of dollies per
tug, number of tugs per plane, and total number of tugs on the ramp are design factors,
and changes in these design factors affect the operation performance. The major goals
for a ramp simulation model are as follows:

1. To develop a simulation model that has the ability to show ramp operations crew
the problems, trouble spots, and changes in behavior of the existing ramp oper-
ations as the air cargo hub undergoes changes in terms of additional/modified
K-loaders, tugs and dollies, and other auxiliary equipment.

2. To study the impact of changes in operations and policies within each area of the
ramp.

3. To perform a comparative analysis: current versus new layout of aircraft parking,
current versus new communication procedures, current versus new tug and dolly
assignment rules, and so on.

4. To study the impact of additional aircrafts and gates on the ramp and determine
the number of K-loaders and tug and dollies. Identify the changes to work rules,
if any, to maximize throughput and number of planes/containers offloaded at the
ramp and to minimize the average time to offload an aircraft.

5. To study the impact of changing the number of dollies per tug and number of
tugs per plane on the average time required to offload a plane. Study the impact
of these operation parameters on the varying number of planes that arrive at the
hub during a night.

Items 1 through 5 are critical problems that require in-depth analysis before making
valid recommendations to hub management. Often, an extensive statistical analysis is
conducted using one or more simulation model(s) to derive the necessary conclusions.

16.6.1 Static and Dynamic Data

The ramp simulation model requires two types of input information. The first type
involves the technical specifications associated with the freight, planes, gates, tugs, dol-
lies, forklifts, and sortline conveyor. In addition, it includes material flow behavior, work
rules, park location assignment rules, control rules for tugs and forklifts, and other fac-
tors. In general, a ramp simulation model includes the following representative data:

Number of gates
Ramp maps
Technical specifications of sortline conveyors, tugs, dollies, and forklifts
Plane types

Flight information
Tail sheet and chronological arrival/departure information
Number of container positions that each plane type can carry

Number of bellies

16.6 SIMULATION OF RAMP OPERATIONS IN AN OVERNIGHT AIR CARGO HUB 599

Number of containers each belly fills up by plane type

Number of dollies per tug

Team makeup for offloading/reloading containers from/to a plane . Number of tugs and dollies . Number of forklifts designated for offloading and reloading a plane . Sortation conveyor locations and physical characteristics

Plane parking location rules

Runway behavior

The second type of information involves a set of input distributions to represent the
day-to-day (or hour-to-hour) variabilities found in the ramp operations. It includes the
plane arrival process at different locations of the ramp, pickup times and dropoff times
for tugs and forklifts based on freight type and number of containers, operation times
at the conveyor, freight profile, and container contents in the plane.

16.6.2 Factors and Responses

It is important to identify a list of controllable factors and responses to evaluate alter-
native ramp designs. This helps immensely during the model-building stage if the sim-
ulation model has been built to represent all the necessary factors and responses. If the
model does not incorporate these factors and responses, the decision maker can hardly
use the model to study air cargo operations. Again, these factors and responses are
decided based on a list of questions that the hub management is interested in getting
answers for. For the ramp simulation model, the major factors are as follows:

Number of planes

Flight profile

Plane arrival-time distributions

Total number of tugs

Number of tugs per plane

Number of dollies per tug

Number of K-loaders

The responses that are of interest include the following:

Plane offload/load capacity

Total number of containers offloaded or loaded

Total number of planes offloaded or loaded

Average time to offload/load an aircraft

Completion time for offload/load all aircraft on the ramp

16.6.3 Simulation Model Development

A ramp simulation model should be built to interface with input data files and vari-
ables that can easily be modified to perform what-if scenarios. The model is frequently
developed to represent the following critical processes that occur on a ramp:

600 SIMULATION OF LOGISTICS AND TRANSPORTATION SYSTEMS

Plane arrival/departure process

Gate assignment of planes

Freight creation and movement at the aircraft

K-loader/forklift/tug interface
Ramp map for plane gates, container waiting, and tug parking areas

Tug and dolly movement system

Forklift movements
Tracking freight by type (e.g., huts, palletized, belly freight)

Sortation conveyors

In the simulation program, the plane arrival process is often implemented with a
rule base to mimic the tower rules and parking procedures used to park the planes. The
rule base utilizes the flight profile to get all pertinent information on arriving flights
during a night (or day). It is important that the rule base be tested using many different
flight profiles and arrival times to ensure that all arriving planes are parked at the gate
locations specified.

In general, the simulation model is built with a ramp map to include the tug and
dolly movement paths, the parking locations for planes and tugs, waiting areas for tugs,
interaction zones for transfer forklifts to pick up containers from the tugs, and inter-
section blocks to prevent collision between the tugs and link blocks to keep sufficient
space between tugs.

With respect to the tug and dolly system, it is preferred that the ramp simulation
model be designed to depict a very explicit and in-depth representation of their behavior
to perform a rigorous analysis of equipment usage. Often, a smart algorithm is designed
to incorporate the plane assignment rules to tugs and dollies (belonging to a team),
tugs per plane rules, tug waiting rules, offloading crew rules, collision avoidance rules,
right-of-way rules, parking rules, and passing rules. In addition, the algorithm may use
tug specifications such as acceleration; deceleration; loaded and unloaded speeds; and
forward, reverse, and curve speeds to determine precise travel times between the aircraft
and transfer areas.

The simulation logic development is one of the most important steps. The ramp
model (essentially, a computer program) includes the logic and data interfaces. If the
logic is incorrect or inaccurate, the output (responses) from a model cannot be utilized
to make intelligent decisions (Law and Kelton, 1991). Sufficient time and effort should
be spent in the design and development of the model logic to ensure quality outputs as
well as flexibility to extend the model to conduct many what-if scenarios on an ongoing
basis at the air cargo hub.

16.6.4 Repoit Generator

Often, it is suggested that a ramp simulation model be implemented with an interactive
built-in output processor to create many useful on-line reports for use in making strategic
and operational decisions. The results generated during each run may be stored in output
files for further analysis and hub management review. The output reports from a ramp
simulation model include the following information:

The total number of containers offloaded during an hour, total number of planes

16.6 SIMULATION OF RAMP OPERATIONS IN AN OVERNIGHT AIR CARGO HUB 601

offloaded during an hour, average time to offload a plane, and completion time for
offloading all the planes that arrived during a night (or a day). This helps decision
makers to determine exactly when the ramp completes its offloading activity.

Offloading or reloading times for 10 planes, 20 planes, 30 planes, and so on. This
provides the time at which the top side and belly are fully offloaded or reloaded.
This helps the decision maker to understand the progress of ramp process during
the operation window and accordingly, to determine the lean and peak periods.

Gates for all arriving planes as created by the simulation model. This information
can be utilized to park planes every day or night.

Actual time at which each aircraft is fully offloaded or reloaded.

Offloading time (the total time it took to offload the plane since its arrival at the
park location) for each aircraft that arrived during a night (or day). Information
on the aircraft reloading time for each plane is generated similarly. This informa-
tion assists the decision maker to determine trouble spots during ramp operations
involved in plane offloading and reloading.

16.6.5 What-if Scenarios Using Ramp Simulation Model

The ramp model can be utilized to simulate and analyze the impact of many alternative
approaches to assigning tugs to aircraft and the equipment/facilities used for offloading.
In addition, several critical issues can be investigated using the simulation model to
study the impact of:

Changes in number of tugs per plane

Changes in number of dollies hooked to each tug

Changes in total number of tugs used on the ramp

Changes in aircraft arrival process/departure process

Changes in number of K-loaders

Changes in number of transfer forklifts

Changes in work rules . Impact of changes in the tug assignment to aircraft

Impact of changes in the communication system used to manage tugs, K-loader,
etc.

In each case the ramp simulation model can be set up to run a series of experiments,
and the results discussed in Section 16.6.4 can be generated to perform in-depth sta-
tistical analyses. Based on the analyses, valid recommendations can be made to hub
management to improve the operational performance of the ramp.

From the foregoing discussions it is inferred that the modeling and analysis of
overnight air cargo operations pose a greater challenge to simulation experts. It is evi-
dent that a carefully designed simulation study leads to operational improvements, pro-
cessing time-window reduction, and substantial cost reduction. Hence it is highly rec-
ommended that detailed simulation models combined with good experimental designs
and rigorous statistical analysis procedures are set up to generate the best ramp config-
uration(~) and implementable operational design(s).

602 SIMULATION OF LOGISTICS AND TRANSPORTATION SYSTEMS

16.7 L&T SIMULATION SOFTWARE

Today, many commercial software packages are being employed by L&T industries,
depending on the level of complexity and size of the problem investigated. These soft-
ware tools range from standard linear programming packages such as LINDO, CPLEX,
and OSL to special-purpose software shells such as INSIGHT, SUPERSPIN, and CAPS
which are built to provide decision support in a wide range of L&T domains. With
respect to commercial simulation software, a large number of vendors provide pack-
ages, built on a variety of world views and hardware platforms, that focus on modeling
and analysis of simple material handling systems to complex flowthrough centers and
transportation networks. These software packages provide both animation and statisti-
cal analysis capabilities for L&T domain experts to fully represent a variety of entities,
resources, and critical processes. These simulation packages include Arena, AUTOMOD
11, GPSS/H, MODSIM 111, PROMOD, and SIMPLE ++, among many others.

16.8 CONCLUSIONS

As the degree of industrialization of an economy increases, there is a shift in preponder-
ance from basic manufacturing industries, sometimes referred to as primary industries,
to the service industries, which are secondary, tertiary, and quarternary in character. The
primary industries have a greater need for freight transportation, and the existing L&T
systems will continue to grow bigger and bigger and become more and more complex.
To build transportation systems that are efficient, easy to operate and manage, and still
cost-effective, it is crystal-clear that L&T companies will have to invest their time,
money, and other resources in scientific and structured approaches for many years to
come. This means that applications of mathematical modeling and numerical solution
techniques such as simulation will continue to grow in L&T companies.

REFERENCES

Afshar, N., and F. Azadivar (1992). A simulation study of traffic control procedures at highway
work zones, Proceedings of the 1992 Winter Simulation Conference, J . J . Swain, D. Goldsman,
R. C. Crain, and J. R. Wilson, eds., IEEE, Piscataway, N.J.

Agerschou, H., H. Lundgren, and T. Sorensen (1983). Planning and Design of Ports and Marine
Terminals, Wiley, New York.

Ashford, N. J. (1987). Level of service design concept for airport passengers, Transportation Plan-
ning and Technology, Vol. 12, No. I.

Ashford, N. J., and J. M. Clark (1975). An overview of transport technology assessment, Trans-
portation Planning and Technology, Vol. 3, No. 1.

Ashford, N. J., and D. 0. Covault (1978). The mathematical form of travel time factors, Highway
Research Record 283, Highway Research Board, Washington, D.C.

Ashford, N., and F. M. Holloway (1972). Validity of zonal trip production models over time,
Transportation Engineering Journal of ASCE, December.

Ashford, N. J., and P. H. Wright (1984). Airport Engineering, 2nd ed., Wiley-Interscience, New
York.

ATA (1970). Shipper-Motor Carrier Dock Planning Manual, Operations Council, American
Trucking Associations, Washington, D.C.

REFERENCES 603

Atala, 0 . M., and J. S. Carson (1995). A train operations simulation for Miami's SR 836 corridor,
in proceeding^ o f the 1995 Winter Simulution Conference, C. Alexopoulos, K. Kang, W. R.
Lilegdon, and D. Goldsman, eds., IEEE, Piscataway, N.J.

Atala, 0. M., J . C. Brill, and J. S. Carson (1992). A general rapid transit simulation model with
both automatic and manual train control, Proceedings qf the 1992 Winter Simulution Confer-
ence, J. J. Swain, D. Goldsman, R. C. Crain, and J. R. Wilson, eds., IEEE, Piscataway, N.J.

Blair, E. L., F. P. Wieland, and A. E. Zukas (1995). A distributed simulation model for air traffic
in the National Airspace System, in Proceedings of the 1995 Winter Simulution Conference,
C. Alexopoulos, K. Kang, W. R. Lilegdon, and D. Goldsman, eds., IEEE, Piscataway, N.J.

Bruun, P. (1981). Port Engineering, 3rd ed., Gulf Publishing, Houston, Texas.

Crawford, H. R. (1977). Lake Erie Airport study, Transportation Engineering Journal of ASCE.
Vol. 103, No. TE2.

Frolow, I., and J. H. Sinnott (1989). National Airspace System demand and capacity modeling,
Proceedings o f the IEEE, Vol. 77.

Gibson, R. R., B. C. Carpenter, and S. P. Seeburger (1992). A flexible port traffic planning model,
Proceedings of the I992 Winter Simulation Conference, J. J. Swain, D. Goldsman, R. C. Crain,
and J. R. Wilson, eds., IEEE, Piscataway, N.J.

Hamzawi, S. G. (1986). Management and planning of airport gate capacity: a microcomputer-
based gate assignment, Transportation Planning and Technology, Vol. 11, No. 3.

Harris, R. M. (1974). Models for runway capacity analysis, Report MTR-4/02, Rev. 2, The Mitre
Corporation. Washington, D.C., May.

Hart, W. (1986). The Airport Passenger Terminal, Wiley-Interscience, New York

Hay, W. W. (1977). An Introduction to Transportation Engineering, 2nd ed., Wiley, New York.

Horonjeff, R., and F. X. McKelvey (1983). Planning and Design of Airports, 3rd ed., McGraw-
Hill, New York.

Hsin, V. J. K., and P. T. R. Wang (1992). Modeling concepts or intelligent vehicle highway systems
(IVHS) applications, Proceedings of the 1992 Winter Simularion Conference, J. J. Swain, D.
Goldsman, R. C. Crain, and J . R. Wilson, eds., IEEE, Piscataway, N.J.

Joshi, S. S., A. K. Rathi, and J. D. Tew (1995). An improved response surface methodology
algorithm with an application to traffic signal optimization for urban networks, in Proceedings
of the 1995 Winter Simulation Conference, C. Alexopoulos, K . Kang, W. R. Lilegdon, and D.
Goldsman, eds., IEEE, Piscataway, N.J.

Kell, J. H., and I. J. Fullerton (1991). Manual of Trafic Signal Design, Institute of Transportation
Engineers, Washington, D.C.

Kelsey, R. L., and K. R. Bisset (1993). Simulation of traffic flow and control using f u t ~ y and
conventional methods, in Handbook of Fuzzy Logic and Control, Prentice Hall, Upper Saddle
River, N.J.

Koh, P. H., J. L. K. Goh, H. S. Ng, and H. C. Hg (1994). Using simulation to preview plans of
a container port operations, in Proceedings of the 1994 Winter Simulation Conference, J. D.
Tew, S. Manivannan, D. A. Sadowski, and A. F. Seila, eds., IEEE, Piscataway, N.J.

Law, A. M., and W. D. Kelton (1991). Simulation Modeling and Analysis, 2nd ed.. McGraw-Hill,
New York.

Lee, J. J., and P. A. Fishwick (1995). Simulation-based real-time decision making for route plan-
ning, in Proceedings of the 1995 Winter Simulation Conference, C. Alexopoulos, K. Kang, W.
R. Lilegdon, and D. Goldsman, eds., IEEE, Piscataway, N.J.

Mabry, S. L., and J. L. Gaudiot (1994). Distributed parallel object-oriented environment for traffic
simulation (POETS), in Proceedings qfthe I994 Winter Simulation Conference, Orlando, Fla.,
December, J. D. Tew, S. Manivannan, D. A. Sadowski, and E. F. Seila, eds., IEEE, Piscataway,
N.J.

604 SIMULATION OF LOGISTICS AND TRANSPORTATION SYSTEMS

Manivannan, S. (1 996). Operation analysis and improvement of truckdock operations, Proceedings
of the ASI Symposium, Salt Lake City, Utah, June.

Manivannan, S., and M. Zeimer (1996). Simulation and analysis of aircraft offloading operations,
in Proceedings of the 1996 Winter Simulation Conference, San Diego, Calif., December, J. M.
Chames, D. J. Morrice, D. T. Brunner, and J. J. Swain, IEEE, Piscataway, N.J.

May, A. D. (1990). Traflc Flow Fundamentals, Prentice Hall, Upper Saddle River, N.J.
Miller, A. J. (1971). Queueing at single-berth shipping terminal, Journal of the Waterways, Har-

bors, and Coastal Engineering Division of ASCE, No. WWI .
Moore, E. F. (1957). The shortest path through a maze, Proceedings of the International Sympo-

sium on the Theory of Switching, Harvard University, Cambridge, Mass.

Nicolaou, S. N. (1967). Berth planning by evaluation of congestion and cost, Proceedings ofASCE,
Vol. 93, No. WW4.

Nilson, K. O., and U. Abdus-Samad (1977). Simulation and queueing theory in port planning,
Ports '77, American Society of Civil Engineers, New York.

Parsonson, P. S., and J. M. Thomas (1976). A case study of the effectiveness of a traffic respon-
sive computerized traffic control system, in Control in Transportation Systems, proceedings of
the 3rd International Symposium of IFAC/IFIP/IFORS, International Federation of Automatic
Control, Pittsburgh, Pa.

Plumlee, C. H. (1966). Optimum size seaport, Proceedings of ASCE, Vol. 92, No. WW3.

Quinn, A. (1972). Design and Construction of Ports and Marine Structures, 2nd ed., McGraw-
Hill, New York.

Schiller, D. H., and M. L. Marvin (1956). The determination of requirements for warehouse dock
facilities, Operations Research, April.

Schneider, M. (1967). Direct estimation of traffic volume at a point, Highway Research Record
165, Highway Research Board, Washington, D.C.

Schulze, T. (1993). Simulation of streetcar and bus traffic, Proceedings of the 1993 Winter Sim-
ulation Conference, Los Angeles, December, G. W. Evans, M. Mollaghasemi, E. C. Russell,
and W. E. Biles, eds., IEEE, Piscataway, N.J.

Smith, R. L., and D. E. Cleveland (1976). Time stability analysis of trip generation and predis-
tribution modal split models, Transportation Research Record 569, Transportation Research
Board, Washington, D.C.

Soros, P., and A. T. Zador (1977). Port planning and computer simulation, in Ports '77, American
Society of Civil Engineers, New York.

Stafford, P. H., and D. L. Stafford (1969). Space criteria for aircraft aprons, Transportation Engi-
neering Journal, Proceedings of ASCE, May.

Thompson, A. W. (1964). Evolution and future of airport passenger terminals, Journal of the
Aerospace Transport Division, Proceedings of ASCE, October.

Walton, C. M., and S. Rosenbloom (1977). Measures to reduce peak period congestion, in Urban
Transportation EfJlciency, ASCE, New York.

Wilson, A. G. (1969). The use of entropy maximizing models in the theory of trip distribution,
mode split, and route split, Journal of Transport Economics and Policy, Vol. 3, No. 1.

Wolbert, G. S. (1979). U.S. Oil Pipe Lines, American Petroleum Institute, Washington, D.C

Wright, P. H., and N. J. Ashford (1989). Transportation Engineering: Planning and Design, 3rd
ed., Wiley, New York.

CHAPTER 17

Simulation in Healthcare

FRANK MCGUIRE
Premier, Inc.

17.1 INTRODUCTION

The spiraling increase in healthcare costs, the increasing restrictions on reimbursed pay-
ments to hospitals, the impact of managed care, and the continuing move from inpatient
services to outpatient services have combined to put many hospitals in a financial bind.
As hospitals came under increasing pressure to reduce costs and increase profitability,
long-held beliefs (or fears) delayed the introduction of simulation. Some of those beliefs
are:

1. Practices designed for manufacturing are not transferable to healthcare.

2. Efforts to increase efficiency will shortcut patient care.

3. Efforts to increase efficiency will be interpreted by the public as a reduction in
the quality of medical care provided to patients.

By the mid-1990s, the resistance was greatly reduced. General acceptance of the
benefits of total quality management (TQM) or continuous quality improvement (CQI)
facilitated the acceptance of other efforts designed to increase efficiency in hospitals.
Simulation is one of the technologies that has benefited from improvements realized
from TQM/CQI efforts. Process simulation has proven to be effective as a tool used
for process improvement in healthcare.

17.2 COMPARISON OF SYSTEM TYPES

17.2.1 Manufacturing

Manufacturing systems involve the transformation of a raw material into a finished prod-
uct. The finished product may be designed for an end user, or it may be the raw mate-

Handbook of'Simularion, Edited by Jerry Banks.
ISBN 0-47 1 - 13403- 1 O 1998 John Wiley & Sons, Inc

606 SIMULATION IN HEALTHCARE

rial for another manufacturing system in a series of processing systems. For example,
a cotton shirt is the result of four separate manufacturing processes, which often are
accomplished by four different firms. The transformation from a cotton boll to some
form of yam or thread is a series of processes within a textile mill. A cloth weaving
(knitting) company will then weave or knit the yarn into fabric. A finishing/dying plant
will then dye and finish the fabric. An apparel manufacturer will then cut and sew the
fabric into finished garments.

The efforts of industrial engineers in manufacturing have been to reduce the time
variance for each task and to standardize or maximize product flow. The increasing use
of robotics and automated equipment has reduced variances while reducing the human
presence in manufacturing.

17.2.2 Service

A service system involves the provision of assistance to customers. Examples include
food services (restaurants), financial services (banks), and healthcare services (physi-
cian offices, hospitals). While industrial engineers in the service industry also want to
reduce variance (in both time and quality) in the tasks being performed, interaction with
the public limits the extent to which that objective can be achieved. The main goal is to
standardize the work process. Human involvement in the service industry has remained
high compared with the manufacturing sector of the economy. Because of this involve-
ment, high variability is prevalent throughout the service industry.

17.2.3 Healthcare

Healthcare is a pure service system. The entities are usually patients or are originated
from patients (such as lab specimens). Intelligent entities greatly increase the variability
inherent in the system. People can be moody; they can get up and walk out; they can
be emotional and uncooperative; and they can be intoxicated and combative. They ask
questions and argue with physicians or fail to follow a physician's orders. Patients show
up late for appointments or fail to arrive at all. It can be difficult to determine the precise
medical problem (diagnosis) of the patient. There are currently 495 DRGs (diagnostic
related groups) and many thousands of ICD-9 codes. The DRG system is based on
research efforts at Yale in which related diagnoses were grouped together as predictors
of lengths of stay. A DRG is a classification of diagnoses in which patients demonstrate
similar resource consumption and length-of-stay patterns. For example, DRG 127 is
"heart failure and shock" [6]. ICD stands for "International Classification of Diseases
for the World Health Organization." Each DRG has ICD-9 codes that make up the
diagnosis group. For example, ICD-9 code 398.91 is "Failure, heart, congestive with
rheumatic fever, inactive" [4]. These issues are major contributing factors to the extreme
variability in healthcare systems.

17.3 RESEARCH: THE FIRST STEP

The first step an analyst must take when undertaking a simulation project is to make
sure that he or she is up to date on methods being used in other hospitals to improve the
process being studied. Despite the level of expertise that the analyst has in the depart-
ment being studied, there is a need to refresh his/her knowledge continuously. Although
reading and research will not reduce the need for direct observation and on-site inter-

17.4 STEPS IN A SIMULATION PROJECT 607

views, it will aid in the identification of additional opportunities for improvement. The
old clichi "Don't reinvent the wheel" is quite appropriate when performing a simulation
project. The analyst must be able to recognize opportunities to improve processes as he
or she uses a simulation model. Knowledge of how others have addressed problems in
similar departments can provide the analyst with valuable ideas to explore. An analyst's
credibility is also enhanced if he or she is able knowledgeably to answer questions about
current trends or future directions in the department under study.

Helpful resources are often at our fingertips. Libraries usually offer ways to search
periodicals for content and subject matter. Case studies are often presented in maga-
zines and publications in the healthcare industry. Nursing and physician journals are
good places to start. The American Hospital Association has many articles related to
various improvement efforts by the healthcare industry. Dozens of books are published
that address hospitals as a whole and the various parts thereof. These books are good
starting points for those relatively unfamiliar with a particular department. However,
the most current trends will not often be found in books. Journals are the best sources
of information on what is new and improved in the healthcare field.

Benchmarking studies are being performed in healthcare by healthcare alliances and
others. These studies are often available through the Benchmarking Clearing House or
from the benchmarking team itself. Often, "best practices" are preferred when appro-
priate conditions exist. One of the shortcomings of some studies is that the conditions
necessary for the practice to be most useful are not identified and explained. Therefore,
when reading about best practices, be aware that some may not be applicable to the
situation under study.

There are many databases that offer comparisons between hospitals. Some of these
are compiled by states and by various entities concerned with healthcare. Some are
available for purchase and some are available by being a member of an alliance. They
provide information that can alert the analyst to opportunities for improvement in var-
ious departments. A profile of the various hospitals usually exists so that users of the
database can have a framework for comparison.

17.4 STEPS IN A SIMULATION PROJECT

As discussed in Chapters 1 and 2, the simulation process can be broken down into a
series of steps. These steps are grouped in this chapter as initial, model construction,
and analysis as follows:

Initial Steps

Identify the process to be simulated.
Define the objective(s) of the project.

Formulate and define model.

Model Construction

Collect data.

Build the model.

Verify the model.

Validate the model.

608 SIMULATION IN HEALTHCARE

Analysis

Set up alternatives for evaluation.

Run multiple simulations on each alternative and evaluate results.

Choose the best alternative for presentation.

The steps are sequential in nature, and "jumping the gun" often results in unnecessary
additional work. Failure to plan the model structure prior to data collection often results
in both inadequate and excessive data collection efforts. Proper planning will avoid these
errors.

17.4.1 Initial Steps

1. Identify the Process to Be Simulated. The analyst must make sure that it is
clear what aspects of the process are to be simulated. There is a lot of room for miscom-
munication, resulting in inappropriate expectations by stakeholders (people who will be
affected by any change in the process) in the project. The starting and ending points of
the process should be clearly defined and agreed upon. Knowing which process is to
be simulated is the beginning of the project, but the objectives of the project must be
known as well.

2. Define the Objective@) of the Project. A simulation project is much like a
TQM or CQI project, up to the point of choosing the best alternative for implementation.
Simulation is an excellent tool for analysts to use during the process of a TQM project.
In general, the same rules apply for both efforts.

The objectives must be quantifiable. A unit of measure must exist for the objective
in order to know when the objective has been attained.

The number of objectives should be limited to three or less. Too many objectives
keep the project from being focused and enlarge the scope of the project unneces-
sarily.

The scope of the project must be narrow. The entire hospital is not a candidate for
a simulation study. While many different simulation models can be combined to
create one very large model, the individual models should be separate projects.

To be useful, a project must be finished within a reasonable time.

The results must be definitive and have a reasonable chance of being implemented.

The size of the project has a marked inverse correlation to its ultimate success (or
failure).

In defining the objectives of a simulation project, the analyst must remember that
alternative results will be compared to the validated model, which will usually be com-
pared to the historical measures of the objectives. Some exceptions are:

A new process design that is radically different from the existing process

A process that does not currently exist (or does not exist in that facility)

A design for a new facility

17.4 STEPS IN A SIMULATION PROJECT 609

For new facility design projects there are some advantages to collecting historical
data from the old facility, should one exist. The comparison of the process flow in a
new facility to the same function in an existing facility is often useful. The data can be
used as a test for validation (are the results logical?) or to show where a new process
is more efficient (or not). Such con~parison data can be a decision variable for building
of the new facility.

3. Formulate and Define the Model, Before the simulation project can proceed,
the basic structure and content of the model must be designed. The type of data that
need to be generated by the model (for reporting purposes) must be defined prior to the
model's construction. The data that will be needed to build the model must be defined
before they can be collected. If collection of some of the data is not feasible, the model
will have to be redesigned accordingly.

The model must have the ability to show the relative impact on objectives of various
alternatives. The model must also be designed to provide data elements that will be
compared to historical data for validation efforts and to compare one alternative with
another.

To emphasize an earlier point, it is helpful to restate it: The natural desire to jump
right into the model building phase must be suppressed. Much time and effort will be
saved if the model is planned adequately before the data collection effort begins, and
especially before the actual model building starts.

17.4.2 Model Construction

1. Collect Data. Data collection is often very frustrating and time consuming. The
following paragraphs cover some of the types of data needed and surrounding issues.

a. Arrivals. In healthcare, weekends are different from weekdays, and often weekdays
are different from each other. Daily volumes and arrival patterns must be determined. In
general, model entities are patients or patient-related items such as lab samples. Laun-
dries, pharmacies, medical records, and x-ray film libraries are examples of departments
that are less dependent on patient processing. Hospital information systems and daily log
sheets are good sources of arrival information. Appendix 17.1 has an example of a data
collection form used for patient chart reviews in an emergency department. Appendix
17.2 has a list of data typically needed for surgical services, and Appendix 17.3 has a
similar list for emergency departments.

b. Entity Categories (Patient). As mentioned earlier, there are currently 495 DRGs
(diagnostic related groups) and thousands of ICD-9 codes. The best way to plan the data
collection effort is to conduct interviews with the staff prior to designing the data collec-
tion tools. The goal of the interviews will be to get an overall view of the department
and to compile the list of patient categories (types). Caregivers might categorize the
patients based on severity of illness (acuity) or by what procedures will be performed.

The personnel in the department under study will have a set of categories that is
used on a daily basis. Communication with the department will often be easier if the
analyst uses the same set of categories. Information systems sometimes present the data
in too much detail. The reports are often designed for financial or utilization (resources
and facilities) purposes and are not amenable to patient process analysis.

61 0 SIMULATION IN HEALTHCARE

C. Flowcharts. Flowcharts will be needed for each patient type (or entity) that will be
flowing through the model. These should be low-level flowcharts that include some or
all of the following information:

Percent of patients that will receive different interventions

Percent of patients that follow a branch in the flow

Conditions that exist before a patient may continue to the next box on the flow
chart (e.g., results of previous tests must be available)

Who performs the task

Standard time for performance of the task

The flowchart is an important part of the data collection effort. Not only does it
facilitate the construction of the simulation model, it should be an integral part of the
verification process, which is discussed later in the chapter. Various companies produce
quality flowcharting software packages.

d. Resources. Staff schedules are required for those models exploring staffing issues.
Lunch periods and breaks should be considered. Some departments limit the number of
staff by type that can be out of the department at any one time. Minimum staffing
patterns may exist. Some tasks may be performed only by a specific type of resource,
while others might be performed by any of several resources. For example, laboratory
specimens might be drawn by a phlebotomist from the laboratory or by a technician, a
nurse, or a respiratory therapist.

The time to complete tasks can be difficult to obtain. Some tasks are performed
very erratically and infrequently. Trying to observe (time) 30 such tasks might be a
prohibitive undertaking. Some hospitals will have standard task times that can be used.
When data on time required to complete a task are not available and do not lend them-
selves to reasonable data collection efforts, an alternative method can be used to estimate
the time available. This method involves interviewing the appropriate caregivers. Physi-
cians and nurses are reasonably accurate when estimating the minimum, most likely, and
maximum times that a task will take (for tasks less than 2 hours in duration). Those
times can be used to form a triangular distribution, such as T(3,5,12). The 3 represents
the minimum time in which the task can be performed, 5 represents the most likely time,
and 12 is the maximum time allowed. If Unifit software is available, the three times
(plus the addition of the mean-see the next paragraph for a discussion of distribution
shapes) can be used to create a beta distribution.

A common mistake of beginning simulation analysts is to use a normal distribution
for task times. Research by statisticians has shown that the shape of a distribution that is
representing the time necessary to perfom a task typically takes the form of a positively
skewed distribution. In such a distribution, the mean is to the right of the median, which
is to the right of the mode. The mean is the average of the distribution. The median is
defined as the value above and below which lie an equal number of data observations
when the data are arranged in increasing or decreasing order. The mode is defined as the
most frequently occurring value in the data. Figure 17.1 represents a positively skewed
distribution.

The shape is logical when examined closely. A caregiver will reach an average level
of expertise with an average level of ability and an average amount of training. There-

17.4 STEPS IN A SIMULATION PROJECT 61 1

Lognormal (p = 8.21, c? = 3.18)

Figure 17.1 Example of a positively skewed distribution. (Courtesy of Bestfit.)

after, the caregiver will complete the task with similar times except when delayed. Any
delays will cause the individual task time to take longer than the mode. The most likely
time (mode) to complete the task will be less than the median time, and the median
time will be less than the average time to complete the task. The most likely task time
will be close to the minimum time necessary to complete the task. Although there is
a discrete minimum time in which a task can be performed, there is no corresponding
maximum time. Time to perform tasks is often represented by a lognormal, Weibull, or
gamma distribution [I].

e. Stratification of Data. Once the flowcharts exist, demographic data will be required
to define the treatment a particular diagnosis will require. Not all patients of the same
type will receive the same procedures and tests. Some patients having procedures per-
formed will have complications or delays, and others may not. Some patients will have
to wait much longer for results of tests than others, based on how busy the testing
department is or the availability of the clinician who will interpret the results. To incor-
porate the differences in waiting times and procedures, data will have to be stratified by
patient type (entity type). Once stratification is complete, the analyst must summarize
the data in a way that "fits" the simulation software package being used.

f. Distributions. One of the major fatal errors commonly made in simulation projects
is replacing a distribution by its mean. Another error is to use the wrong probability
distribution to model a data set. Distribution-fitting software is available from several
vendors and is a part of most statistical packages.

2. Build Model

a. Planning. The first step in model building is to formulate and plan the model. This
step was necessary before the data could be collected (see the earlier discussion). The
information desired from the simulation must be evaluated in order to design the model
to generate the desired statistics. Interviewing stakeholders will help identify the infor-
mation that is used to measure the performance of the department/process being stud-

612 SIMULATION IN HEALTHCARE

Figure 17.2 Complexity versus utility. With permission of PROMODEL Corp., Orem, Utah.
Copyright O 1995 PROMODEL Cop.

ied. This information will probably be desired of the simulation model, even if it is
not specifically required by the original objectives of the study. The stakeholders might
well want to know the impact of an objective on their particular area of concern. The
project team probably has some stakeholders represented, but it is not always practical
to include on the team representatives from all stakeholders.

An efficient model would allow changes to be made to one part of the model without
having to reconstruct the entire model. Novice modelers will often construct, verify, and
validate a model and then start to worry about the various scenarios that will be tested.
This type of shortcut will probably result in the analyst having to go back to the original
(base) model and make major changes in the structure of the model in order to collect
baseline data.

b. Complexity Versus Simplicity. Some of the most successful projects are very sim-
ple. Do not add complexity for complexity's sake. It is a very real temptation and one
that can be difficult to avoid. Ask the question: "What additional value do I receive for
this additional detail?'If the answer is little or none, do not add the complexity. If the
detail is not necessary to achieve the objective, it should not be included. The ability
to show great detail can be intoxicating. It can be a form of showing off. An overly
complex model can confuse the issue(s). Figure 17.2 illustrates the relationship between
utility and complexity.

While too much complexity is a problem, too little is also a problem. Leaving out
necessary detail can cause the analyst to reach false conclusions. Figure 17.2 shows
that there is a point of diminishing returns when adding complexity to a model. As
complexity increases, utility also increases, at first rapidly. As complexity continues to
increase, there is a point that increased utility (value) starts to level off. Addition of
complexity will result in decreased value at some level.

It can be a difficult task to balance complexity and utility. Remember to ask what
value will be added by additional complexity. The question will keep the analyst focused
and prevent many hours of fruitless effort.

3. Model Verification

a. Comparison of Model Flow with Flowcharts. It is common to confuse verifica-
tion with validation. While both are necessary before any alternatives can be tested, the
two tasks are distinctly different. Verification is documenting that entity flow through

17.4 STEPS IN A SIMULATION PROJECT 613

the model matches the reality of entity flow in the department, while validation is a
comparison of historical measures (of your objective) to data generated by the simula-
tion model. Please see Chapter 10 for an in-depth discussion of model verification and
validation.

The patient (assuming that a patient is the entity involved in the process) must arrive
at the right locations, be seen by the correct caregivers for the appropriate distribution
of time, receive the appropriate interventions and diagnostic tests, and proceed to the
correct next locations. These steps must be compared to the flowchart from which they
were constructed. When the analyst is confident that he or she has the correct process,
the "expert" from the department being studied must go back over the process with the
analyst to confirm that the correct process flow is being used.

b. Work with Department Staff. Verification cannot be done by the analyst without
outside corroboration. The department under study has the real experts on the current
process. The staff from that department must be involved in verification of the model.
Their involvement is very helpful in achieving departmental acceptance of the model.

4. Model Validation. Validation methodology is discussed in detail in Chapter 10.
In this section we discuss validation efforts in healthcare. This step in the project usu-
ally causes the most headaches in healthcare simulation. It is the lengthiest step of the
actual simulation model process (not counting data collection). The model must reflect
the correct current process (except for initial design of nonexisting processes) before
validation can begin. Except for new systems, validation of a model requires that his-
torical data be available and collected during the same period of time that the input
data were collected. The following discussion assumes that the department under study
currently exists and that historical data are available.

a. How to Choose Validation Parameters. The validation parameter is the measure
of your objectives. It is quite common for this measure to be one related to time. A
pitfall to avoid is trying to validate on multiple subsets of the decision variable. For
example, if patient length of stay is the decision variable, a novice might try to validate
on numerous patient types as well as the overall patient length of stay. If the patient
type is a significant percentage of the total patient volume and sufficient historical data
are available to provide meaningful confidence intervals, validation should include that
patient type. However, some patient types may represent a small percentage of the total
volume and therefore have only a few data points available. To be useful, the historical
data must include enough volume to return a well-defined (narrow) confidence interval
(see Chapter 7 for information on confidence intervals).

b. Validation of New Processes/Systems. When historical data do not exist, the
model must still be validated. New facilities, new processes, and new technology are
some reasons for the lack of historical data. If the process exists in a current facility,
data can be collected from the current process and used as a baseline for validation
of the simulation model. The data can provide a framework for testing whether or not
the results from the simulation model are logical. In other words, do the results seem
reasonable for the process under study?

The test for reasonable results is appropriate when the process is new to the organi-
zation. Benchmark reports and case studies can be researched to provide a framework
for comparison. Site visits to organizations that have implemented the new process can

614 SIMULATION IN HEALTHCARE

provide information to help the analyst determine whether the results of the simulation
study are logical. Once the plausibility test is completed, the results of the simulation
model can then be used as the baseline for comparison of alternative scenarios.

A caveat is that the model might not yield results that accurately predict the perfor-
mance of the system when implemented but will provide accurate comparison informa-
tion on the alternatives tested. For example (the decision variable is patient length of
stay), the simulation model might accurately predict that alternative 3 will save 15 min-
utes per patient compared to alternative 1. However, the model might not be accurate
when predicting the total length of stay for the average patient in the new system. This
limitation does not diminish the value of simulation for a new process. It is valuable to
know that one alternative is superior to another alternative and by what magnitude.

c. When the Model Does Not Validate. If a model is validated the first time it is run
after verification, a record has surely been set, or it is an aberration, which will later
be shown to be wishful thinking. In most cases, work is still to be done. This work
is one of the great values of using simulation. The processes in the model have been
verified, so the analyst must search for the reason the model is not valid. The usual
reasons (barring problems with the model itself) are that the processes as laid out on
the flowcharts are not the only processes occurring or that the flowcharts (protocols,
procedures, etc.) are not followed exactly by staff. Batching of work in progress can
occur. Some examples follow:

1. Specimen collection for laboratory tests may not be performed until three requests
are made.

2. Diagnostic procedures may be delayed until there are several to perform in the
requesting department.

3. Lab specimens may not be picked up until there are several ready to be picked
UP.

4. Patient charts may not be filed until the box is full.

Other problems may exist with communication between departments and within the
same department. Plans calling for cooperation among departmental staff may not be
working well. Procedures that are more efficient but not part of the official plan may
have been worked out by departmental staff and used daily. Some of these "illicit"
procedures may make it more efficient for one area of the department but cause delays
in other areas.

The analyst and the project team must find the area of the model that is causing the
most deviation from the historical data and use direct observation (and other techniques)
to find the offending process. It helps to have a number of intermediate data collection
points, so that the process may be broken into parts. For example, patient throughput
time in an emergency department might be broken into several parts, such as:

1 . Elapsed time (ELAP) from arrival to triage

2. ELAP from triage to time in the treatment room

3. ELAP from arrival in treatment room until the physician sees the patient

4. ELAP from physician visit until disposition instructions

5. ELAP from arrival in treatment room until patient leaves the department

17.5 BARRIERS TO IMPLEMENTATION AND HOW TO DEAL WITH THEM 615

By stratifying the data, the team can focus on the section where the simulation model
is most different from the historical data, thereby narrowing the scope of the effort.
When the model is verified and validated, the model is ready to be used to test alter-
natives.

5. Choosing Alternatives for Testing. The project team should work together to
identify the alternatives to be tested. These alternatives should be related directly to the
project's objectives. The alternatives' results must be evaluated to make sure that any
differences are statistically significant.

The results from individual alternatives are not necessarily additive. The alternatives
chosen for implementation must be combined into one model and tested to determine
the final impact on the objectives. Combining the alternatives into one model can also
identify any problems with interdynamics (one alternative process might cause another
alternative process to be less effective when the two alternatives are combined).

17.4.3 Assumptions Document

Busy analysts often neglect the assumptions document. Examples of information
included in an assumption document are:

1. Flowcharts

2. Data summarization

3. Staffing levels and schedules

4. Task times and distributions

5. Staff responsible for performing tasks

6. Entity volumes and arrival information

7. Delays and delay duration

8. Equipment/location setup time and frequency

The assumptions document should be available to the project team and attached to the
report as an appendix.

17.5 BARRIERS TO IMPLEMENTATION AND HOW TO DEAL WITH
THEM

For any simulation project to be considered a success, the recommendations resulting
from the study must be implemented. A major bamer to implementation of recommen-
dations is the failure of the sponsoring manager to follow the studies' recommendations.
The manager with direct managerial responsibility [over the department(s) included in
the study] must clearly communicate what the expectations are and who must actually
implement the plan (or part of the plan). Too often, a director or vice president will
authorize a study and then fade into the background as his or her subordinates take
over responsibility for implementation. This can work when the subordinates were the
ones desiring that the study be performed and the subordinates have authority to make
the necessary changes. All too often, however, an executive will insist that changes are
necessary, request simulation to identify the most appropriate alternatives, and then fail

61 6 SIMULATION IN HEALTHCARE

to make arrangements for implementation. The expectation is that the manager over
the area in question will take it from there. This does not always happen, for several
reasons:

1. The manager might resent the executive's interference.

2. The manager may not have authority over all the areas that require change.

3. The manager may not be strong enough to overcome the obstacles that will be
presented during the process of implementation.

4. Cooperation or help from external personnel is necessary, and the external per-
sonnel are too busy or unwilling to provide the needed assistance.

5. The manager may have to make major changes and carry out all of his or her
current responsibilities as well (the manager has good intentions but not enough
good-quality time available to apply to the changes).

The manager authorizing the study must follow up to see that implementation is
occurring as expected. Time pressures are real and implementing significant changes
take considerable time and effort. Stress levels increase, and pressure to stop short of
full implementation can be intense. The manager should define steps to ensure proper
implementation. These steps should include:

1. Set time frames for implementation, including incremental steps.

2. Hold periodic meetings to review progress and address any problems that exist.

3. Monitor the implementation progress along with the effectiveness of the process
being put in place (the change itself).

Follow-up and guidance from the manager will not repair a faulty simulation study.
However, if the study is valid, follow-up and guidance from the manager are essential
to the study's implementation.

The analyst can help minimize the chance that implementation will not happen.
Unless the analyst happens to be in a position to enforce implementation directly, he
or she will have to settle for providing a framework for success. This would include
early discussions about implementation during the project planning phases of the study.
When alternatives are discussed, methods of implementation should also be discussed.
The best thing that the analyst can do to help the implementation process is to make sure
that the model is valid. The next most important thing is to make sure that enough peo-
ple were involved in the verification stage of the simulation model. The considerations
in this section are echoed in Chapters 22 and 23.

17.6 PROBLEMS UNIQUE TO HEALTHCARE DURING IMPLEMENTATION
PLANNING

Implementation of alternatives in healthcare presents a special challenge. In manufac-
turing, decisions often revolve around implementation cost and return on investment.
In healthcare, cost is an issue, but not always the major issue. Reduction in patient
throughput time is often used as the main objective of a simulation study. Time has a
cost factor, but that factor is often nebulous. If additional equipment or staff is necessary

17.7 CASE STUDY 617

to reduce the throughput time, the impact on revenue or expense of the time savings
can be difficult (and sometimes controversial) to determine.

Opponents to a study can question the study on an economic basis. This is, of course,
a perfectly valid reason to question any recommendations being made prior to imple-
mentation. The project team should anticipate such objections and be prepared to answer
them. The simulation model can be defined in such a way that factors affecting cost are
captured and reported. This will allow an incremental cost analysis of each alternative.

17.7 CASE STUDY

A simulation study was performed in an emergency department using MedModel simu-
lation software from PROMODEL Corporation. The elapsed time from initiation of the
project until completion was 4 months. The model was completed as part of a hospital
reengineering team's project.

The objectives are as follows:

1 . Determine what actions could reduce patient length of stay in the emergency
department.

2. Evaluate staffing levels and schedules
3. Determine the number of rooms needed by type of room.
4. Evaluate effect if an internal waiting room is added.

5. Evaluate effect if an observation area is added.

Following the methodology, the next step in the process is to define the model and
collect the data for input into the model. This part of the project took about 4 weeks.
Over 1400 patients were observed to get information about their stay in the emergency
department. Tables 17.1 to 17.3 show some of the compilations from the data collection
efforts (in this case the patient categories were the patient's acuity).

Table 17.1 shows the percentage of patients that arrive during each 2-hour period
for each day of the week. Using MedModel's arrival editor, the patients were input into

TABLE 17.1 Patient Arrivals (%) by Period of the Day

Time Period Sun. Mon. Tues. Wed. Thu. Fri. Sat. Mean
-- -

2:00 A.M. 9.1 1.9 5.7 2.7 3.7 3.4 6.2 4.6
4:00 A.M. 3.7 0.5 1.8 0.9 3.1 3.9 4.0 2.5
6:00 A.M. 3.7 0.5 3.1 1.4 1.6 2.5 2.3 2.1
8:00 A.M. 7.0 0.0 2.6 2.7 5.2 2.5 2.8 3.2

10:00 A.M. 8.0 13.2 7.5 11.4 11.0 7.8 10.7 9.9
12:00 P.M. 12.3 16.0 19.8 12.7 16.2 12.3 18.1 15.4
2:00 P.M. 13.4 15.1 8.8 12.3 13.1 12.3 7.9 11.8
4:00 P.M. 11.8 7.1 7.5 13.6 11.5 16.2 8.5 10.9
6:00 P.M. 8.6 16.5 14.1 10.9 9.4 11.3 11.3 11.8
8:00 P.M. 9.1 8.0 11.0 11.8 8.4 10.3 7.9 9.6

10:00 P.M. 8.0 11.8 11.0 11.4 8.9 11.8 12.4 10.8
12:00 A.M. 5.3 9.4 7.0 8.2 7.9 5.9 7.9 7.4

61 8 SIMULATION IN HEALTHCARE

TABLE 17.2 Ancillary Use by Patient Type and Ancillary Department

Ancillary Use (%)

Retest Retest
Triage (Lab) % (Lab) %
Level Count X-Ray CT/US Lab of lab 1 of lab 2 Ventilation EKG Monitor

Adult 628 44.6 11.0 64.8 22.6 17.4 2.5 45.5 27.2
Urgent 69 21.7 5.8 30.4 19.0 25.0 1.4 15.9 4.3
Subacute 271 45.4 10.7 62.7 22.9 15.4 30.3 5.9
Acute 280 48.9 12.9 74.6 22.5 17.0 5.0 66.1 51.4
Critical 8 62.5 87.5 28.6 50.0 12.5 100.0 100.0

Pediatrics 477 9.0 1.0 15.9 13.2 20.0 0.8 2.1 1.7
Urgent 255 2.0 0.4 7.1 11.1 50.0
Acute 214 17.3 1.9 24.8 11.3 16.7 0.9 3.7 2.8
Critical 8 12.5 62.5 40.0 0.0 25.0 25.0 25.0

Fast track 336 8.0 1.2 12.5 9.5 25.0 3.0 0.3
Overall 1441 24.3 5.4 36.4 20.2 17.9 1.4 21.2 12.5

the model with the daily and hourly rates that were observed during the data collec-
tion period. Table 17.2 summarizes the percentage of patients by patient acuity who
receive diagnostic testing. Ventilation is a procedure that is performed by an ancillary
department (in this case, respiratory therapy). Note that in Table 17.2 some patients
require additional laboratory testing after the results of the initial tests are available.
Similarly, some patients receive medications several times, which is illustrated in Table
17.3. Table 17.3 summarizes the procedures (treatments) performed for a patient during
the patient's visit. The emergency department staff performs these procedures.

A floor plan was imported from an AutoCad drawing obtained from the hospital's
facilities department. Figure 17.3 is a copy of the floor plan. With the floor plan in
place, locations were defined. The next step in building the initial model was defining
entities, resources, shift assignments, and arrival patterns. Attributes were defined to
enable differentiation among patients and other entities. These attributes were assigned
values of 0 or 1 (1 = true or yes) based on the probabilities of a patient receiving tests
or treatments in Tables 17.2 and 17.3.

After the initial definitions were in place, the patients could be brought into the
model. Figure 17.4 shows MedModel's processing editor. The entity flow is defined
and controlled in this module, and the operation logic is either defined or initiated (sub-
routines or macros may be called).

The process window defines what entity is being processed and where the process-
ing is taking place (e.g., patient at a location named Enter). The operation window
defines the activities that take place for the patient at Enter. In this example, the patient
attributes are being assigned. Attributes are used to define the entity characteristics for
later activities. Examples of patient attributes are as follows:

Patient acuity (critically ill, urgently ill, not urgently ill, etc.)
Whether a resident physician will see :he patient
How the patient will arrive
Whether the patient is sent home or admitted
Which treatments and ancillary tests will be performed

TABLE 17.3 Treatments (%) by Patient Type and Treatment Type

Treatment (%)

Meds 2 Meds 3
Triage (8 of (% of
Level Volume IV Meds Meds) Meds2) Suture Bandage NG Foley Ortho Thromb Triple Txt1:l Other

Adult
Urgent
Subacute
Acute
Critical

Pediatrics
Urgent
Acute
Critical

Fast track
Overall

620 SIMULATION IN HEALTHCARE

Figure 17.3 Model layout of emergency department. (Produced by the author using MedModel
Software from ProModel Corporation, Orem, Utah.)

The routing window defines the next location to which the patient will be sent. In
this example, a generic entity named patient was brought into the model and based on
probabilities, is assigned a patient type. The patient is then renamed and routed to a
location named Start.

In similar fashion the rest of the model was built. After the analyst completed the
model, the initial verification process began. The arrival rates input into the model had
to be checked to ensure that there were no errors. This was checked by the use of time-
series plots generated by the model. These plots were compared to data observed. The
daily and weekly average volumes were verified also. The numbers of procedures and
tests performed in the simulation model were tracked and compared to the number of
observed procedures and tests. Actual patient flow through the model was compared on
a step-by-step basis to the original flowcharts by patient type. Trace files and debugging
editors were used to aid the comparison.

After the analyst was comfortable that the model was accurately constructed, the
same steps were performed with staff from the department. The analyst cannot complete
the verification by himself or herself. Communication errors would not be caught, nor
would inappropriate assumptions be identified. As errors were identified, the analyst
corrected the errors and the verification was repeated to make sure that the errors were
corrected.

Once verification was complete, validation began. Table 17.4 is a summary of ob-

17.1 INTRODUCTION 621

ALL lamb-stit I 1 3 lsubacutejat /start /FIRST I I# amodes of a I

INC(no ~<Ec)
~ ~ ~ (i d f
pat-id = id
N type = patient-type()
if rand(100) <= 44.6 then sex = I else sex = 2
real ard = aer-res-delay() N if resident sees patient first
real prd = per_res_delay()*.6 N if resident sees patient first

I if tme = 1 then N Adult Critical 1 -.

acuity = 5
I/ set-acu(acuity) is a function table which assigns priority to pat
acu = set-acu(acuity)
anival(acuity,type)
disposition(acuity,type)
anctests(type,acuity)

Figure 17.4 Process editor. (Produced by the author using MedModel Software from ProModel
Corporation, Orem, Utah.)

served data collected for validation purposes. The data are also used for analysis pur-
poses. The disposition order is a major point in the process. The patient will not be able
to leave the treatment room until the attending physician has decided whether to admit
or discharge the patient and what referrals and instructions are appropriate.

The time from the resident visit until the attending visit is that time required for a res-
ident to reach a diagnostic decision and treatment plan. The resident will then present his
or her findings to the attending physician, who will then visit the patient with the resident.
The delay for discharge is measured from the time the disposition order was made until
the patient actually leaves the department. LOS is an abbreviation for length of stay.

The simulation model was run for 8 days with a I-day warm-up (transient) period.
Thirty replications were run and the results compiled in the report editor. The observed
patient's length of stay was analyzed to derive the associated confidence intervals
and the simulation results compared using hypothesis testing. Initially, the simula-
tion model's results showed patients leaving the emergency department too quickly.
Additional observation of the emergency department and additional interviews were
necessary to identify possible delays. Differences between the original flowcharts and
observed entity flow were noted and investigated. Changes were made in the simula-
tion model and the validation process was repeated. Two additional repetitions of the
validation process were required (a total of four efforts) before the model was accepted

TABLE 17.4 Compiled Historical Data for Validation of Simulation Model

Time Time Time from Time from
Time from Patient is from Resident Time In Attending

Triage in room Until Triage Visit Until Room Until Visit Until
Discharge Until Resident Until Attending Consult Disposition Disposition Delay for
Mode Registration Visit in Room Visit Delay Order Order Discharge LOS

All 32 12 63 82 86 220 150 129 257
Adult ER

All 30 28 45 105 110 246 172 135 367
admit 28 45 33 112 101 280 188 198 497
discharge 32 19 54 103 110 213 155 29 284
transfer 16 28 8 15 360 141 108 218 380

Pediatric ER
ALL 18 3 60 86 4 1 160 8 1 11 1 150
admit 13 8 27 147 3 240 114 178 340
discharge 18 2 63 81 52 95 54 47 134
transfer

Fast track
ALL 52 9 101 5 1 34 105 78 73 202
admit 69 8 126 15 469 49 1 305 827
discharge 52 9 100 5 1 34 70 3 8 12 182
transfer 13 133 30 260

17.8 SUMMARY 623

TABLE 17.5 Summary of Simulation Results

Before After
(minutes) (minutes)

All patient LOS 257 181
Adult ER LOS 367 329
Pediatric ER LOS 150 123
Fast track LOS 202 72
Average census 8 P.M. 36 28

as valid. The elapsed time was about 4 weeks. Coordination of schedules was partly
responsible for the length of the process. Seven person-days were required to complete
validation.

The alternatives were then tested and the results compared to each other and to the
validation model's results. Table 17.5 is a short summary of the improvements made to
the process as verified by simulation. The results in Table 17.5 are from a model that
combined all the recommendations chosen for implementation. The alternatives tested
included (but were not limited to) the following scenarios:

Increase the number of treatment rooms in the fast track area by three.
Revise triage criteria for routing patients to the fast track area (increase fast track
volume).
Revise patient assignment to care teams.
Add an observation area to the emergency department.

17.8 SUMMARY

Simulation has many advantages over more traditional approaches to process improve-
ment in healthcare. It provides an objective way to test different alternative processes.
Simulation also delivers a quantified difference between the different alternatives. Sim-
ulation is not emotional and has no territorial urges. Simulation shows how a change
in one area of a department will affect operations in other areas. Simulation is useful
in verifying the architectural design for a new construction project. Plans can be tested
and modified prior to final approval.

624 SIMULATION IN HEALTHCARE

APPENDIX 17.1 : EMERGENCY DEPARTMENT PROCESS SURVEY

* Use Military Times with colons for all Times

Date

Time of Arrival

Mode of Arrival

Age

Gender

Pt. Available at time of Triage?

Triage Time

Meets Fast Track Guidelines?

Pre-approval call required?

Does pt have Family Physician?

Did they call Family Physician?

Registration Time?

Pt. available for room placement?

Time to Room

Room #

Time of RN assessment

Time seen by Physician

Consult called to come in time

Consultant Presents to ED Time

Grasp Classification (level)

Physician Classification (level)

Insurance Co.

0 Medicare

0 Ken-Pac

Kentucky Medicaid

0 Worker's Compensation

HMO

0 Commercial Insurance

ChampusIChampva

Self Pay

Disposition Order Time

Discharged Admit

Transferred Air Ground

Expired

Amblcamied

o. EMS

o. Wheelchair

Yes No

Yes No

Yes No

Yes No

Yes No

E I I I
Yes No

I I I
Factors contributing to increased

length of stay in E.D.

Diagnosis

X-RAY

Portable'!

UlS

CT

Nuclear Med

Time ordered

Time to x-ray

Time returned

Lab

Collected by

Time ordered

Time collected

Time results ready

EKG

RESPIRATORY

Pelvic

Cardiac Monitor

IVIHep lock

Med

IV meds type

Suture simplcomp

Bandage

Orthopedic device

NG Tube

Cath for urine

Foley catheter

Thrombolytics

Patient Type

Ahd. Pain

0 Chest Pain

EntEye

Laceration

ObIGyn

Orthopedic

PsycWCD

MedicalISurg

0 Minor Care

Overdose

0 Trauma

Physician

Yes No

Yes No

Yes No

Yes No

Yes No

Yes No

Lab ED

E l Yes No

Yes No

Yes No

Yes No

Yes No

IV PO -
Simple Complex

Yes No

Yes No

Yes No

Yes No

Yes No

Yes No

LABS

o CBC

o Chem 7

o CPWMB

o PT/PTT

o UIA

o HCG

o Amylase

o Drug Level

APPENDIX 17.2: DATA COLLECTION CRITERIA 625

APPENDIX 17.2: DATA COLLECTION CRITERIA FOR AN OPERATING
ROOM PROCESS SIMULATION PROJECT

1. A floor plan (drawn to scale) of the area to be included in the simulation. Prefer-
ably an AutoCad file or other editable drawing, or a Windows bitmap file (bmp)
or metafile (wmf).

2. A detailed flow-charts for each patient type. Use a different flow chart for each
patient type. Depending on the project, patients may be stratified by either spe-
cialty (e.g. orthopedics, general, ENT, ob/gyn, etc.) or by surgeon. Check to see
if all significant and measurable possibilities for process branching are included
at each step. The most detailed sections of the flow chart should cover patient
arrival-registration-preop care, and post-op care.

3. Which patient types can go to a particular OR? What conditions are placed on a
patient type going to this room? Which patient types can not go to a particular
room?

4. Block schedules (specifying specialty) by day of week, if used. If no block
schedule, patient arrivals by day of week by specialty.

5. Arrival rate information:

(a) Number of patients by day of week and by hour of day

(b) Percent of patients by surgery type

6. Are rooms held open for certain types of patients at all times e.g. emergency
C-Sections?

7. Number of beds in the preop area. Number of beds in the PACU.

8. Cycle times for each of the following by patient type:

Time from patient enters surgical room until anesthesia started/completed

Type of anesthesia e.g. general, spinal, MAC, local

Time from patient enters surgical room until incision

Time from incision until closure

Time from closure until patient leaves surgical room

Cleanup time

Setup time

9. Number of doctors, nurses, anesthesia personnel etc. needed at each cycle. If
specified labor is not available and can not be pre-empted from other patients,
what is the procedure to follow?

10. Shift and staffing levels by labor type. Include break and lunch schedules.

11. Percentages of patients who will receive additional work in the preop area due
to incomplete charts etc. How long are these delays?

12. Is a holding area used and if so, for which patients?

13. Do outpatients and inpatients intermingle during the process or are there separate
facilities e.g.

Preop check-in

Stage two recovery, for outpatients?

14. List and flow chart any additional patients who may use the PACU e.g. OP's
requiring blocks by anesthesia, radiology recovery patients etc.

626 SIMULATION IN HEALTHCARE

APPENDIX 17.3: DATA COLLECTION CRITERIA FOR AN EMERGENCY
DEPARTMENT SIMULATION PROJECT

1. A floor plan (drawn to scale) of the area to be included in the simulation. Prefer-
ably an AutoCad file or other editable drawing, or a Windows bitmap file (bmp)
or metafile (wmf).

2. A detailed flow-chart. Don't try to combine all types of patients on one flow
chart. Instead, use a different flow chart for each patient type (e.g. trauma, ortho-
pedic, pediatric, ob/gyn, etc.). It is helpful to first stratify the patient types into
those that follow the same process flow. Check to see if all significant and mea-
surable possibilities for process branching are included at each step.

3. Which patient types can go to a particular room? What conditions are placed on
a patient type going to this room? Which patient types can not go to a particular
room?

4. Which rooms are held open for certain types of patients at all times?

5. Are hallways used to hold patients or to be used as overflow treatment loca-
tions? If so, what determines whether or not the hallway is used (e.g., number
of patients in waiting room).

6. Number of and type of waiting rooms and observation units (connected to the
ED). What is the capacity of each waiting area?

7. The treatment patterns (caregiver(s) and time for task) for each patient type and
acuity level.

8. Patient information: (a) number of patients by day of week and by hour of day;
(b) percentage of patients by type and acuity; (c) does patient type and acuity
vary by day of week or hour of day? (d) arrival mode; (e) admission data.

9. Staffing levels/schedules by labor type. Include break and lunch schedules.

10. Preemption practices. Which patients will nurses and/or doctors leave to go to
another patient whom has a more severe acuity. How much more severe?

11. Percentage of patients that will receive ancillary services by patient type and
acuity. Ancillary department turnaround times. Staff response times, etc.

12. Triage protocols; selection criteria for the fast-track area if used; which tests
can be ordered by the triage RN and what criteria are used for ordering the
tests.

13. Delays associated with admission (waiting for beds, attending MDs, etc.)

14. Task times for procedures. If the hospital has standard times, then these can be
used. For frequent tasks, a data collection form can be used to record the start
and stop times for the procedure.

15. Process flow chart for patients' charts. Where are the charts placed when waiting
for test results? Where does the physician put the charts when he/she orders tests,
etc.?

16. Process flow chart for lab specimens. Who draws the blood? How does the spec-
imen get to the lab?

17. What point of care testing equipment is used?

18. Does the ED use a patient tracking grease board or software? What information
is on the board? Who updates the board?

REFERENCES 627

19. W h o is responsible for assigning patients t o rooms? W h o escorts the patients t o
the room?

20. H o w are RNs assigned patients? D o e s the charge nurse take a patient load?

REFERENCES

1. Law, A., and W. D. Kelton (199 1). Simulation Modeling and Analysis, 2nd ed., McGraw-Hill,
New York.

2. Lorentz, E. W., and M. K. Jones (1994). St. Anthony:~ DRG Guidebook, 1995, St. Anthony
Publishing, Reston, Va.

3. Wolper, L. F., and J. J. Peiia (1987). Health Care Administration: Principlc,~ and Prrrctices,
Aspen Publishers, Rockville, Md.

4. Levy, H., and M. Ben-Horim (1984). Statistics: Busines.~ Applications in Business and Eco-
nomics, 2nd ed., Random House, New York.

5. Law, A. M. (I 994). Five Critical Pitfrrlls in Sirnulation Input Modeling, and How Unfit 11 Can
Help You Avoid Them, Averill M . Law and Associates, Tucson, Ariz.

CHAPTER 18

Simulation of Service Systems

RON LAUGHERY, BETH PLOTT, and SHELLY SCOlT-NASH
Micro Analysis and Design, Inc.

18.1 INTRODUCTION

Many countries around the world are seeing a shift in the percentage of gross domestic
product from manufacturing to services. As we are becoming saturated with material
goods, we are relying increasingly on enhancements in the quality of our life to come
from improved services. We are spending more time and money eating at restaurants,
managing our finances, traveling, and engaging in various forms of recreation than ever
before. There is no reason to expect that this trend will not continue.

By definition, the concept of good "service" includes consideration of the quality
and timeliness of service performance. As with any economic sector, the efficiency with
which a service provider can deliver timely and efficient services will determine their
ability to survive in a competitive marketplace or, in the government sectors, to retain
the support of the electorate.

Simulation can be used in the analysis of any system to ensure the quality,
timeliness, and efficiency of stochastic, complex processes that operate in resource-
constrained environments. Many service systems are exactly that-stochastic complex
processes operating in resource-constrained environments. Furthermore, most service
systems are fairly well defined discrete processes. As such, discrete-event computer
simulation offers great potential as a means of describing, analyzing, and optimizing
service systems of many types.

The following are examples of service systems that have been studied with simula-
tion and the questions that have been addressed:

Banks. What is the impact of automated teller machines on customer queue sizes
and the number of tellers required? What is the impact on customer service time
of better teller training and the elimination of the need to meet with bank officers
for more complex transactions?

Food Service. What is the impact of cash registers equipped with automatic

Hundhook of Simulurion, Edited by Jerry Banks.
ISBN 0-471-1 3403-1 O 1998 John Wiley & Sons, Inc

630 SIMULATION OF SERVICE SYSTEMS

price-scanning technology on customer service time and the number of cashiers
needed?

Entertainment. At large theme parks, what is the impact of shortening ride length
and/or adding additional capacity on average and maximum customer wait time?

Insurance. What is the impact on the time to process claims as a function of how
the claims flow through the process and the levels at which approvals must be
made for various claim types? Given a "time to process" goal, what is the impact
on the number of claim adjusters required?

Transportation. What is the impact on queue length of various toll booth payment
strategies, and for a given rate of vehicle arrival, what is the minimum number of
each type of booth required to achieve acceptable queue lengths?

Medical. In an emergency room. what are the required numbers of doctors, nurses,
clerks, and major and minor treatment rooms necessary to achieve acceptable
patient delays? How do the delays vary during the course of normal and extraor-
dinary days?

These are just a few examples of the types of service systems and problems that
can be studied with computer simulation. If the system is stochastic, complex, resource
constrained, and fairly well defined, it is a reasonable candidate for analysis with sim-
ulation.

In the remainder of this chapter we provide an overview of some of the unique
aspects of modeling service systems. First, we discuss how the modeling of service sys-
tems differs from the modeling of manufacturing systems. Then we present a template
of the steps that will be needed in the development of a model of a service system.
Finally, we present two case studies of simulation projects for service systems. The
first case study involves the analysis of a bank. This study was a one-of-a-kind analy-
sis and, as such, represents the typical modeling project in which a simulation modeler
might become involved. The second case study involves the development of a simula-
tion "environment" specifically for the purpose of modeling maintenance systems. The
focus of the second case is on the number of maintenance personnel required to achieve
acceptable system performance. This case study illustrates how simulation can be used
to create an environment for the "casual" user of simulation that will allow the analyst
to use simulation for many specific problems.

18.2 WHAT DIFFERENTIATES SIMULATION IN THE SERVICE INDUSTRY
FROM MANUFACTURING SIMULATION?

The evolution of simulation has been due largely to its use in analyzing manufacturing
systems. To understand some of the unique issues in service system simulation, let us
explore some of the differences between simulation in manufacturing and simulation
for service systems:

1. There is often no clearly dejined set of systems and components as in manufac-
turing. Consequently, the simulationist must often define system behavior without the
use of hard data on the process. For example, in modeling a manufacturing process,
the analyst will usually have access to drawings and specifications. Service systems
will rarely have such refined documentation. The simulation modeler is often called

18.3 PROCESS OF BUILDING A SIMULATION OF A SERVICE SYSTEM 631

upon to define and understand the process in more complete ways than anyone has be-
fore.

2. Time waiting to be sewed tends to have a much greater importance than through-
put. Although work in progress has an undesirable cost in production systems, it is not
unreasonable to allow considerable variability in work in progress and occasionally long
times in the inventory. On the other hand, people hate to wait to be served. In many
service systems, time in a queue will always be the key measure of performance and
excessively long waits will not be tolerated.

3. The system S perjormance often depends more heavily on human beings, who tend
to be more unpredictable and variable. In most service systems, a key determinant of
the system's performance is the performance of the people in the system (i.e., those who
provide the services). In contrast to machines, human performance is highly variable. In
some systems, a good, well-trained person can perform a task up to 10 times faster than
a poor performer. Even one person's performance can be expected to vary by as much as
a factor of 2. Therefore. system variability in service systems is often much higher and,
therefore, of greater importance. Factors such as experience level and training recency
can have a large impact on performance time and accuracy.

4. Service systems are often short-term demand driven, and these demands can vary
by day and time. Fluctuations in demand for services will greatly affect the service
system's ability to provide good service. Again, because of the variability not only of
service providers but of those demanding services, it is important to understand the
factors affecting demand. However, in many ways, service systems are no different
from any other type of system that a simulation modeler might study. What areas are
the same as those in other kinds of systems typically simulated?

5 . A process is a process is a process, and the $ow of entities through ci process
with constrained resources is fundamentally the same us in other .simulations. Fun-
damentally, the same analytical issues and system modeling constructs pertain to all
discrete-event processes. Therefore, the simulation tools that work with general-purpose
discrete-event simulation will work well to model service systems.

6. The focus of system analysis is usually on the resource-pegormance trude-ofl
At the root of virtually all types of simulation, the question remains the same: How can
I do more with less? Although the particular issues and emphases may differ, the basic
issues are the same whether it be a manufacturing, service, or any other type of discrete
system.

18.3 PROCESS OF BUILDING A SIMULATION OF A SERVICE SYSTEM

There is no absolute process for developing a service system model-or any simulation,
for that matter. (See Figure 1.1 for an illustration of the simulation process.) Our expe-
rience has led us to suggest the following steps. They need not always be performed in
this order and there is often iteration between the steps; however, all steps should be
performed at some point in the model development and utilization process. Also, many
of the steps in the simulation process are common to all types of simulation, not just
service system simulation.

I. Dejine the measures of system peforrnarrce that are o f interest. Although this
is always of importance to the analyst, it is perhaps more critical in service systems.

632 SIMULATION OF SERVICE SYSTEMS

Previous
Records 7

Customer Inventory

Figure 18.1 Sample process flow diagram.

Clear definitions of system performance measures (e.g., average and maximum customer
waiting time) and acceptable levels of performance should be discussed from the outset.
The simulation modeler can expect that these will evolve as the project progresses, but
a clear definition of "what matters" will ensure proper model focus.

2 . Define the system characteristics that are to be varied to evaluate perjiormance.
Service systems can involve hidden facets and occasional "trap doors" that influence
system success. Since the service system is often not as well defined or documented as
other types of systems, the data describing how the system really behaves are some-
times hard to find. For existing systems they can often be found only by watching the
system operate and/or by interviewing service providers. For new systems, a simulation
modeler should work with the process engineers or system designers. However, in many
cases, the simulation modeler should expect that he or she will be the first person to
define the service process rigorously and, therefore, the important system characteris-
tics.

3 . Define general model scope. As with other simulation projects, the model scope
should be defined through joint consideration of the model goals and system character-
istics, coupled with the budget that has been allocated to model development and use.
It is up to the simulation modeler to ensure that the overall model design will address
the desired issues while having a good chance of being performed within the budget
allotted for the simulation.

4 . Develop process pow diagrams. Through data collection techniques that are dis-
cussed in Chapter 3, the basic model is developed and represented in the form of a
process flow diagram, as shown in Figure 18.1. These are also an excellent medium
of communication between those knowledgeable about the system and the simulation
modeler.

5 . Collect data on the process. Once the flow of the process is determined and doc-
umented through the process flow diagram, the focus of model development becomes
collecting data on model parameters such as times and error rates. As stated above, in
service system models this is a particularly important phase since a large part of the
service system may involve highly variable human behavior.

6. Build the baseline process model, including resources, entities, and attributes.
This step involves entering the process flow and system data using the appropriate sim-

18.4 CASE STUDIES 633

ulation software. The exact method used to build the model (define the tasks, resources,
and attributes) will depend on the simulation software selected.

7 . Validate the baseline model. To the extent possible, the model should be validated
using the techniques discussed in Chapter 10. Because of the variable nature of service
systems, validation of parts of the model will often be more feasible than validation of
the overall model outputs.

8. Run parumetric studies. Simulation is a useful tool for studying the effects of
changing certain system parameters on industry performance measures. This aspect of
model development is no different than when using simulation to study other discrete
systems.

18.4 CASE STUDIES

Below are descriptions of two case studies where simulation was used. The first case
study involves the use of simulation to study a Japanese bank and ways to improve the
time spent by customers in the bank. It illustrates how simulation can be used to address
a specific set of issues in a service system. The second example discusses the use of
simulation to evaluate staffing issues in large aircraft maintenance organizations. In this
case study, a customized tool was developed that allowed the client to examine many
different alternatives for current and new aircraft designs and maintenance concepts. It
illustrates how simulation can become part of the analysis process in a service system,
in addition to being able to answer specific questions.

18.4.1 Case Study: Simulation in the Japanese Banking Industry

Issue. The transaction completion process in the Japanese banking industry has many
areas that could be improved to better meet customer and bank needs. The current trans-
action completion process at Japanese banking institutions includes several tasks that
are time intensive, inefficient, and may prevent tellers from keeping up with customer
demand. Potential methods that could be used to decrease the time required for each
transaction and improve accuracy include hardware improvements, software enhance-
ments, and process redesign.

A provider of equipment to the Japanese banking industry determined that a cost-
effective and efficient method to investigate the Japanese banking industry problems
and potential solutions was simulation modeling. A recent study was performed that
involved the following steps:

I . Identify the specific industry needs.

2. Obtain data on the current processes.

3. Build a simulation model that is capable of examining the effects of changing
various parameters on the transaction process.

This project and the results are described in detail below.

Process of Building the Model. To examine the effects of changing various param-
eters of the Japanese transaction process, a base model of the current transaction tasks
was developed. The steps involved in the model development were:

634 SIMULATION OF SERVICE SYSTEMS

1. Determine what questions the model will help answer.

2. Perform a task analysis on data collected.

3. Develop the model.

4. Develop a graphical animation.

Each of these steps is discussed below.

Step 1: Determine what questions the model will help answer. One purpose of the
Japanese banking project was to identify the effects on the overall transaction process
of changing various parameters. In particular, it was desired to obtain results from the
effects of changing system, personnel, timing, and/or resources. The output desired
included time per transaction, average transaction time for each transaction type, total
customer time in the bank, customer wait times, teller utilization, transaction queue
times at the teller stations, and maximum queue lengths.

Step 2: Perform a task analysis on the collected data. Simulation models can
reflect the real world only as accurately as the data supplied. The Japanese banking model
was built using data collected at several different Japanese banking institutions. Data on
the current transaction process were obtained through the use of background question-
naires, personal interviews, site analyses, videotape analyses, and information analyses. A
task analysis was performed on the data collected. Through the task analysis, 14 different
transaction types were identified. Then each transaction type was broken down by identi-
fying what tasks occurred, who performed (or can perform) each task, what were the time
distributions for each task, and what were the possible task sequences. The basic sequence
of events for most transaction types is presented in Figure 18.2.

Customer
arrives at bank 0

Customer goes
to waiting area

Figure 18.2 Basic sequence of events for most transaction types.

18.4 CASE STUDIES 635

Unlike U.S. banks, where each teller works on one transaction until it has been com-
pleted, Japanese tellers may be processing multiple customers at a time. In a Japanese
bank, once the first-line teller has handed one set of forms to the second-line teller, he
or she may call the next customer and begin a new transaction sequence or the first-line
teller may finish a transaction that has been returned to the queue. Each transaction has
its own unique set of steps that are required. Some transaction types only require the
first-line teller to perform tasks, others require both the first- and second-line tellers,
and still others require a first-line teller, a second-line teller, and a teller supervisor.

Step 3: Develop the model. Once the task analysis was complete a model was devel-
oped for computer simulation. The model development process involved:

. Developing the task networks (i.e., the process flow diagrams)

Entering task data . Incorporating system logic through the use of variables

Defining the output data

Debugging the model

Step 4: Develop graphical animation. Graphical animation is a useful tool for
debugging, demonstrating, and presenting the model. For the base Japanese banking
model, a graphical animation was constructed along with the simulation to show the
general layout of the bank along with various output parameters. While the model exe-
cutes, the animation is updated to represent the current state of the system. The anima-
tion background is shown in Figure 18.3.

The Model Itself

Task Networks. The modeling tool Micro Saint was used to build the bank model.
Consistent with Micro Saint's architecture, the Japanese banking model was devel-
oped in a hierarchical fashion. The top-level network (Figure 18.4) consists of standard
customer initiation activities (customer arrives, customer takes service ticket, customer
waits for service, teller calls the customer) followed by subnetworks for the first-line
teller, second-line teller, and teller supervisor activities. Each teller network is then fur-
ther decomposed into subnetworks for each of the 14 transaction types (Figure 18.5).
The transaction type subnetworks (Figure 18.6) contain the individual tasks performed
(verify account number, select deposit screen, insert print slip, etc.). As these example
networks illustrate, the model was developed at a fairly high level of detail.

Input Parameters. The model was constructed so that certain system input parameters
could easily be manipulated. The user can easily modify any of the following input
parameters:

Type of day (busy or normal)

Customer arrival rates (based on branch and type of day, normal or busy)
Transaction-type ratios

Mnemonic times (mean and standard deviation)
Number of first-line tellers

636 SIMULATION OF SERVICE SYSTEMS

Figure 18.3 Graphical animation background.

Number of second-line tellers

Number of teller supervisors

First-line teller to second-line teller assignment

Second-line teller to supervisor assignment

Probabilities for model decision points (% of customers who require change, % of
customers who withdraw more than 1,000,000 yen, . . .)

18.4 CASE STUDIES 637

Network 0

w 6 h Wait for

8
Teller
Verifies -

I

Customer bF-l
(to wait ,J

-
10

1st Line Transaction
Teller

Figure 18.4 Top-level network.

Network 10 1st Line Teller Activity

-
50 1 1338

Money
= Close

Transfer Time Time

60 1 1401 1437
-. -

Money Close Close

Transfer Ordinary Ordinary

70 I 71'
W/D W/D
Checking Checking

Figure 18.5 Example teller subnetwork

638 SIMULATION OF SERVICE SYSTEMS

To 2" line
a08 210 211 teller
Set SetWD Prrss
Padmok Sip in " Conplete"

network

I

214 215 216
A n t > Press
l.000,a)O Caslirp. fmm CMM

r I

224
Call
c-

Figure 18.6 Example of a transaction subnetwork for withdrawing from an ordinary account.

Model Output. The output data collected from the model include time per transaction,
average transaction time for each transaction type, total customer time in the bank,
customer wait times, teller utilization, transaction queue times at the teller stations, and
the maximum queue lengths.

Results and Value of the Study. As an illustration of how the model can be used,
the model was run using two separate scenarios. The effect of adding one additional
second line teller to the bank can be seen.

Scenario 1 Scenario 2

Branch 2, busy day Branch 2, busy day
Three first-line tellers Three first-line tellers
Two second-line tellers Three second-line tellers
One teller supervisor One teller supervisor

The data collected for each scenario are summarized in Table 18.1. These data show that
by adding one additional second-line teller, the average amount of time each customer
was in the bank decreased from 116.7 minutes to 9.99 minutes.

Through the use of a Japanese banking simulation model, the current and proposed
transaction processes were evaluated and analyzed in order to understand, identify, and
test opportunities for process improvement or reengineering. This base model is being . . - - -
used to evaluate different process strategies (e.g., cross training of tellers to eliminate the
multitiered system) and bank automation (e.g., automated teller machines) on resource
requirements (e.g., tellers) and customer throughput. In sum, simulation provided a tool
to the banking industry that allows them to find ways to improve customer service while
potentially reducing their operating costs.

18.4 CASE STUDIES 639

TABLE 18.1 Summary Data

Scenario 1 Scenario 2

Std. Std.
Avg. Dev. Avg. Dev.

Number of customers
Average customer time in bank (min)
Maximum time customer in bank (min)
Average initial wait (sec)
Maximum initial wait (sec)
Average transaction wait (sec)
Maximum transaction wait (sec)
Maximum wait queue size (sec)
Maximum first-line teller queue size
Maximum wait for first-line teller (sec)
Maximum second-line teller queue size
Maximum wait for second line teller (sec)
Maximum supervisor queue size
Maximum supervisor wait (sec)
No. I First-teller utilization (%)
No. 2 First-teller utilization (96)
No. 3 First-teller utilization (9%)
No. 1 Second-teller utilization (9%)
No. 2 Second-teller utilization (%)
No. 3 Second-teller utilization (96)
Teller supervisor utilization (%)

18.4.2 Case Study: Using Simulation in a Government Service System
for Providing Aircraft Maintenance

Governments provide services to maintain a country's infrastructure, provide basic ser-
vices to the population, and support emergency operations. Several aspects of govern-
ment services lend themselves well to simulation. For example, emergency operations
include complex interactions between people, locations, and vehicles. Generally, these
sorts of operations are more difficult to represent on paper or in a spreadsheet. Task
network modeling can effectively track many tasks, people, and objects, as well as the
complicated interactions between them. Declining budgets have forced constant reduc-
tions in personnel while the demand for service has remained the same. Simulation
provides an excellent way to experiment with alternatives before implementation.

A particular case is that of the U S . government maintaining a large number of air-
craft, typically in excess of 500 at a time. To further complicate the problem, the demand
for maintenance services could vary wildly during a high-demand period. During these
periods, the right number of available aircraft was critical. Some of the available options
are:

More aircraft could be purchased.

Aircraft could be made more reliable. . Aircraft could be designed to be easier and faster to maintain.

More maintainers and maintenance eauivment could be utilized.

640 SIMULATION OF SERVICE SYSTEMS

Increased personnel training could be implemented.

Automation could be implemented.

In fact, they could do a little of each, a lot of a few, or all of these. But what would
that mean? How would these alternatives affect the number of aircraft available dur-
ing a high-demand period, and what would it cost? Additionally, during periods of an
emergency, the question was always posed regarding how best to deploy maintenance
resources to achieve satisfactory aircraft availability.

Further complicating this issue, the questions could not just be answered once. As
the maintenance organizations changed and new aircraft designs came on line, the same
questions would once again need evaluation. Accordingly, the government did not need
a study as much as they needed an analytical tool.

Simulation Solution. In response to this need, MANCAP I1 (Manpower Capabili-
ties Analysis Tool) was developed for the Army. The tool was designed to allow those
not familiar with simulation to use the technique to evaluate maintenance organiza-
tion performance for different aircraft designs for a variety of fleet configurations, from
platoon through division. Because of domain of application was limited (maintenance
systems analysis), a simulation-based tool could be developed that was easy to use for
this application, but limited only to use on this type of application.

MANCAP I1 consists of five separate but interrelated modules. The first module sim-
ulates the failure of each component of each weapon system in the fleet that occurs as a
result of use. The second module generates component failures that result from combat.
The third module is a generic model that simulates the maintenance requirements at dif-
ferent organizational levels given different maintenance concepts (i.e., who repairs what
components). The fourth module is the personnel pool that simulates the maintenance
staff hours that are available on a daily basis for each of the various types of staff. Staff
members vary in the amount of training received and are qualified to repair particular
subsystems of the aircraft. The last module of MANCAP I1 estimates the numbers of
supply and support personnel that are required for a given level of maintenance activ-
ity.

The user defines a schedule of missions and how many aircraft fly each mission.
As the model runs, aircraft component failures are generated based on combat hits,
component utilization, and expected failure rates. When components fail, they can either
cause mission aborts or simply be brought into the maintenance shop for repairs after the
mission is completed. These maintenance demand drivers are represented graphically
in Figure 18.7.

As a system requiring maintenance enters the shop (at whatever level of maintenance
is required), the maintenance action is put into a prioritized queue and repaired when
staff and parts are available. If either staff or parts are not available, maintenance is put
into a queue. The concept of the delivery of maintenance is presented graphically in
Figure 18.8.

MANCAP I1 is a software shell that incorporates a Micro Saint simulation model at
its core. Each of the interrelated modules discussed above is represented by a portion of
the network. The maintenance portion of the network is shown in Figure 18.9. As each
aircraft enters the maintenance portion of the network, the components that need main-
tenance and the kind of maintenance needed are determined. Some components need to

18.4 CASE STUDIES 641

Figure 18.7 Maintenance demand drivers in MANCAP

Figure 18.8 Concept of maintenance delivery

642 SIMULATION OF SERVICE SYSTEMS

Select
Maintenance n Maintenance

Level

Travel to Off -
Equipment

Do team
maintenance

Figure 18.9 Example of maintenance task network

be repaired without removing them from the aircraft. This is on-equipment maintenance.
Others can be removed and repaired closeby (off-equipment maintenance) or sent to a
remote maintenance location (depot maintenance). In some cases the maintenance team
must travel into the field to repair the aircraft. Symbols that resemble ladders appearing
in front of a task indicate queues.

The maintenance task network is internal within the application software. The user
can not directly change the task network itself. He or she can, however, enter a wide
variety of input parameters, such as "What parts does this aircraft have?', 'How often
do they fail?", "Who has to fix them?', and "How many of each type of maintenance
person are available at the different shifts?'These parameters are input by the user via
a spreadsheet-like user interface Figure 18.10 shows an example of the necessary inputs
to define a mission.

MANCAP I1 automatically combines the input parameters with the core Micro Saint
network and "runs" the model. This model generates system performance data such as
scheduled and unscheduled maintenance and aircraft availability, as presented in Figure
18.11.

MANCAP I1 provides the user with data to diagnose system constraints such as
personnel utilization, as shown in Figure 18.12. This graphic presents the number of
required electrical repair specialists over a period of 30 days. These are just a few
examples of the many types of output data that the MANCAP I1 simulation tool can
collect and present to the user without the user needing to do any more than fill in a
few spreadsheets describing the service system.

The U.S. government uses the MANCAP I1 tool routinely to study the effects of
various surges in the demand for maintenance over a period of weeks or months. What
they want to know is the number of available aircraft given a limited number of qualified
maintainers. They also use MANCAP I1 to evaluate which type of aircraft they should
buy based on relative costs and maintenance requirements. The result is that the U.S.
government was able to make better-informed decisions by taking into account all the
important variables as they affected one another. This could only be achieved through
the use of simulation.

18.4 CASE STUDIES 643

Mission Start Day: 11 I I
Mission Will Repeat
Mission Repeat Time in Hours: 1-1
Repeat Time Standard Deviation in Hours: 1x1

Mission Cancellation Time in Hours: 101 I
Mission Duration in Hours:

Mission Priority.

Minimum Number of Systems Needed:

Maximum Number of Systems Needed: 1101
Number of Departure Groups: 1 3 1
Time Between Departures in Minutes: 1 7 1

Previouwext Mission

Figure 18.10 Example of the interface for entering the parameters required of the simulation
model.

Maintenance Summary

wage PreScxtie Maintenance (Sirnuluted Manhours per Alrc
wage PostSortie Maintenance (Simulated Manhours per Aircraf $1
wage Simulated Maintenance Manhours per Right Hour

Figure 18.11 Summary maintenance system performance data.

644 SIMULATION OF SERVICE SYSTEMS

Figure 18.12 Resource utilization data on the number of required electrical repair specialists
over a period of 30 days.

18.5 SUMMARY

The use of simulation to study service systems is still a fairly new concept. On the
demand side, simulation will be used more as service systems strive to become more
efficient and effective. The past 5 years of corporate process reengineering and downsiz-
ing have provided a significant stimulus in this regard, but we are just beginning. On the
supply side, as simulation tools become more efficient and environment friendly, other
types of engineers and managers will begin to use them and appreciate their value. The
evolution in the usability of simulation tools over the last decade has already made
major strides in opening the market for the use of simulation in service systems. Based
on these trends, the analyst should look toward the use of simulation as a way to improve
service systems as a great opportunity for future growth in simulation applications.

CHAPTER 19

Military Simulation

KEEBOM KANG
Naval Postgraduate School

RONALD J. ROLAND
Rolands & Associates Corporation

19.1 INTRODUCTION

Simulation has been applied extensively and successfully to a wide range of military
problems, including wargaming, acquisition, logistics, and communications. For exam-
ple, it has been used as a decision support tool to evaluate how a battle force should be
constituted, how it might be deployed, and how the weapon systems should be acquired
and maintained.

The defense area often requires domain experts since the development and use of sim-
ulation models require specialized knowledge in problems unique to the military. Most
military models have been developed by highly specialized groups and used in narrowly
focused user communities. For example, the Army is interested in wargaming simulation
with ground forces and tanks, while the Navy is interested in battle group simulation with
aircraft carriers, aircraft, and ships. The Marine Corps' interest is in amphibious opera-
tions, and the Air Force is working on space systems, strategic long-range bombing, and
tactical air-to-air and air-to-ground support. Each service adopts different logistics sys-
tems for weapons systems maintenance; the Navy and the Marine Corps follow three lev-
els (organizational level, intermediate level, and depot level) of maintenance, while the
Air Force uses two levels of maintenance, and the Army has five levels.

As a result, there are many organizations and agencies involved in modeling and
simulation (M&S) in different services, and each community uses its own special jar-
gon, abbreviations, and acronyms, which makes it difficult for the various government
agencies and services to communicate. [More than 150 pages of Glossary of DoD M&S
Terms are available from Department of Defense (DoD) Directive 5000.59-M. It can be
downloaded from http://www.dmso.mil/docslib/mspolicy/glossary/glossary 11 95.pdf.l
Although the military simulation community is huge, there is a lack of systematic com-
munication and no central resource library. Many models have been developed on a

Handbook oj'Simulation, Edited by Jerry Banks.
ISBN 0-47 1- 13403- 1 O 1998 John Wiley & Sons, Inc

646 MILITARY SIMULATION

stand-alone, system-specific, as-needed, and as-afforded basis, which has resulted in
redundant investments. Typically, more efforts are spent to develop a new simulation
system that goes into building the simulation infrastructure than efforts to develop com-
ponents specific to the purpose of the simulation. If the infrastructure and other simula-
tion components could be reused, the payoff would be enormous. For this reason, object-
oriented modeling and new architectures (HLA) are getting more attention. Architec-
tures are discussed further in Section 19.4.

Although M&S has been used to investigate military problems for many years, there
is very little literature available for general readers who do not specialize in military sim-
ulation. Military simulation models are different from others because (1) many of them
are highly classified, with details that could not be widely disseminated; (2) weapon
capabilities and use are not typically used in other M&S; (3) certain algorithms are
closely controlled to avoid reverse engineering by potential adversaries; and (4) the use
of certain equations (e.g., Lanchester, which is often used in wargaming simulation) is
not typical of commercial M&S. The purpose of this chapter is to provide readers with
an overview of military simulation and insight to its future directions. We review recent
developments in military modeling, particularly in wargaming simulation. We provide
sources of many DoD documents, including Internet homepage addresses, where appli-
cable, so that the reader can retrieve the updated information after this handbook is pub-
lished. Since more and more DoD documents are available electronically via the Inter-
net, it becomes easier for nonmilitary simulationists to access information on defense
simulation. There will be tremendous opportunities for expansion of simulation appli-
cations in the military.

In Section 19.2 we review background material, including the organizational struc-
ture of M&S activities in the DoD and the classification of military simulation models.
In Section 19.3 we discuss a large-scale wargaming simulation model, the Joint The-
ater Level Simulation (JTLS), as an example. In Section 19.4 we introduce distributed
interactive simulation (DIS), high-level architecture (HLA), and their current applica-
tions and future directions in military simulation. Section 19.5 covers nonwargaming
simulation applications, and Section 19.6 provides concluding remarks.

19.2 BACKGROUND

19.2.1 Organizations

To understand current activities of military simulation, we briefly review several orga-
nizations that are involved. For a comprehensive list of the M&S organizations in the
DoD and each service, see Chapter 3 and the appendix of ref. 14. We provide Inter-
net homepage addresses so that the reader can retrieve up-to-date information on the
organizations.

The DoD and the Joint Staff maintain their own agencies for M&S, and each ser-
vice maintains M&S offices. In June 1991, the Defense Modeling and Simulation Office
(DMSO) was established by the Under Secretary of Defense for Acquisition and Tech-
nology. The DMSO publishes DoD M&S policy and promotes cooperation among DoD
agencies. In January 1994, the Deputy Secretary of Defense sent DoD Directive 5000.59
to the DoD community [3]. The directive, entitled DoD Modeling and Simulation (M&S)
Management, was a DOD-wide effort to establish policy for M&S. It was a significant
step toward centrally managed DoD M&S activities.

19.2 BACKGROUND 647

In accordance with the DoD Modeling and Simulation Master Plan (DoD 5000.59-P,
dated October 1995) [4], the DMSO is leading a DoD-wide effort to establish a common
technical framework to facilitate the interoperability of all types of models and simula-
tions among themselves and with C41 (command, control, communication, computer, and
intelligence) systems, as well as to facilitate the reuse of M&S components. This com-
mon technical framework includes the high-level architecture (HLA), which represents
the highest-priority effort within the DoD modeling and simulation community.

DoD Modeling and Simulation Master Plan initial definition of the M&S HLA
was accomplished under the sponsorship of the Defense Advanced Research Projects
Agency (DARPA) Advanced Distributed Simulation (ADS) program. It was transitioned
to the DMSO in March 1995 for further development by the DoD-wide Architecture
Management Group (AMG). Central to this task was the development of a set of proto-
types that addressed critical issues in the HLA. In September 1996, the Under Secretary
of Defense for Acquisition and Technology [USD(A&T)] approved HLA as the standard
technical architecture for all DoD simulations and required that all computer simula-
tions for military operations meet the HLA standardization requirements by FY2001.
His directive also mandated that all DoD simulations failing to comply with HLA stan-
dards by a specified date be retired from service. In Section 19.4 we discuss more details
on HLA. Also see http://hla.dmso.mil/ for current updates on HLA.

The Executive Council for Modeling and Simulation (EXCIMS; see http://www.
dmso.mil/wrkgrps/excims/charter.txt) is a high-level advisory group on DoD M&S pol-
icy, initiatives, standards, and investments. For more details concerning DoD simula-
tion activities, see DoD Directive 5000.59, available from the DMSO Internet home
page.

Each service maintains its own M&S activities. The Army has long M&S history
and is better organized than the rest of the services. Deputy Undersecretary of the Army
for Operations Research (DUSA/OR) oversees all Army Modeling and Simulation. The
Army Modeling and Simulation Office (AMSO; see http://www.amso.army.mil) is the
operational activity for Army M&S. The Army maintains the modeling and simula-
tion home page for the Army Modeling and Simulation Resource Repository (MSRR)
(see http://www.msrr.army.mil). The Army National Simulation Center (see http//:leav-
www.army.mil/nsc) located in Ft. Leavenworth, Kansas, supports simulation training
exercises around the world. The Army currently maintains six major simulation mod-
els for training. They are Janus, VICTORS (Variable Intensity Computerized Training
System), BBS (BrigadeIBattalion Battle Simulation), CBS (Corps Battle Simulation),
TACSIM (Tactical Simulation), and CSSTSS (Combat Service Support Training Simu-
lation System). The details of these models and a list of other Army simulation models
are available in Models & Simulations: Army Integrated Catalog (MOSAIC); see also
ref. 12. A brief discussion of Janus is given in Section 19.4.

The Air Force also has a long history of M&S applications. The Commander of
Air Force Agency for Modeling and Simulation (see http://www.afams.af.mil) is the
single point of contact in the Air Force for policy on modeling, simulation, and analy-
sis activities. It includes the Evaluation Support Division, Technical Support Division,
Warfighting Support Division, and Air Force Studies and Analysis Agency. AWSIM
(Air Warfare Simulation) is one of the Air Force unique models that are capable of track-
ing individual aircraft by tail number and air-to-air and surface-to-air missile (SAM)
engagements.

The Navy and the Marine Corps have smaller M&S organizations than those of
the Army and the Air Force. They have a Modeling and Simulation Advisory Coun-

648 MILITARY SIMULATION

cil that guides the development of policy, coordination, and technical support and
promotes the use of the Navy-wide common support services. The Navy and the
Marine Corps maintain their own Modeling and Simulation Management Offices (see
http://navmsmo.hq.navy.mil) and set their own M&S policies. A simulation model
RESA (Research, Evaluation, and Systems Analysis) was developed as a naval warfare
C3 (command, control, and communication) analysis tool for the Navy, and MTWS
(Marine Air Ground Task Force Tactical Warfare Simulation) is one of the Marine
Corps' tactical combat simulation models.

For more information regarding the organizations and groups involved in military
M&S activities, see for example, Internet home page http://www.dmso.mil/orgs.html
#OEGS. Readers will be surprised at the extent of the list.

19.2.2 Classification of Military Simulation Models

According to the Defense Science Board, military simulations are classified into three
categories: live, virtual, and constructive. Although there is no clear-cut distinction
among these categories, it is still helpful to understand the basic differences.

Live simulation involves real people and real systems. Operational test and evalu-
ation (OT&E) and military field exercises are examples. Live simulations in support
of training are conducted at the Army National Training Center (NTC) located in Ft.
Irwin, California; the Navy "Strike University" in Fallon Naval Air Station, Nevada;
the Air Force Red Flag Site at Nellis Air Force Base, Nevada; and the Marine Corps
Air-Ground Combat Center in Twenty Nine Palms, California. Here is an example of
live simulation. The NTC is a vast expanse of desert approximately the size of the state
of Rhode Island. This is where the Army conducts training exercises to prepare itself for
desert warfare in the Middle East. There are some 2500 soldiers permanently stationed
at NTC who function as the "home team." This group pretends to be the enemy and uses
all of the doctrine and tactics of the opposing army. For most of the last 30 years, they
have been training to fight a war against the Soviet Union. The visiting teams arrive
at NTC 12 times a year and conduct wargame-type simulations against the home team.
Every move and every shot fired is monitored by a powerful laser engagement system
that records all the signals from the pieces of armor and other equipment that are par-
ticipating in the exercise. All of this information is fed into the computer simulation,
and numerous statistics are tallied so that at the end of the exercise, both teams can be
evaluated and areas of improvement can be identified.

Virtual simulation involves real people in a simulated system. This includes aircraft
and tank simulators. For an example, see the Internet home page for different mili-
tary flight simulator from http://www.bgm.link.com/mfs.html. This type of simulator
is helpful in training and in evaluating control, decision, and communication skills. Vir-
tual simulation has become more popular with developments in computer technology,
especially computer graphics. The journal Military Simulation & Training (by Monch
Publishing Group, Federal Republic of Germany, ISSN 0937-6348) is a good source for
up-to-date information on military training simulators.

In constructive simulation, humans may (or may not) interact with the model, and
everything is simulated. Constructive simulations of combat include wargames for train-
ing as well as for analytical tools. Constructive simulation training is usually designed
for staff-level use and virtual simulation training for operator-level use. For example,
JTLS is a constructive simulation that can be used for staff training as well as for plan-
ning analysis. We now describe JTLS in more detail.

19.3 EXAMPLE WARGAMING MODEL: JOINT THEATER-LEVEL SIMULATION 649

19.3 EXAMPLE WARGAMING MODEL: JOINT THEATER-LEVEL
SIMULATION

An important aspect of military simulation lies in wargaming. Wargames are used
as an inexpensive alternative to live training exercises. They are also very useful
for testing and evaluating proposed procedures, strategies, and weapons systems. As
an illustration of a wargaming simulation, we present and discuss the JTLS (see
http://www.rolands.com/jtls.html). The purpose of this section is to provide the reader
with various aspects of wargaming simulation using JTLS as an example. The JTLS is a
large-scale wargaming model including ground, air, and naval operations. More than 300
players/users can participate in one scenario simultaneously. We use the terms player
and user interchangeably here.

Development of JTLS began in 1983 as a project funded by three Army organiza-
tions: the U S . Readiness Command, the U S . Army Concepts Analysis Agency, and the
U.S. Army War College. It has had continuous functional and system upgrades since
that time. Its focus is on conventional joint and combined operations and it is currently
managed by the U.S. Joint Warfighting Center, Fort Monroe, Virginia.

JTLS is designed as a theater-level model for commanders and planners as a planning
analysis tool, support material for education, exercise support for training, and a primary
means to investigate the results of combat. It is currently used chiefly as an exercise
driver where JTLS provides an environment for the dynamic interactions of intelligence, -
air, logistics, naval, and ground forces. This environment allows users to develop insight
into the relative merits of alternative courses of action, force structures, combat systems,
and procedures.

The model is, or has been, used by numerous agencies, including the Joint Warfight-
ing Center, Warrior Preparation Center, NATO SHAPE Technical Centre, National
Defense University, Army War College, Naval Postgraduate School, Combined Forces
Command Korea, Australian Defense Force Warfare Centre, and the South Korean Insti-
tute for Defense Analysis. This model is being evaluated by the Ministry of Defense
for Greece, the Ministry of Defense for the United Kingdom, and the Japanese Defense
Agency. The Louisiana State University, MITRE Corporation, and RAND Corpora-
tion are also evaluating JTLS for application to nonwargaming environments or poten-
tial research purposes. Reference 1 discusses JTLS for military operations other than
war.

JTLS is a multisided, interactive, computer-driven simulation. Multisided implies that
there can be more than two sides, such as the blue (friendly) and red (enemy) forces
used in conventional wargaming. One recent JTLS scenario includes sides called the
Gulf Coalition, United Nations (UN) Forces, Israel, Iraq, and Iran. Each side in turn
consists of one of more factions limited by the hardware, scenario requirements, and
users' imaginations. The Gulf Coalition factions include Saudi Arabia, Kuwait, and one
that represents the "civilian populace." All of the UN members are included as factions
within the UN side. Factions are also included within the other sides, which permits an
accurate depiction of the forces and perturbating influences within the Gulf region.

A maximum of I0 sides can be represented in JTLS. Each side can be further divided
into an unlimited number of factions. A faction's side allegiance is dynamically change-
able during the game (scenario). Side relationship is asymmetric and can also be changed
during the game. A large number of players (over 300) can be involved in a single game
simultaneously. JTLS can model coalition air, land, sea, amphibious, and special forces
operations. The model supports limited nuclear and chemical effects, low-intensity con-

650 MILITARY SIMULATION

flict, and preconflict operations. The model also supports the representation of civilian
and noncombatant forces within sectors of interest.

The JTLS system consists of six major software modules and numerous smaller sup-
port programs that work together to prepare the scenario, run the game, and analyze the
results. Designed as a tool for use in the development and analysis of operation plans,
the model is theater independent (i.e., the data for a specific scenario are stored in a
database separately from the program). The database may contain highly classified infor-
mation on weapons systems and military operations. However, the JTLS program itself
is unclassified.

Model features include Lanchester attrition algorithms, detailed logistics modeling,
and explicit air, ground, and naval force movement. In addition to the model itself,
the JTLS system includes software designed to aid in scenario database preparation
and verification; entering game orders; and obtaining scenario situational information
from graphical map displays, messages, and status displays. The movement of forces
within any combat environment is affected by the terrain. The terrain is represented
as a hexagonal grid overlay on a map projection. The maximum geographic region or
area used in a JTLS scenario is 2000 by 2000 nautical miles. The hexagonal overlay
design is used to provide an efficient means to calculate and model force movement
and to describe both terrain and human-made obstacles. Each hexagon in the database
is described in terms of its relative geographic location, the terrain within the hexagon
boundaries, the elevation, and the barriers on each of the six sides. Hexagon size and the
number of hexagons represented in a terrain database are user-data entries. Locations
of objects in the game can be displayed as a hexagonal reference, latitude/longitude,
or a military grid reference. Objects can be located anywhere on the game surface and
are not limited to the center of the hexagons.

JTLS does not require programming knowledge. As an interactive model, it requires
human decisions to manage the processes and entities. The players receive messages
and reports concerning the movement, attrition, and logistics status of their own forces,
as well as intelligence summaries and capabilities of opposing forces. The player at
each workstation can elect to view messages in plain language or in a special military
format. Messages may be sent electronically to standard Simple Message Text Proto-
col (SMTP) electronic mail workstations. Electronic feeds to several military command
and control systems, such as the Global Command Control System, Joint Operational
Tracking System, and Joint Military Command Information System, have been demon-
strated.

The players interact with the game and receive graphical feedback through the Graph-
ics Input Aggregate Control (GIAC). They receive messages through the Message Pro-
cessor Program (MPP), and status board information is presented by the Information
Management Terminal (IMT). These programs obtain their data and communicate with
the main simulation component, the Combat Events Program, through software mod-
ules called the G Data System, using its data server program, GENIS. A single GENIS
(the primary GENIS) is connected to the Combat Events Program using the TCP/IP
network protocol. A GENIS may have other GENISes or interface programs as clients.
The number of clients that a single GENIS can have at one time is determined by a
system parameter of the machine on which it is executing. The parameter defaults to
64 on most machines and can be modified by system maintenance personnel. A typi-
cal player's workstation has a GIAC, MPP, and IMT, all operating and connected to a
GENIS.

JTLS can be operated on a single workstation, or multiple workstations, and dis-

19.4 SIMULATION AS A TRAINING TOOL 651

tributed on either a local area network (LAN) or a wide area network (WAN), thus
providing a distributed exerciselgaming environment. The computer system support
requirements for conducting simulations or analytic excursions using the JTLS model
are dependent on the specifics of the event. The purpose of one event can be quite
different from another (e.g., analysis, education, contingency plan development, etc.)
and could require different support systems. The computing system is a composite of
resources, such as hardware devices, system software and utilities, communication lines,
language compilers, and databases.

The JTLS system can be run on a workstation of very limited processing power. For
very small test databases, the CEP, GENIS, and two player suites (controller and one
side) can be run on a single workstation of the SPARC station 2 class, but system per-
formance is marginal. For exercise applications, in general, each active player requires a
workstation of at least SPARC station 5 capability with 32 megabytes (MB) of random
access memory (RAM) to perform adequately. For medium-sized databases, the CEP
and the primary GENIS each should have a SPARC station 20 level workstation with
128 MB of RAM, and each subordinate GENIS should have a workstation of at least
SPARC station 20 level processing power, with 64 MB of RAM.

The JTLS source, object, and executable files occupy approximately 550 MB of disk
storage. A medium-sized to large database might require another 50 MB of storage. Each
checkpoint will use between two and four times as much storage as the initial database,
depending largely on the intensity with which player's messages are managed. A 1.3-
gigabyte disk devoted to the game directory (with tape backup) is a reasonable starting
requirement.

Most of the JTLS system is written in the SIMSCRIPT 11.5 programming language.
It improves continuously with new technologies. Los Alamos National Laboratories
has developed a graphics user interface, and ROLANDS & ASSOCIATES Corporation
(R&A) (see http://www.rolands.com) has created several tools for the development of
scenarios for JTLS. JTLS has been used successfully in conjunction with live simulation
during exercises such as KEEN EDGE and COBRA GOLD. KEEN EDGE 95 was held
at Camp Ojojihara, Japan to introduce U.S. and Japanese Ground Self-Defense Force
soldiers to each other's way of doing business. COBRA GOLD is a joint exercise of
U.S. and Thailand forces held in Thailand.

19.4 SIMULATION AS A TRAINING TOOL

19.4.1 Need for M&S to Support Training

An annual military exercise, called "Return of Forces to Germany," typically required
approximately 97,000 troops, 7000 tracked vehicles, and 1080 tanks. The cost in 1988
was $30.5 million, plus $23.4 million for repayment of damage to the German country-
side. In 1992 with the use of computer simulation of much of the movement of forces,
the cost was reduced to $20.7 million using only 16,500 troops, 150 tracked vehicles,
and no tanks. The damage to the German countryside was limited to $250,000 [8]. Total
savings amounted to $32.9 million. With a tank costing well over $1 million and a sin-
gle live missile costing tens of thousands of dollars, the services have no choice but to
maximize the use of training simulators and simulations in lieu of live exercise.

Safety is another reason why simulation is a better vehicle for training than live
exercises. Simulation training also minimizes environmental damage and overcomes

652 MILITARY SIMULATION

battlefield space limitations. Since World War 11, the amount of space required for a
fighter aircraft to conduct standard aerial maneuvers has grown from 4 to 40 miles, and
for an Army mechanized battalion, from 4000 to 80,000 acres [8]. Rather than expanding
to meet those needs, however, training ranges are typically being reduced in size by
a combination of encroaching urbanization, increased commercial air traffic, political
opposition, and more stringent environmental regulation. The services have responded
with ever-increasing reliance on simulation to conduct their training exercises.

19.4.2 History of Simulation as a Training Tool

The U.S. military has been using simulation as a training tool for more than 60
years since the development of the Link Flight Instrument Trainer in the late 1930s
(http://www.bgm.link.com/history.html). Early simulation trainers (simulators) were
designed to aid in aircraft carrier landing, in-flight emergency responses, and air-to-
air combat. The early simulators used movable cameras and immense model boards. In
the 1970s electronic image generators began to replace model boards, and today there
are only a few model board simulators in existence. Until 1984, training simulators were
used primarily for teaching and perfecting individual and crew skills. The simulators
were controlled by training teams sitting at consoles throwing contrived scenarios at
trainees.

Modern combat requires more than individual and crew proficiency in specific tasks.
In response to this challenge, the Defense Advance Research Projects Agency (DARPA)
developed SIMNET as a combined arms team training system. SIMNET is a networked,
real-time simulator. Trainees in each simulator can see and interact with any and all of
the other players. SIMNET consists of several hundred simulators for tanks, helicopters,
fixed-wing aircraft, and one-of-a-kind experimental nodes.

After the Gulf War, a particular tank battle called 73 Easting was thoroughly ana-
lyzed with on-the-ground measurement of tank tracks, radio traffic recordings, pho-
tographs, and interviews. The entire battle was recreated and simulated in SIMNET so
that analysts could use movable viewpoints, invisible to other players, to watch from
any angle during multiple replays. SIMNET and the Battle of 73 Easting has had a dra-
matic impact on DoD training. In the future, all distributed simulations will be required
to comply with the emerging High Level Architecture (HLA) protocol. Much of the
recent literature in M&S has focused on HLA and its potential applications. We discuss
ADS, DIS, and HLA briefly in the next section.

19.4.3 Advanced Distributed Simulation, Distributed Interactive
Simulation, and High Level Architecture

Advanced distribution simulation (ADS) technology provides various combinations of
live, constructive, and interactive simulations that may be separated geographically and
may involve some or even a great deal of human interaction. As mentioned at the begin-
ning of the chapter, virtually all military simulation models were developed for a spe-
cific purpose. Up until the early 1980s, the models were built and run on a mainframe
computer. Thus these models were used by a very narrow user group at the computer
center. The idea of ADS is to interconnect different simulation models via high-speed
communication networks, using common network interface/translation devices, so that
different users, using different simulations (e.g., ground, air, navy, special operations,
logistics, etc.) at different geographic locations, can communicate and interact [6, 71.

654 MILITARY SIMULATION

battlefield in segments of from 10 to 60 km and conducts tactical maneuvering and
weapon systems analysis based on this view of the world. The high fidelity also implies
that the user can evaluate the various elements at the individual entity level. In Janus
this means that the user watches each entity maneuver and fire, and sees each mortar or
artillery round being delivered on its target. With both the on-screen display and written
output, the user can evaluate the accuracy and lethality, or effect, of the various systems
and tactics.

Current research is being conducted with Janus to support various Army initiatives.
This work includes the design and implementation of a networking capability, called
JLINK (Janus Linked to DIS), to use Janus in a distributed mode for training in addi-
tion to analysis. JLINK was developed to support the Anti-Armor Advanced Technol-
ogy Demonstration (A2ATD) directed by the Army Materiel Systems Analysis Agency.
This is an excellent example of joint work by military, academia, and industry. TRAC
(U.S. Army's Training and Doctrine Command Analysis Center), located in Monterey,
~alifornia, had overall responsibility for building the system and for providing project
management and functional area expertise. Researchers from the Naval Postgraduate
School, also located in Monterey, California, developed the interface between Janus
and other DIS-based simulators called the World Modeler. RAND Corporation devel-
oped the interface between Janus and the World Modeler, conducted terrain analysis,
converted source code from one language to another, and modified Janus internal algo-
rithms to make them more consistent with functionality requirements necessary for the
A2ATD experiments. Rolands & Associates Corporation has demonstrated a capability
to connect Janus with an Air Force F-16 simulator using DIS networking protocols.
This implementation will provide the ability for several Army units, distributed over a
large geographic area, to use Janus simultaneously, thus providing an integrated training
environment.

The key result of the JLINK research is an advanced, more capable system with each
component contributing uniquely to the resultant design. Janus brought to DIS accred-
ited computer-generated forces and a large validated database of vehicle and weapons
characteristics. DIS provided Janus with soldier-generated scenarios and a three-dimen-
sional visualization capability for analytical insights. The combined benefits of the sys-
tem include a soldier-in-the-loop capability (i.e., interactive simulation where the sol-
dier, as a typical user, can interact directly with the model) and an integrated training
and analysis tool [2, 131.

19.4.5 Other Applications of DIS Within DoD Programs

Other DIS-based simulation training programs within the DoD include the Navy/Air
Force Joint Tactical Combat Training System (JTCTS), the Navy Battle Force Tactical
Training (BFTT) System, and the Army Warfighters' Simulation (WARSIM) 2000.

The JTCTS is designed to provide both the Navy and the Air Force with a state-
of-the-art DIS-based training system that will link live objects, such as aircraft flying
on training ranges or off aircraft carriers at sea, to the synthetic battlefield. Instead of
the fleet going to the range, the range can now go to the fleet. A contract for this pro-
gram was awarded in March 1995 and is a combination of the Navy's Tactical Training
Combat System and the Air Forces's Joint Air Combat Training System.

The BFTT is the first Navy program to design its system architecture on the standards
and protocols provided by DIS. The system electronically moves real ships, crews, or
individual operators located in the same or separate ports to a common synthetic the-

19.5 OTHER ISSUES 655

ater of war that provides a realistic, interactive environment across all naval warfare
areas. DIS has become the key element of the technology to achieve this transition to
a common synthetic environment.

WARSIM 2000 is an ongoing project at the Army National Simulation Center.
The Army envisions WASIM 2000 as its future simulation model. It will replace
existing simulation models, CBS, BBS, and TACSIM, and will be designed for DIS
environment for joint operation exercises. For updated information, see http://www-
leav.army.mil/nsc.

19.5 OTHER ISSUES

19.5.1 Use of Simulation in Acquisition Testing and Evaluation

With the defense budget cuts in the late 1980s, weapon acquisitions have come under
increased scrutiny. Reduction in available resources and the long lead time to field new
technologies require that acquisition management must explore every avenue to improve
the efficiency of the overall acquisition process. M&S has the potential to improve the
design and effectiveness of potential systems significantly while reducing the production
and testing costs.

The modern battlefield includes complex weapons systems. To ensure that the pro-
posed system can fully integrate into the battle force, models and simulations are uti-
lized. This integration would be costly, if not impossible, to "live" fire test. Devel-
opmental test and evaluation (DT&E) is an ongoing process. The primary benefits of
models and simulations in DT&E has been the identification of risk and the reduction of
development time. By identifying risky areas early, more resources can be focused on
the problem, preventing time delays and cost overruns. Computerized development of
modern weapons systems is standard practice now. The next huge hurdle is overcoming
the resistance to the use of simulation for operational test and evaluation (OT&E).

OT&E must be completed before a weapons system can proceed past low-rate pro-
duction. Title 10 of the U.S. Code (Section I%), as of 1989, precluded M&S from
being included as OT&E. These tests have been restricted to "live" simulations in an
operational environment. Other types of simulation can be conducted prior to, or after,
these tests but cannot be the basis for proceeding to full-rate production.

In the OT&E community there is an inherent distrust for anything that is "simulated,"
as they view simulation as a circumvention of acceptable testing protocols. As attitudes
toward current technological advances begin to be accepted, M&S will increase sig-
nificantly. Although M&S will not completely replace field testing, it will improve the
overall accuracy of the testing process and reduce the costs (including time) involved in
completing the testing process. By integrating constructive simulations into the OT&E
design process, planners will be able to examine a weapons system's entire operational
spectrum, force structure, interoperating systems, and threat capabilities that can be rep-
resented in the constructive environment. Furthermore, they will be able to create more
realistic developmental and operational test scenarios.

19.5.2 Nonwargaming Simulation Applications

The use of M&S is most prevalent in the areas of engineering and manufacturing.
Many commercial simulation languages (e.g., AweSim, Arena, MODSIM, and Witness)

656 MILITARY SIMULATION

are used in weapons system design, production, and maintenance. The use of M&S in
manufacturing is aiming toward a future "virtual manufacturing" environment. In this
approach the operational requirements identified in the synthetic battlefield environment
are translated into design concepts using three-dimensional virtual simulations incorpo-
rating geometry and performance. These designs are passed along to a network of dis-
tributed manufacturing simulations that may reside throughout a vendor base to identify
the manufacturing processes, facilities, and tooling requirements. This vendor base is
closest to the manufacturing processes and is in the best position to develop cost and
schedule estimates. These estimates may then be fed back to provide better estimates
of costs and schedules to support trade-offs and system-level alternative evaluation in
cost and operational effectiveness analysis [14]. The use of M&S has the potential to
improve the design and effectiveness of future systems significantly while reducing the
production and testing costs. Proper use of M&S will achieve cycle-time reduction,
which will reduce inventory, and eventually cost.

19.5.3 Verification, Validation, and Accreditation

As military simulation models become complex it is more difficult to conduct ver-
ification, validation, and accreditation (VV&A). However, VV&A increases con-
fidence in the models and reduces the risk of bad decisions. A comprehensive
DoD W & A Recommended Practice Guide [3] is currently being developed by the
VV&A Technical Support Team at DMSO. (The draft can be downloaded from
http://www.dmso.mil/docslib/mspolicy/vva/rpg.)

The DoD Directive 5000.59 defines VV&A as follows:

Verification is the process of determining that a model implementation accurately
represents the developer's conceptual description and specifications.

Validation is the process of determining the degree to which a model is an accurate
representation of the real world from the perspective of the intended uses of the
model.

Accreditation is the official certification that a model, simulation, or federation of
models and simulations is acceptable for use for a specific purpose. It is a decision
that a specific model or simulation can be used for specific application. Hence an
accreditation does not apply to a class of models and does not apply to a num-
ber of applications. A model can receive an accreditation for use in one specific
application but not be accredited for use in any other applications.

VV&A of models is intended to establish credibility or confidence in the analyses of
the results from the simulation models. Since the simulation results support an important
decision-making process, it is necessary that the VV&A be an integral part of the M&S.
DoD's new policy is that DoD components establish VV&A policies and procedures for
the M&S that they develop and manage. Also, the M&S used to support the major DoD
decision-making organizations and processes should be accredited for those used by the
DoD component sponsoring the application. Similarly, M&S used for joint training and
joint exercises should be accredited for that purpose by the application sponsor [5] . For
a general discussion of VV&A, see Chapter 10 and refs. 9, 10, and 15, among others.

19.6 CONCLUDING REMARKS 657

19.6 CONCLUDING REMARKS

The U.S. military uses modeling and simulation extensively. The cost associated with
developing applications without centralized coordination is extremely expensive. The
DoD has instituted measures to coordinate and control the expenditures for M&S. The
Joint Warfare Analysis and Research (JWARS) program, managed by the Joint Chiefs
of Staff 5-8 Office in the Pentagon, is an effort to consolidate analysis modeling. The
Joint Simulation System (JSIMS) is a similar, large-scale program, to effect consolida-
tion of training models. This JSIMS program, managed by the Joint Program Office in
Orlando, Florida, is in its initial stage now but probably will provide the paradigm for
future military simulations. The Army's WARSIM 2000, Air Force's NASM (National
Aero Space Model), and Navy's BFTT will be linked via JSIMS for joint exercises. For
updated detail of the JSIMS program, see http://www.jsims.mil/.

Every level of human behavior from the individual soldier/sailor/airman up through
the highest levels of DoD has been modeled at one time or another. As dis-
tributed exercises become more complex, so does the need for more accurate mod-
els of human behavior. Consequently, the need to understand these behaviors will
become increasingly important. Extensive research in this area is ongoing. For exam-
ple, researchers from the Naval Postgraduate School are involved in the NPSNET
project "Inserting the Human into the Networked Synthetic Environment" (http://www-
npsnet.cs.nps.navy.mil/npsnet).

The availability of much of this information via the Internet provides both military
and nonmilitary users with a rich source of information from which to plan and schedule
M&S activities. A vast amount of information is available from the Internet home pages.
Many other DoD documents are readily available electronically. M&S is an important
element in military analysis and training and will continue to play an ever-increasing
role as defense budgets decrease for military expenditures.

REFERENCES

I. Bolling, R. H. (1995). The joint theater level simulation in military operations other than war,
in Proceedings of the 1995 Winter Simulation Conference, C . Alexopoulos, K . Kang, W. R.
Lilegdon. and D. Goldsman, eds., IEEE, Piscataway, N.J., pp. 1134-1 138.

2. Caldwell, W. J., R. Wood, and M. Pare (1995). SLINK: Janus fast movers, in Proceedings Oj
the 1995 Winter Simulation Conference, C . Alexopoulos, K . Kang, W. R. Lilegdon, and D.
Goldsman, eds., IEEE, Piscataway, N.J., pp. 1237-1243.

3. Department of Defense, Deputy Under Secretary of Defense (1994). DoD mode-
ling and simulation (M&S) management, DOD Directive 5000.59 (available from
http://www.dmso.mil/docslib/directive.html).

4. Department of Defense, Under Secretary of Defense for Acquisition and Technology
(1995). Modeling and simulation master plan, DOD Directive 5000.59-P (available from

5. Department of Defense (1996). DoD modeling and simulation (M&S) verification, valida-
tion, accreditation (VV&A), DoD Instruction 5000.61 (available from http://www.dmso.mil/

6. Garrett, R. (1995). ADS: looking toward the future, Phalanx, Vol. 28, No. 2, pp. 8-10

7. Garrett, R. (1995). A new simulation paradigm: advanced distributed simulation, Phalanx,
Vol. 28, No. 3, pp. 25-27.

658 MILITARY SIMULATION

Anon. (1994). Virtual reality and training, Government Executive, June.
Kleijnen, J. P. C. (1993). Verification and validation of simulation models, Technical Report
320.93.186, Tilburg University, Tilburg, The Netherlands.

Law, A. M., and W. D. Kelton (1991). Simulation Modeling and Simulation, 2nd ed.,
McGraw-Hill, New York.
Mowbray, D. W., J. W. Wallace, A. L. Henman, and E. S. Hirschorn (1995). An architecture
for advanced distributed simulation, Phalanx, Vol. 28, No. 2, pp. 12-15.
National Simulation Center (I 995). Training with Simulations: A Handbook for Commanders
and Trainers, Combined Armed Center, Ft. Leavenworth, Kansas.

Pate, M. P., and G. G. Roussos (1996). JLINK: a distributed interactive Janus, Phalanx, Vol.
29, NO. 1, pp. 12-15.
Piplani, L. K., J. G. Mercer, and R. 0. Roop (1994). Systems Acquisition Manager's Guide
for the Use of Modeling and Simulation, Defense Systems Management College, Ft. Belvoir,
Va.

Sargent, R. G. (1994). Verification and validation of simulation models, in Proceedings of
the 1994 Winter Simulation Conference, J. D. Tew, S. Manivannan, D. A. Sadowski, and
A. F. Seila, eds., IEEE, Piscataway, N.J., pp. 77-87.
Shiflett, J. E., W. H. Lunceford, and R. P. Willis (1995). Application of distributed interactive
simulation technology within the Department of Defense, Proceedings of the IEEE, Vol. 83,
No. 8, pp. 1168-1 178.
Sikora, J., and P. Coose (1995). What in the world is ADS? Phalanx, Vol. 28, No. 2, pp. 1-8.

CHAPTER 20

Discrete-Event Simulation of
Computer and Communication
Systems

ALFRED HARTMANN AND HERB SCHWETMAN

Mesquite Software, Inc.

20.1 INTRODUCTION

In this chapter we discuss techniques useful for constructing discrete-event simulations
of computer and communications systems. While analytical methods such as queueing
theory are sometimes employed (Lazowska et al., 1984) and can offer valuable insights,
their scope is limited to problems for which analytical solutions methods are possible.
Computer-based simulation is very broadly applicable, and with the availability of many
kinds of simulation software packages and the rapid proliferation of low-cost computing
power to every desktop, simulation-based analysis has moved to the fore. Today, most
computer and communications system designers are familiar with the C/C++ program-
ming language and with the notion of computing processes. This makes process-based
simulation in C/C++ a natural and convenient choice for many modeling projects.

20.2 FUNDAMENTAL CONCEPTS

A computer system or communication network consists of a collection of resources.
Entities (jobs, programs, tasks, transactions, messages, etc.) compete for use of these
resources. Models of these systems possess, at least at some level, constructs that rep-
resent both resources and entities. Almost any simulation model of almost any kind of
system will have similar constructs. In this chapter we explore the issues that make mod-
eling computer systems and communication networks different from simulation models
of other kinds of systems.

Handbook of Simulation, Edited by Jerry Banks.
ISBN 0-471-13403-1 O 1998 John Wiley & Sons, Inc.

660 DISCRETE-EVENT SIMULATION OF COMPUTER AND COMMUNICATION SYSTEMS

20.2.1 Goals

The major goal of most system modeling projects is to provide estimates of system
performance. With computer systems, the most important performance measure is task
response time. With communication networks, the most important measure is message
latency time. Thus the goal of many projects is to provide accurate estimates of these
measures. Other goals include providing insight into the operation of the system and
guidance for reducing the impact of performance bottlenecks.

20.2.2 Resources and Entities

As mentioned above, simulation models typically have entities (processes, customers,
messages, transactions, etc.) and resources (processors, memory, buses, channels, com-
munications links, e t ~ .) . In these models there can be several different types of entities
and there can be multiple instances of each type of entity, all active at the same and at
different points in simulated time. In many situations, the entities are competing for use
of some of the resources of the system model. For example, in a model of a computer
system, several simulated jobs can all be competing for use of the CPU resource.

Similarly, there are usually several types of resources in a system model. These can
be classified into two major categories: (1) active resources, and (2) passive resources.
The distinction depends on what entities do after obtaining access to an element of a
resource. An element of an active resource is typically used or occupied for a specific
interval of time and then released. An element of a passive resource is obtained by
an entity; at this point the entity proceeds to perform other actions, including gaining
access to other resources.

Examples of active resources in a computer system include CPUs, disk drives, and
controllers, and examples of passive resources include main memory and buses. In
a communications network, message processors and internode links might be active
resources, while buffers are examples of passive resources.

The entities of these models depend on the level of the model. In a high-level model
of a computer system, the entities might be programs or transactions. In a high-level
model of a communications network, the entities might be messages. In a low-level
model of a computer system, the entities might be individual computer instructions,
I/O requests, and data transfers to and from main memory. In a low-level model of a
network, the entities might be data packets or cells.

20.2.3 Workload

Every system model includes a representation of the workload for the system. Here
workload refers to the sequence of demands by entities for the resources of the sys-
tem. Obtaining an accurate characterization of the system workload is one of the most
important steps toward building an accurate and useful model. With computer systems
this task is, in some cases, made easier by the presence of system tools which can be
used to automatically collect some of the necessary data. For example, if the entities of
the model are on-line transactions, the transaction monitor may keep transaction logs
that can be used to build a characterization of the input transaction stream. Similarly,
in a computer network, there may be message logs at some of the nodes which can be
useful in constructing profiles of the message traffic in the network.

As with most models, it is necessary to have an accurate characterization of the

20.2 FUNDAMENTAL CONCEPTS 661

workload in terms of the demands for system resources. With computer systems, this
may present some difficulties. For example, a critical input for a model may be the
service-time distribution at a disk drive, but a system accounting package may report
response times at this drive (and the mean response time at this drive would be an
output of the model). In a similar vein, the accounting package might report characters
per transfer to a disk drive, but it may be difficult to relate the number of characters
transferred to the service time.

Typically, what is required for a model of a computer system is a profile of the
kinds of jobs or tasks being modeled. This profile would consist of a stratification of
the tasks into different classes, and then for each class, a summary of the demands for
service for the different resources of the system. As an example, a workload for an
on-line transaction processing system might be classified according to different types
of transactions being submitted, and then for each type of transaction, collecting the
following information:

Number of transactions of each type

Amount of CPU time per transaction

Number of disk accesses per transaction

Amount of data sent back to the requester per transaction

For a communications network, the workload characterization might consist of the
following kinds of information:

Number of messages generated at each node

Message length distribution

Information about the destination of each message (e.g., the distance to the desti-
nation)

The percentage of messages requiring an acknowledgment

The end result of this workload characterization is a set of parameter values that are
required to model accurately the workload in the model.

20.2.4 Output: Measures of Performance

As stated earlier, models of systems are often used to obtain estimates of the average
system response time for elements of the workload. Similarly, in models of networks,
estimates of the average message latencies and/or delivered bandwidth are of interest.
Here response time means the time from when a request for service is made (starts
or arrives) until the time that the request is completed (departs). Latency is the term
used for response time in an input-output subsystem, a memory subsystem, or in a
communications network. Response times (latencies) are expressed in terms of time
units per request. The reciprocal of response time is throughput rate (e.g., transactions
per second), while the reciprocal of latency is bandwidth (e.g., megabytes per second).
All of these items are usually outputs of simulation models.

If a model is being used to gain insight into performance problems (where perfor-
mance problems are often indicated by unacceptably long response times or latencies),
more output data are required, to pinpoint causes of problems. These additional data

662 DISCRETE-EVENT SIMULATION OF COMPUTER AND COMMUNICATION SYSTEMS

usually consist of statistical summaries of times spent at individual resources of the
system model or times spent in the individual activities that make up a complete work-
load element. In some cases it may be necessary to insert special instrumentation to
collect the data necessary to pinpoint causes of performance problems.

20.2.5 Duality of Models

Process-oriented models of computer and communications systems tend to differ in their
assignment of processes to simulation entities. In computer system simulations, pro-
cesses tend to be assigned to the workload (e.g., to represent user processes or applica-
tions), and these processes acquire and release system resources, for which they typi-
cally compete. In communication system simulations, processes tend to be assigned to
resources (e.g., switches, or channels), and the processes handle workload messages, for
which they typically do not compete. These process assignments tend to keep the num-
ber of processes in the simulation to a reasonable number, since the simulation system
incurs context switch overhead in dealing with multiple processes. It would normally
be prohibitive to model each message as a process that competes for communication
system resources, due to their vast number.

These different ways of conceptualizing models leads to a type of model duality
between models of computer systems and models communication systems:

-

Simulation Entity Computer System Communication System

Workload item Process Token (structure)
Resource item Structure Process

This duality can result in a difference in perspectives between computer system sim-
ulation and communication system simulation, and perhaps a difference in choice of
simulation tools.

Queue service disciplines appropriate to competitive resource acquisition in a com-
puter system simulation may or may not satisfy the needs of message workload process-
ing in a communication system simulation. First come, first served (FCFS) is a simple
service discipline common to both computing and communications, while the common
round-robin processor scheduling discipline would probably not be applicable to com-
munications simulations. A communication system simulation may need to employ a
wide variety of buffer management strategies that may not be reflected in the selec-
tion of resource allocation strategies available in a computer system simulation facility.
As examples, the "leaky bucket" (Bae and Suda, 1991) buffer management strategy
used for ATM network source control is unique to communications, as are combination
timeout and priority-based cell disposal methods for congestion reduction in ATM net-
works.

20.2.6 Object-Oriented Models of Systems

Object-oriented software design methods have much to offer the simulation developer,
as discussed in Chapter 11. We may consider object-oriented software design to be based
on the principles of:

20.3 COMPUTER SYSTEMS 663

Encupsulation: the ability to combine data and the functions that manipulate the
data into abstract data types

Inheritance: the ability to derive new subtypes from existing abstract types

Polymorphism: the ability for functions to manipulate objects of different types
that share certain type relations

The advantages that object-oriented design offers to all types of software develop-
ment apply also to simulation development. Simulation entities can be encapsulated into
objects, classes of simulation entities can be grouped into base object classes and differ-
entiated using inheritance into arbitrary subclasses, and polymorphic functions can be
defined appropriately as methods of the object classes. All these object-oriented tech-
niques can serve to organize and simplify simulation model development.

Simulation development systems and programming languages provide predefined
base classes for common types of simulation processes and resources. These can be
inherited by newly defined subclasses in a particular simulation effort. Polymorphic
functions can be predefined that perform standard manipulations on user objects that
are instances of subclasses derived from the base class repertoire.

20.2.7 Quasi-parallelism in System Models

Process-oriented simulation uses multiple processes to simulate the parallel activities
in the system being simulated. However, it is typical for the simulated execution of
these multiple processes to be interleaved sequentially on a single processor. This inter-
leaved execution is generally done deterministically so that results are repeatable from
simulation run to simulation run. Such forms of parallelism are referred to as quasi-par-
allelism, to distinguish them from true parallelism, which is nonsequential and often
nondeterministic. True parallelism may be exploited underneath the quasi-parallel simu-
lation environment, to speed simulation, but this is transparent to the simulation design.
Quasi-parallelism is not transparent to the simulation design but is an integral part of
the simulation design. Building simulation models that exploit true parallelism is dis-
cussed in Chapter 12. It can be noted that some of the most successful applications of
parallel simulation techniques have involved models of large communications systems.

Quasi-parallelism must provide facilities for simulated processes to block (i.e., wait-
ing for simulated time to pass, for resources to become available, or for a simulated
event to occur). At the appropriate point in discrete simulated time, processes must
unblock and resume simulated execution. Multiple processes need some form of syn-
chronized interprocess communication, which can be provided by predefined synchro-
nization classes implementing events, signals, mailboxes, semaphores, and so on.

20.3 COMPUTER SYSTEMS

A simulation model of a computer system (MacDougall, 1987) must capture the essen-
tial parts of the real system. These essential parts consist, in broad terms, of (I) work-
load elements, (2) system resources, and (3) system policies (which govern allocation
of resources to elements of the workload). In this section we discuss some of the issues
involved in modeling these parts (Jain, 1991).

664 DISCRETE-EVENT SIMULATION OF COMPUTER AND COMMUNICATION SYSTEMS

20.3.1 What Is the Workload?

Computer systems exist to process elements of the workload, where, depending on the
system being modeled, a workload element could be one of the following items: (I) job,
program, or task; (2) transaction or query; or (3) I/O request or request for an item in
main memory. Each of these kinds of workload elements is a sequence of demands for
service at the resources of the system. As an example, consider a job or task as being
representative of a workload element. A job (a program) is a sequence of alternating
requests for time on a CPU (CPU bursts) and input/output service (transfers of blocks
of data to and from 1/0 devices such as disk drives). In addition, the job will request
use of blocks of main memory. In most modem systems, multiple jobs are executing
simultaneously, so there is competition for all of these resources. System performance
(job response times) reflects the ability of the system to satisfy these conflicting requests
for use of the system resources.

20.3.2 Modeling System Components

Computer systems consist of both hardware and software components. In addition, the
operating system manages access to these components; it embodies the control mech-
anisms which are in place to guarantee correct and efficient operation of the system.
In a simulation model of such a system, all of the important components, as well as
the policies that control access to these components, should be represented if accurate
estimates of system performance are to be achieved.

Hardware Components. The most important hardware components of a computer
system are the CPU and the 1/0 devices. Main memory is critical to the operation of the
system, but in most modem systems, main memory is quite large and is usually not a
major factor in determining system performance. However, incorporating main memory
into a model is usually not a difficult task. The other important and often neglected kind
of component is the interconnection hardware (called a bus), used to'tie the CPU and
the 1/0 devices to the main memory. Modeling these hardware components is usually
fairly straightforward because they can be represented by static resources. The key is
to accurately model the kinds of serial or parallel accesses that are possible in each of
these components.

Software Components. The software components can be more difficult to represent
in a system model. Typically, a software component can embody lengthy sequences of
actions and implement complex operating policies. Furthermore, some of the compo-
nents are provided by third-party vendors, and their inner workings will not be disclosed
to a system modeler.

One class of software component that is found in systems consists of those that offer
service to user programs. An example is a database management system (DBMS). Many
applications in a system could require service from the DBMS. However, there are limits
to the number of requests for service that the DBMS can handle simultaneously. Thus
such a server can be a limitation to the performance (job response time) for jobs that
must access critical data via the DBMS. Other software components that can affect
the performance of jobs in a computer system include transaction processing monitors,
network access systems, and remote file servers.

If a software component is determined to be a potential performance bottleneck in

20.3 COMPUTER SYSTEMS 665

a system being modeled, a special effort may be required to ensure that an accurate
representation of the component is available. For example, if a commercial DBMS is
an important component in a system, the system model may require a simulation model
of the DBMS. To incorporate this component into the model, the modeler may have to
take one of the following steps:

Obtain additional information from the vendor or other sources.

Perform some black-box measurement studies, so as to infer the behavioral char-
acteristics of the DBMS.

Obtain a prebuilt simulation model of the DBMS.

The other aspect of software components that is of importance in a model is the
set of control and management policies provided by these components. These policies
and rules appear in the operating system (which controls the operation of the entire
system) as well as in the components mentioned above. These policies specify prior-
ities, scheduling rules, resource constraints, and rules for dealing with congestion and
overflow (e.g., maximum queue lengths at an 1/0 device). Depending on the level of
detail in the model, these policies may be an important factor in the development of an
accurate system model.

20.3.3 Asynchronous Operation

In an attempt to improve the utilization of system resources, modern systems encourage
an asynchronous style of behavior. The basic principal is that a program is able to initiate
I/O actions that can take place in parallel with continued use of the CPU. A model of a
system must capture this parallel, asynchronous style of operation. A process-oriented
simulator provides a base for implementing models in which the major components can
operate asynchronously.

20.3.4 Trade-offs: Detail Versus Cost

The purpose of a system model, in the simplest terms, is to produce response intervals
for workload elements. These intervals can then be used to provide the estimates that
are needed to make judgments about system performance.

A response interval typically consists of one or more subintervals, in which each
subinterval has a delay interval and a service interval at some resource. A very high
level system model has only a few resources, and as a result, the response interval has
only a few subintervals. Such a model could execute very quickly, but the resulting
estimates of response times might be inaccurate.

To improve accuracy, the high-level resources can be redefined as collections of
lower-level resources. When this is done, what was formerly a single service interval
at a resource is now a sequence of delays and service intervals for these lower-level
resources. The gain is a more accurate representation of the resource; the cost is an
increased number of simulated events, which translates to a longer-running model.

As an example, in a high-level model, an input-output operation could be modeled
as a single service interval. In the model there could be a single input-output resource,
and programs get, in a sequential manner, service at the resource. The real input/output
device and associated connection components is more complicated; capturing more of

666 DISCRETE-EVENT SIMULATION OF COMPUTER AND COMMUNICATION SYSTEMS

this complexity in a model might result in better estimates of the time required by
a program to complete its input/output requirements. A more complex model could
have a bus, a controller, and several disk drives. This more complex model could be
processing multiple requests in parallel and could provide more accurate estimates of
response times at the input/output resource.

All system models represent trade-offs between increased levels of detail and
increased execution. Good models strike a balance between these conflicting goals.

20.3.5 Model Results

A model of a system can be used in two distinct ways [LaKe91]: (1) to provide esti-
mates of the output values for the system operating in "steady state," and (2) to provide
estimates of the output values for the system operating over a specified interval of time
(e.g., for an 8-hour shift). The problems of providing accurate estimates in both of these
situations are well known, as are techniques for dealing with these problems (Law and
Kelton, 1991).

Models of computer systems can present some additional problems to the task of
providing reliable estimates of the output variables. These issues stem from the fact
that real computer systems can be large and complex. Furthermore, some of the impor-
tant components are not readily visible, and producing accurate representations of their
behavior may be difficult. Thus validation of the structure and operation represented in
a model may be a significant issue as it is developed.

In some cases it is possible to obtain output results for the test workloads used to
parameterize the model of the workload. In these cases, the results from the model can
be thoroughly validated. In other cases, the model developers may be forced to review
the design and implementation of the model itself, to verify the validity of the results.

20.4 COMMUNICATIONS SYSTEMS

Any project to develop a simulation model of a communications system can be divided
into two main branches of work: (1) construction of the workload model, and (2) con-
struction of the network model.

20.4.1 What Is the Workload?

A communications system workload model is, primarily, a quantitative description of
the messaging traffic within a communications network. The description may be either
explicit, as obtained from instrumented trace studies of a real system, or statistical, making
random draws from a set of probability distributions. Regardless of the form, the workload
description should accurately represent the messaging traffic for the intended network.

Workload validation is the process of ensuring appropriate accuracy in the formula-
tion of the workload description. Even the most faithful network model will be useless
if it is exercised with an invalid workload: "garbage in, garbage out." Workload con-
struction and validation is a major portion of the effort in building any communications
simulation model.

A workload driver (model) presents messages to the communications system for
delivery through the network. We are concerned with the course of the message traffic
through network space and time. A message may be part of a larger message stream

20.4 COMMUNICATIONS SYSTEMS 667

with a given point of origination and one or more points of destination. Messages to
be sent to only a single point of destination are referred to as unicust trafic, while
messages sent to multiple destinations are multicust rrafic, with broadcast trafic being
intended for all destinations. A message can be sent in one piece to its destination(s),
or be decomposed into smaller units, or be composed with other messages into larger
units, or the pieces of multiple messages can be variously combined and separated in
their course through the network.

What happens to a message after its entry to the network is the province of the
network model. The workload model describes the kinds of messages that enter the
network and the arrival times for these messages. In this sense the workload serves
to provide the stimulus, while the network serves to provide the response. Part of the
overall design of the simulation is determining the most appropriate type of stimulus
that will generate the responses of interest.

Since real networks tend to be constructed in layers, the character of the work-
load will be greatly affected by the layer chosen for direct stimulation. For example, if
only the physical links are to be studied, the stimulus can be presented at a very low
level (e g , physical data unit) in the layering, while if the performance of a distributed
database operating over the network is to be studied, the stimulus is presented at a very
high level (e.g., database query). The higher the layer chosen for stimulation, the more
layers must be present in the network model, so the choice of the layer greatly affects
the total implementation effort. If lower layers are to be treated only in the abstract,
experience is necessary to judge which details to ignore and which to model.

The logical data unit may be much larger than the physical data unit transferred over
the link, or the reverse may be true. For example, in Ethernet over ATM, the Ethernet
packets may be kilobytes in size while the ATM cells are only a few tens of bytes.
On the other hand, in ATM over SONET, the SONET frames hold a large number of
ATM cells. If the number of messages can be reduced by two orders of magnitude,
that is desirable if this reduction can be accomplished without loss of accuracy in the
simulation. The evaluation of this trade-off may depend on which network performance
attributes are important to measure; thus specific rules are difficult to give.

The workload model injects messages into the network, and each message has the
following principal attributes:

Time of origin

Point of origin

Point(s) of destination

Message characteristics (size, priority, etc.)

Usually, the origin times (and possibly the destination addresses) of the injected mes-
sages are drawn from probability distributions. Or rather, the time interval between mes-
sage originations at a given point of injection is drawn from a probability distribution.
Proper selection of the distribution of interorigination time intervuls is a major aspect
of workload validation.

Since communications networks are frequently analyzed as queueing networks,
which are most mathematically tractable with exponentially distributed time intervals,
the exponential distribution is a frequent, though not necessarily valid choice. It is appli-
cable where message origination is a Poisson (or memoryless) process, but much mul-
timedia traffic, such as compressed voice and video streams, tends to show Markov

668 DISCRETE-EVENT SIMULATION OF COMPUTER AND COMMUNICATION SYSTEMS

process characteristics (or bursty behavior) (Bae and Suda, 1991). A Poisson process
and a non-Poisson Markov process with the same average intermessage time interval
may produce dramatically different network performance results due to traffic conges-
tion at intermediate network nodes. Here a non-Poisson Markov process refers to a
process in which some time intervals (e.g., intermessage intervals) are characterized
as an exponential distribution with one of two means; the choice between these two
means is determined by Markov state transitions with specified probabilities. The goal
is to model a process accurately with two distinct modes of behavior.

Bae and Suda (1991) provide several examples of Markov process models for ATM
network traffic of voice, video, and data content. The Markov transition probabilities
typically cause state transitions that alter the message interarrival time significantly so
as to produce the necessary burstiness found in the actual source. Each of the states
may correspond to some simple probability distribution (such as exponential) but with
different distribution parameters for each state.

All of these workload models are dependent on the types of data coding used, partic-
ularly if compression is employed, since this may alter the traffic characteristics consid-
erably. Forward error checking (FEC) using error-correcting codes (ECC) can also alter
traffic patterns by changing the incidence of re-sends of messages. Regardless of the dis-
tribution chosen, the random, uncorrelated time intervals between message originations
argue for an asynchronous relation between the workload model and the network model.

To illustrate some of these issues, assume that we are developing an object-oriented
simulation model in C++. Furthermore, let us propose a class named Node and a class
named Workload:

class Node-c { 1;
class Workload-c {]

Each instance of Node could be given an instance of Workload, to supply it with new
messages to send:

workload-c work (. . .) ;
 ode-c node (work, . . .) ;

Or it might be done the other way around:

Node-c node (. . .) ;
Workload-c work (node, . . .) ;

Either the Node-c instance, ?node, has to block until the next message origination time,
or the Workload-c instance, ?work, has to block. This sort of quasi-parallel asynchrony
in simulated time is not a feature of the C/C++ programming languages or of operating
systems. Essentially the node and its corresponding work need to function as asyn-
chronous coroutines in discrete simulated time, based on a simulation event queue, as
discussed in the earlier section on quasi-parallelism.

20.4.2 Networks and Network Protocols

The network model is the other half of the effort, and together with the workload model
constitutes a full communications system model. Networks are often represented as

20.4 COMMUNICATIONS SYSTEMS 669

(a) bus (b) linear chain

d b (d) tree
(c) star or

hub and spokes

(e) mesh
(f) banyan

Figure 20.1 Simple and regular network topologies.

graphs, with nodes and cdges (links). Multidrop links or buses can be viewed as edges
in a hypergraph network representation. Usually, the terminal nodes serve as source and
destination nodes, while the interior nodes serve as switch or router nodes. This graph
structure becomes more elaborate when network protocols are included, especially those
with stratified software layering, as in network architectures today.

The interconnection pattern of network nodes and links constitutes the network topol-
ogy. Complex and irregular network topologies can be expensive to model, both in terms
of design time and simulation run time, but cannot always be avoided. Well-known sim-
ple and regular network topologies are shown in Figure 20.1.

There need be no identity between the logical network topology and the physical
network topology and the physical network topology. As an example we show in Figure
20.2 a logical ring network wired as either a physical ring, a linear chain (interleaved or
noninterleaved), or as a star. The well-known token ring network in its usual realization
is an example of the latter, since physically wiring it as a ring (Figure 2 0 . 2 ~) is often
cumbersome and failure prone.

There may or may not be significance to the possible difference between logical
and physical network topologies. If signal propagation delays are critical, the physical
topology could be of concern in the network model. For example, in bused versions
of Ethernet, the incidence of packet collisions is affected by the relative positions and
separations of nodes on the bus and by the total end-to-end propagation delay.

20.4.3 Service Disciplines for Buffers, Channels, and Switches

Communications system performance can be greatly affected by choice of service disci-
pline. Also, various service disciplines can vary in ease of implementation (depending

670 DISCRETE-EVENT SIMULATION OF COMPUTER AND COMMUNICATION SYSTEMS

(a) non-interleaved chain
(b) interleaved chain

(c)physical ring (d) physical star

Figure 20.2 Logical versus physical network topologies.

on choice of tools and libraries) and in computational effort at simulation run time.
Engineering trade-offs may argue against attempting theoretically optimal service dis-
ciplines, either in simulation or in actual network design.

Some of the more common queue service disciplines applicable to communications
buffers are:

First come, first served (FCFS), also called first in, first out (FIFO)

Priority order, based on simple message priority or on some message attribute [e.g.,
time of origination, or some quality of service (QoS) parameter associated with the
message or the channel or the destination]

Random order, either purely random (uniform distribution) or skewed by some
attributes of the message or time spent in the queue)

Essentially, FCFS is a special case of priority order that takes time of queue entry
as the priority. Simularly, priority order can be viewed as a special case of determinis-
tic ordering, as opposed to random ordering. The communications system architect is
concerned with choosing service orders that maximize a particular figure of merit for
the network. Since both network performance and network cost are multidimensional
quantities, specification of an appropriate figure of merit is not simple.

In some cases there may be provably optimal service orders for a particular design
goal, and frequently one desires to simulate the performance difference between optimal
and nonoptimal orderings. This is especially true if the cost or complexity of implement-
ing optimal ordering is high.

In the case of buffer management, one needs to consider (1) message entry to the
buffer, (2) message retention in the buffer, and (3) message exit from the buffer (either
normal or abnormal).

Message entry to the buffer may depend on the current state of the buffer (e.g., full
or nonfull, priority of presently buffered messages versus incoming message priority,
etc.) and the incoming message attributes. Message retention in the buffer might involve
ongoing buffer content reorganization based on dynamic parameters, including the time-
in-queue of the presently buffered messages. Message exit from the buffer may occur

20.4 COMMUNICATIONS SYSTEMS 671

either normally as the message is serviced, or abnormally as the message is dropped
for service deadline expiration, preemption by a higher-priority message, or whatever.

Frequently, buffers are used in association with switches, to store messages in the
process of passing through a switch from an inbound channel to one or more outbound
channels. The delays and complexities associated with message switching can have a
great impact on the switch buffer management strategy. Buffers may be employed at
the inputs to the switch (input-buffered switch), at the output ports from the switch
(output-buffered switch), at both inputs and outputs, or at any intermediate stage within
a multistage switch.

20.4.4 Accounting for Transmission Times and Propagation Delays

Depending on the scale of the simulation model in space and time, transmission times
and propagation delays may or may not be significant in a given situation. A simple
back-of-the-envelope analysis is usually sufficient to determine if these times need to be
accounted for in the model or if they may safely be treated as zero (i.e., instantaneous
transmission and/or propagation).

Because communications channel capacity and node separation distances are often
fundamental in communications system simulation, it is rare that both these model
parameters are ignored. Transmission speed and separation distance produce significant
delays in communication that usually must be accounted for in the model.

20.4.5 Size Issues

The simplest way to manage size issues is to parameterize the model with size factors
and to raise these factors judiciously as experience is gained with smaller simulations.
How the computational load of simulation varies with network size or workload quantity
may vary, but often may be faster than linear growth. A binary progression of 1 X, 2X,
4X, 8X, and so on, can be tested and plotted against execution time to estimate practical
simulation limits. Since discrete-event simulation can employ arbitrarily large amounts
of computational time and expense-and still never produce perfect accuracy-seasoned
judgment must prevail.

If scaling factors can be measured so that simulation results from small simulations
can be extrapolated to results for large systems, significant savings can be realized.
Even if such extrapolations are not trusted, the vast multidimensional design space can
be explored more quickly with small-scale simulations, and the large-scale simulations
be reserved for choices proven on a smaller scale.

20.4.6 Tradeoffs: Detail Versus Cost

Pragmatic engineering practice usually argues in favor of simple approaches initially,
both in design of actual communications systems and in construction of their corre-
sponding simulation models. It is often simpler and safer to converge on a final design
by iterating over a sequence of successively less abstract designs. This technique of
successive refinement in design and modeling can reduce total engineering effort and
time to completion significantly by proceeding through a sequence of stable intermedi-
ate points.

Another valuable method is to simulate at a simple abstract level whenever possible,
even if it is thought to be unrealistic, and measure the deviation from a more complex

672 DISCRETE-EVENT SIMULATION OF COMPUTER AND COMMUNICATION SYSTEMS

model. Only if the deviation is deemed significant should greater design or simulation
effort be expended to use a more concrete model. A crude estimate in time is often
far more valuable than an accurate estimate that arrives after the battle is lost. Rapid
progress in communications system architecture and technology, and the swift obsoles-
cence of existing communications systems make timeliness more of a virtue than n-digit
accuracy.

20.5 EXAMPLES

20.5.1 Client-Server System

A client-server system typically is a collection of computer systems, with one system
hosting a server application and the other systems hosting client processes. The systems
are connected via a network (either a local area network or a wide area network). An
example of this kind of system is a bank, with the server being the main accounting
system and the clients being teller terminals located in the branch offices of the bank.

The clients all send requests for service to the server; the server processes each of
the incoming requests and returns a reply to each requester. A major design issue for
such a system is the size and processing capacity of the server, so that all of the requests
for service can be handled promptly.

A process-oriented simulation model of this kind of system could be built from node
objects, where each node has one or more CPUs, a collection of disk drives, main mem-
ory, and an input "mailbox" (a mailbox is a mechanism for receiving messages). One
node is the server node, and the rest of the nodes are client nodes. A server process is
assigned to the server node, and client processes are assigned to the client nodes.

The server process models the server application. Briefly, the server application (pro-
cess) receives requests for service in its input mailbox. It decodes each request mes-
sage and then assigns the request to a subprocess. The subprocess proceeds, in a paral-
lel, asynchronous manner, to process the request and then formulate a response that is
sent back to the client who originated the request. Processing this request by the server
subprocess will require using a CPU for some amount of simulated time and possibly
making several accesses to some of the disk drives, depending on the type of request.
It is the competition for server node resources by these subprocesses that determines
the time required to service requests.

Each client process is associated with a human operator (teller). This process for-
mulates a request for service, sends it to the server's input mailbox, waits for a reply,
evaluates the reply (representing a delay), formulates the next request, and so on. All
of the clients operate in the same manner.

The key measure of performance is the average response time for service requests.
The model can be used to configure the server node so that the average response time
(or other measures of performance) meet the criteria for the system. The model can also
be used to project system performance as the number of clients increases.

20.5.2 Modeling a Shared Memory Multiprocessor Computer System

A shared memory multiprocessor computer system has several CPUs, each with a pri-
vate cache; each CPU (really each cache) is connected to a single bus, which in turn is
connected to the main memory. This arrangement is attractive because processes execut-

20.5 EXAMPLES 673

C a c h e C a c h e

Bus

Figure 20.3 Shared memory, multiprocessor system

ing on different CPUs (in parallel) can easily communicate with each other via common
areas of the main memory (shared memory). Such a system is shown in Figure 20.3.

As could be expected, the bus between the processors and the main memory is a
potential performance bottleneck. The model can be used to predict the number of pro-
cessor nodes that can be accommodated on this bus. The number of processors, the
instruction processing rate, the cache miss rate, and the speed of main memory all affect
the performance of this system.

Another issue with such a system is the cache coherency protocol, used to make
certain that all accesses to data (including modified shared data) is to the correct (latest)
data values. The choice and efficient implementation of this protocol can have an impact
on performance.

A simulation model was implemented using a process for each cache. The bus and
the main memory are modeled as simulated resources. The cache processes decided
when a cache miss occurs using a probability distribution based on the cache miss rate
(an input parameter to the model). Each miss causes an access to the bus and to main
memory. The competition for bus and memory accesses is modeled as competition for
the simulated resources. The main performance measures are memory request latencies
and bus utilization. This type of system can accommodate only a limited number of
CPUs; using this kind of model can help determine this limit.

20.5.3 Modeling Ethernets and Token Rings

The two major varieties of local area networks are Ethernet (ANSI/IEEE, 1996) and
token ring (ANSI/IEEE, 1995). Transmission rates are nominally 10 Mbit/s for Ethernet
and 16 Mbit/s for token ring, although effective channel utilization tends to be rather
low for such protocols. From a modeling standpoint the principal differences are trans-
mission rate, network topology, and media access control (how permission to transmit
is obtained).

Both the original Ethernet and token ring standards are becoming dated, and new
local area network standards are being propwed for higher-bandwidth networks. The
new standards are needed principally to accomplish two goals: higher transmission rates
and support for multimedia traffic (mainly voice and video).

This digitul convergence of traditional data traffic with historically analog voice and
video traffic is the main impetus behind the need for higher-bandwidth and more inclu-
sive protocols. In addition to local area networks, the telecommunications industry is
supporting the Asynchronous Transfer Mode (ATM) (ATM Forum, 1995) standard as
thewide area network solution for digital convergence. There is also a standards activ-

674 DISCRETE-EVENT SIMULATION OF COMPUTER AND COMMUNICATION SYSTEMS

ity to bring ATM into the local area network environment as the logical layer between
higher-level local area network protocols and the lower-level physical channel.

Modeling an Ethernet. While there are a number of different varieties of Ethernet,
the typical transmission rate is 10 Mbit/s, or one bit every 100 ns. Access to the channel
is gained by a probabilistic method of first waiting for the channel to become idle and
then transmitting the message. The receiver listens during transmission, and if it should
detect a collision with another sending party, a special collision signal is broadcast and
then the message transmission is aborted. After a random-duration backoff period, the
transmission is reattempted at the first idle interval following the backoff period. The
random distribution from which the backoff period is drawn is adjusted according to
the frequency of collisions experienced.

Collisions result in aborted message traffic and waste of channel utilization. Colli-
sions result when two or more parties desire to send, observe the channel idle, and begin
transmission within a critical interval determined by the propagation delay between
senders. The greater the distance between senders, the longer the critical interval during
which collision is possible. This interval is independent of transmission rate, so the cost
of collisions in lost traffic only increases with increasing channel capacity.

Modeling a Token Ring. Nominal token ring transmission rates are 16 Mbit/s, or
one bit every 62.5 ns. Media access is gained by acquiring a token that is passed around
the logical ring topology of the token ring network. Elaborate protocols decide how the
first token is created on network startup and how a new token is forged if the circulating
token is lost. A sender is clear to send when the token is acquired, and the sender is
guaranteed no collision (unless there is a duplicate token in the ring). It is the sender's
responsibility to remove the message from the ring when it has circuited the ring back to
the point of origination. MacDougell (1987) discusses simulation models of both token
rings and ethernets.

20.5.4 Modeling High-speed Networks

High-speed networks are generally considered to be networks with channel rates at or
above 1 Gbit/s. At these rates, traditional methods of flow control via return messages
to "slow down" are cumbersome. For example, at a signal velocity of 5c (about 2 x 10'
m/s), Table 20.1 shows the quantity of "bits in flight" in the channel just as the leading
bit hits the receiver. Thus the communications system modeler may encounter alternative
flow control methods (e.g., channel capacity reservation, transmission metering, etc.) in
dealing with high-performance networks.

Probably a greater concern for the network modeler confronted with simulating high-

TABLE 20.1 Channel Bit Storage

Transmission Link Length Bits in Flight

1 Gbit/s I km 5 kbit
1 Gbit/s 1000 km 5 Mbit

10 Gbit/s I krn 50 kbit
10 Gbit/s 1000 krn 500 Mbit

20.6 SUMMARY 675

performance networks, though, is the tremendous simulation effort to model even a
small amount of real time. While the propagation delays are unaffected by the high
transmission rates, the volume of traffic in the network is increased dramatically. Other
factors being equal, a I-Gbit/s network would have 100 times the traffic in the network
at any given time as a 10-Mbit/s network, assuming the same channel utilizations. If
higher channel utilizations are anticipated, to utilize the costly high-performance chan-
nels more efficiently, a several-hundredfold increase in traffic could occur.

The modeler undertaking to simulate a high-performance network needs either a great
deal of computing power or must be willing to wait a significant amount of time for the
results. The alternative is to scale back the size and scope of the model, to compensate
for the additional workload. This could reduce the simulation accuracy and workload
range under study.

20.6 SUMMARY

In this chapter we have covered some of the basic techniques and issues associated
with constructing and using simulation models of computer systems and communica-
tions networks. With both kinds of systems, a workable model consists of two equally
important submodels: (I) the workload model, and (2) the system model.

The workload model is responsible for generating units of work that resemble the
units of work for the real (modeled) system. The system model processes the stream
of simulated workload units. In many cases the most important measure of system per-
formance is the response time (latency) for these workload units as they enter and then
eventually leave the system. Accurate simulation models of real systems must provide
realistic estimates of these response times.

Models of computer systems and communications networks differ from other types
of simulation models in some significant ways:

Time Units. Most events in these types of models occur in the range of milliseconds
and/or microseconds; this means that if significant periods of real time are to be
spanned by the simulation time, thousands or millions of events will be simulated;
this, in turn, means that simulation models could require extensive amounts of
computer time.

Workload Models. In many cases, existing systems can be used to generate the
parameter values required to characterize the workload; also, the nature of these
models means that without accurate profiles of the workload, it is difficult, if not
impossible, to construct useful models of these systems.

S.ystem Models. In many cases the systems being modeled cannot be readily
viewed by a modeler; the real system is collection of resources and allocation poli-
cies that are controlled by software or implemented in software and are not easy
to visualize. Assistance from system experts is often critical to the development of
useful simulation models.

The field of simulation modeling of computer systems and communications networks
covers a broad range of models, application domains, and uses. There are a number of
commercially available packages that are tailored to implementing and using models in
some of these domains. A person faced with the challenge of developing a model in this

676 DISCRETE-EVENT SIMULATION OF COMPUTER AND COMMUNICATION SYSTEMS

area should evaluate some of these packages before launching a "build from scratch"
implementation project. There are also several technical conferences and workshops that
include sessions addressing topics in this area. A list and/or evaluation of some of these
packages and conferences is beyond the scope of this chapter.

REFERENCES

ANSI/IEEE (1995). Standard 802.5 (Token Ring), IEEE, Piscataway, N.J.

ANSI/IEEE (1996). Standard 802.3 (Ethernet), IEEE, Piscataway, N.J.

ATM Forum (1995). ATM User Network Interface (UNI) Speczjkation Version 3.1, Professional
Technical Reference Series (Paper 0-1 3-393928-X), Prentice Hall, Upper Saddle River, N.J.

Bae, J. J., and T. Suda (1991). Survey of traffic control schemes and protocols in ATM networks,
Proceedings of the IEEE, February, pp. 170-189.

Jain, R. (1991). The Art of Computer Systems Pegormance Analysis, Wiley, New York.

Law, A., and D. Kelton (1991). Simulation Modeling and Analysis, 2nd ed., McGraw-Hill, New
York.

Lazowska, E., J. Zoharjan, G. Graham, and K. Sevcik (1984). Quantitative System Perjiormance:
Computer System Analysis Using Queueing Network Models, Prentice Hall, Upper Saddle
River, N.J.

MacDougall, M. H. (1987). Simulating Computer Systems: Techniques and Tools, MIT Press,
Cambridge, Mass.

CHAPTER 21

Simulation and Scheduling

ALI S. KlRAN
Kiran and Associates

21 .I INTRODUCTION

In a job shop, a set of orders often referred to as jobs, parts, products, and so on, may
require one or more operations, given by a process plan (job routing, etc.). The process
plan specifies each operation and its requirements (i.e., resources and time required)
as well as the sequence of operations. In general, there may be alternative resources
(which can be referred to as machines, processors, workstations, and so on, for each
operation. The operations themselves may be substituted by other operations based on
availability and or performance considerations. Scheduling in practice usually refers to
the determination of a set of orders, which will be processed by the resources during a
short-term period (day, week, etc.). The selection of this period, the scheduling horizon,
may be part of the decision.

A real-world scheduling problem could be stated simply as "a selection of five orders
to run on Monday." In selecting the orders to be completed first, the shop supervisor
uses performance measures, although in most of the cases, indirectly. For example, in
the hope of reducing the number of late orders, he or she may give priority to orders
with tighter due dates. Usually, there is more than one objective present in the practice
of scheduling. In most cases the scheduling objectives cannot be even stated in terms
of a quantifiable scheduling criterion. In addition, the concern of the scheduler is to
reduce the negative impact of random events such as machine downtimes, absenteeism,
scrap, and reworks.

The scheduling problem is the determination of the start and completion time for
each operation of each order so that (1) no constraints are violated, and (2) some scalar
function of the operation start and completion time is minimized (or maximized). The
first constraint leads to the concept of a feasible schedule, whereas the second constraint
defines an optimal schedule. These concepts are explored in the next section.

Scheduling problems generally include restrictive assumptions in order to be solved.
A representative set is provided here for clarity [I] .

Handbook of Simulation, Edited by Jerry Banks.
ISBN 0-47 1-1 3403-1 O 1998 John Wiley & Sons, Inc.

678 SIMULATION AND SCHEDULING

1. Each job is an entity. Although a job is composed of distinct operations, no
two operations of the same job may be processed simultaneously. Thus we exclude
from our discussion certain practical problems (e.g., those in which the components are
manufactured simultaneously prior to assembly into the finished product).

2. There may be no preemption. Each operation, once started, must be completed
before another operation may be started on that machine.

3. Each job has m distinct operations, one on each machine. The possibility that
a job might require processing twice on the same machine is not allowed. Additionally,
each job is processed on every machine; it may not skip machines. Note that the latter
constraint is not illusory. Although it could be implied that a job which skips a machine
is processed on that machine for zero time, a question remains: Where in the job's
processing sequence should this null operation be placed? Because preemption is not
allowed, the job could be delayed, waiting for a machine that is not needed.

4. There may be no cancellation. Each job must be processed to completion.

5. The processing times are independent of the schedule. There are two assump-
tions: First, each setup time is sequence independent (i.e., the time taken to adjust a
machine for a job is independent of the job last processed). Second, the time to move
a job between machines is negligible.

6. In-process inventory is allowed (i.e., jobs may wait for the next machine to be
free). This is not a trivial assumption. In some problems the processing of jobs must be
continuous from operation to operation. In steel mills, for example, one literally has to
strike while the iron is hot.

7. There is only one of each type of machine. A choice of machines in the process-
ing of a job is not allowed. This assumption eliminates the case where certain machines
are duplicated to avoid bottlenecks.

8. No machine may process more than one operation at a time.

9. Machines never break down and are available throughout the scheduling period.

10. The technological constraints are known in advance and are immutable.

1 1. There is no randomness. In particular:

(a) The number of jobs is known and fixed.

(b) The number of machines is known and fixed.

(c) The processing times are known and fixed.
(d) The ready times are known and fixed.
(e) All the other quantities needed to define a particular problem are known and

fixed.

These restrictions usually disregard practical factors such as random process and
downtimes for the purpose of defining computationally tractable solutions. Therefore,
as a corollary to the preceding statement, one can see that an easily solvable problem
in theory may become very complex and computationally intractable as the assump-
tions are removed to represent real-world problems. For example, just introducing real-
istic shift breaks that may be different for each resource may make any multiresource
scheduling problem computationally intractable.

Still, much can be gained by examining theoretical results and optimization algo-
rithms because the main ideas behind these techniques are applicable for practical prob-

21.2 DEFINITIONS AND BACKGROUND 679

lems. For example, most optimization algorithms use the concept "keep the bottleneck
machine busy" to obtain solutions. This concept is widely applied in a number of indus-
trial scheduling problems.

Our purpose here is not to give a full description of a general job shop scheduling
prolem and its solution techniques. We refer the reader to the available literature pub-
lished in this area [1-4]. Our purpose is to provide a brief definition and background
for exploring scheduling and simulation applications.

The chapter is organized as follows. In Section 21.2 the general job shop schedul-
ing problem is defined. After exploring the problem parameters and basic solution
approaches, in Section 21.3, the basic elements of a job shop simulation model are
discussed in Section 21.4. Section 21.5 concludes with practical applications, which
illustrate the use of simulation and scheduling in different real-world settings. Imple-
mentation issues are discussed in Section 21.6.

21.2 DEFINITIONS AND BACKGROUND

The general job shop problem is defined so as to determine the start/completion times for
each operation of each job waiting to be processed in the shop that satisfies the following:

1 . The technological constraints or processing the order for each job on all the
resources

2. Optimality (i.e., minimize or maximize a given objective function) or satisfiabil-
ity (i.e., a reasonably good performance with respect to one or more scheduling
criteria) constraints

The term scheduling criterion defines a scalar value function, which measures the
performance or effectiveness of a particular schedule. A performance measure is usually
defined in terms of its shop or job completion characteristics and is given as a function
of the job or operation completion times.

The processing of an order on a resource is called an operation. Each job must be
processed through the machines in a particular order and may have no relation to the
processing order of any other job. A special case of the general job shop scheduling
problem is defined as a pow-shop problem, where all the jobs go through the same
processing order. This special case is of particular interest because of the widespread
simulation applications in flow processes, such as print shops, electronics manufactur-
ing, and assembly operations.

Each operation requires a fixed or stochastic length of time to be completed, which is
referred to as the processing time. In a general job shop, the processing time is assumed
to be sequence or shop condition independent, a highly contested assumption. Each
operation may also require a setup time. A setup time is required for preparing a machine
for a particular operation. The setup time may or may not be required based on the
current setup of a machine. Therefore, in the general problem, the setup time is assumed
to be sequence dependent.

Each job may also be given a due date where the due date of a job may be determined
by external circumstances such as seasonal demand or customer requirement dates. In
some cases the due date may be internally determined, such as a required completion
of components for the assembly products. Each job may be given a release date or
the available time the first operation on a job can start. This is the time that the first

680 SIMULATION AND SCHEDULING

All numeric quantities
are stochastic variables

Job mix is STOCHASTIC I -'..... STOCHAST~~ ... - - * New jobs

4
. ..--

fixed
A1 and KB '.-.. -.., :..

I + during the

:..._ ...
. . . I

STATJ~

. - . . ._.... . . (static) '-.. .. Systems scheduling
...$"&fc.. . , . " DY N A M , ~ horizon
; DETERMINISTIC., ' . . 1 DETFp1NlsTlc

...

. . .
Simulation !. ..

I '- ; ...,

. DY~~~AWC

All numeric quantities
are fixed and known
in advance
(deterministic)

Figure 21.1 Scheduling problems.

operation of a job can start due to practical considerations such as material availability.
All numeric quantities (e.g., processing time, due dates, etc.) are assumed to be

known in advance in a deterministic scheduling problem. In the real world, however,
most numerical quantities are stochastic; that is, they are subject to randomness and are
not known in advance.

The ready time or release time makes a considerable difference in the problem struc-
ture. If all the jobs are assumed to be available at time 0, the problem is called a static
problem. A nonzero release or ready time for a subset of jobs defines the problem as a
dynamic problem. Scheduling problems can fit into one of four categories as described
in Figure 2 1.1.

Optimization-based approaches, where one tries to minimize or maximize a scalar
objective function, are more suitable for deterministic-static problems where problem
data are known in advance with perfect accuracy. However, as accuracy and data avail-
ability diminish, rule- and simulation-based approaches become more suitable.

21.3 SCHEDULING APPROACHES

Before one determines which scheduling approach to use, there are two important
considerations: performance criteria and the availability of data. A valid schedul-
ing approach for one set of criteria may not be valid for another. For example, an

21.3 SCHEDULING APPROACHES

SCHEDULING DATA L-J SCHEDULING APPROACH

- Meet due dates
- Min~mize mventory

PERFORMANCE CRITERIA

L
SCHEDULE

- Analytical4ptimal
- Dispatching rule-simulation
- Artificial intelligence

- Start and completion dates1
- Criteria values (e.g., late orders,

Figure 21.2 Information flow.

optimization-based approach may fail in a situation where the scheduling criterion is vague
or qualitative. Similarly, a scheduling approach based on precise information about the
shop floor status can be disastrous if the data are not accurate. Figure 21.2 illustrates the
relation between performance criteria and that of approach and scheduling data.

Scheduling criteria may be classified into three categories:

I . Shop Performance Based. This set of criteria considers only time information
about the start and completion dates of orders in the shop. This kind of criterion includes:

Work in process (WIP)

Utilization

Completed parts per day, week, etc.

2. Due Date Based. Due date-based criteria also consider the customer's required
due dates or internally determined shipping date information. This set of criteria may
include:

Number of late shipments

Order lateness

Others

Using an example, we will later show how each additional piece of information
required by the scheduling solution further complicates the decision-making process.
In general, due date-based criteria is harder to deal with than shop performance-based
criteria.

3. Cost Based. On the surface, this is the most fitting criteria for industrial problems.
However, the introduction of different cost components and the difficulty of obtaining
accurate estimates for each of the components make cost-based criteria very complicated

682 SIMULATION AND SCHEDULING

for industrial scheduling problems. In most cases, costs are considered implicitly by the
criteria given in the two categories above.

It has been stated [S] that the meeting of the due dates is the most important goal, fol-
lowed by the minimization of setup times and the minimization of in-process inventory
(in that order) in industrial scheduling. Criteria may also be classified as cost based
versus time based or sequence based versus order based, and so on. Table 21.1 shows
the most frequently used criteria.

There are three basic approaches to scheduling problems:

1. Dispatching rules and simulation-based approaches

2. Analytical-optimal approaches

3. Artificial intelligence, neural network, and knowledge-based systems

Non-simulation-based approaches are explored in the rest of this section as a brief
review of the basic scheduling approaches. Simulation-based approaches are covered
in more detail in Section 21.4.

21.3.1 Dispatching Rule-Based Approaches

The basic premise of this approach is to choose an order (job) for the available machines
while moving forward or backward on a time scale. A dispatching rule is simply a
rule of thumb that gives priority to one order among the many available orders at any
stage. The dispatching rule does not consider the scheduling criteria explicitly. There
is statistical evidence which shows that some rules perform better than others. This is
sufficient enough in practice to use rules such as those given in Table 21.2.

Most of the rules given in Table 21.2 are self-explanatory. They are referred to as
simple priority rules because they make decisions based on a scalar function called a
priority function. A priority function can be calculated once (e.g., order due date) and
referred to as a static rule, versus the changing of the value over time for a dynamic
priority function. The function itself may be based on shop or other data, such as process
times, due dates, number of operations, or setup times. It is also possible to define a
scheduling rule as a combination of weighted dispatching rules and may use more than
one priority function to decide which of the waiting orders will be processed next.

The following numerical examples have been constructed to illustrate the dispatching
rule-based scheduling approaches.

Example I This example illustrates the development of a rule-based forward schedule
that implicitly considers completion time- and work-in-process-based criteria. There are
four orders that must be scheduled on a single available machine. The processing times
for each order are given in Table 21.3.

Let us consider the shortest processing time rule for this case. The shortest processing
time (SPT) rule assigns the order with the smallest run time when a resource becomes
available, as shown in Table 21.4. The resulting schedule is shown on the Gantt chart
in Figure 21.3.

The following criteria may be computed for this case, as shown in Table 21.5, where

flow time = completion time - release time

21.3 SCHEDULING APPROACHES 683

TABLE 21.1 Criteria Used in Job Shop Scheduling Studies

A. Criteria based on order completion times
Average or variance of pow time, where flow time = completion time - release time
Average or variance of waiting time, where waiting time = completion time -

release time - process time
Mean flow time per operator
Delay factor (average waiting time/flow time)
Variance of flow time per operation
Distribution of flow times

B. Criteria based on in-process orders
Number of orders in the queue
Number of orders in the shop
Number of orders completed
Number of operations completed
Number of waiting orders for more than a specified period of time
Size of the orders waiting for more than a specified period of time
Total work content (i.e., total processing time of all operations of all orders)
Total work remaining (i.e., total processing time of remaining operations of all orders)
Total processing times of the orders in the queue
Total work completed
Imminent operation work content
Machine queue balance index

C. Criteria based on processor data
Machine utilization (i.e., percentage of time machine is busy)
Machine idle time
Machine work balance index
Shop work balance index
Desired loading measure
Total or the average setup times

D. Criteria based on due dates
Average, maximum or distribution of Lateness

where Lateness = Completion Time - Due date
Average, maximum or distribution of tardiness

where tardiness = lateness if lateness > 0 (i.e. job is late), otherwise 0.
Average, maximum or distribution of earliness

where earliness = lateness if lateness < 0 (i.e., job is early), otherwise 0.
Fill rate (i.e., percentage of the orders meeting the due dates)
Fraction (or %) of late orders
Number of late orders
Number of late orders in the queue
Number of late operations

E. Cost based criteria
Total cost per order
Finished goods investment
Storage costs of finished goods
Average $ days of queue inventory
Cost of carrying Work-in-process inventory
Early (or late) completion penalty cost
Percent of deviation in penalty cost associated with an optimal schedule
Cost of long promises
Setup Cost

684 SIMULATION AND SCHEDULING

TABLE 21.2 Simple Priority Rules

Critical ratio (CR) This decision is based on a critical ratio index
calculated as follows: The order with the minimum
critical ratio is selected. CR = lead timelremaining
operation time, where lead time = due date - time

Earliest due date (EDD)
Fewest operations remaining

(FOPNR)
First come, first served

(FCFS)
First in system, first served

(FISFS)
Job value (JV)

Least work remaining (LWKR)

now.
Selects the order with the earliest due date.
The order with the least number of operations left is

selected.
Priority is given to the order that arrives into the

particular queue earliest.
Priority is given to the order that arrives into the shop

earliest.
This looks at the total value of the job and selects the

highest value.
The decision is based on the total remaining time on

this order.
Longest processing time (LPT) The order with the longest processing time is selected.
Minimum operation slack time First, an operation slack time is calculated as follows:

(MOST) The job with the minimum operation slack time is
preferred. Operation slack time: operation due date
remaining operation time - time now.

Most operations remaining The order with the most number of operations left is
(MOPNR) selected.

Most work remaining (MWKR) Similar to the above. The order with the most work
remaining is selected.

Number in next queue (NINQ) This is a simple look-ahead type of rule which checks

TABLE 21.3 Data for Example 1

Orders (Jobs) J1 J2 53 54
Run time 10 20 30 40

TABLE 21.4 Shortest Processing Time Schedule

Decision Time Jobs Considered Job Selected

J1
I I I I I

0 20 40 60 80 100
Time

Figure 21.3 SPT schedule for Example 1.

J2 J3 J4

21.3 SCHEDULING APPROACHES 685

TABLE 21.5 Flow-Time Calculations

Job Completion Time Release Time Flow Time

J I 10 0 10
52 30 0 30
53 60 0 60
54 100 0 100

Total flow time = 200

q-l-- : : F
1

No. of Jobs 20 40 60 80 100
in the system

4 x 1 0 + 3 x 2 0 + 2 x 3 0 + 1 x 4 0 200
WIP =

100 100

Figure 21.4 WIP inventory and job flow times for SPT schedule

TABLE 21.6 Data for Example 2

Orders (Jobs) J 1 52 53 54

Run Time 10 20 30 40
Release Time 55 20 0 25

0 20 40 60 8 0 100

Figure 21.5 SPT schedule for Example 2.

Work in process (WIP) can be computed as follows:

total flow time
average WIP =

length of scheduling period

The relation between the average WIP and the total flow time is shown in Figure 2 1.4.*

Example 2 This example illustrates additional scheduling constraints such as release
times for the flow-time criterion. Consider Example 1 but assume that the jobs are now
released into the shop according to Table 21.6. A simulation-based schedule using the
shortest processing time rule is given in Figure 21.5 and illustrated further in Table
21.7. The criteria previously defined for this schedule are computed in Table 21.8.

*This relation, known aq Little's formulu, holds true for more general cases involving stochastic order release
and process~ng times 1221.

686 SIMULATION AND SCHEDULING

TABLE 21.7 Development of an SPT Schedule for
Example 2

Decision Time Jobs Considered Job Selected

TABLE 21.8 Flow-Time Schedule

Job Completion Time Release Time Flow Time

J1 100 55 45
52 50 20 30
53 30 0 30
54 90 25 65

Total flow time = 170

Compared to the results in Example 1, the total flow time is reduced. This illustrates
that a controlled release of material into the shop is desirable. Actually, just-in-time
(JIT) policies use this property to minimize the work-in-process (WIP) inventories and
average flow times.

Example 3 This example illustrates due date information, backward scheduling, and
due date-based criteria. Assume the information above with the additional due date
information as given in Table 21.9. All the release times are zero. A backward schedule
starts with the latest-due-date job, placed in a way that it would be completed at its due
date, then moves forward in time and considers the next job. A backward schedule for
the example problem is shown in Figure 21.6.

As can be seen from this schedule, one issue associated with developing backward
schedules is that of unfeasibility. The situation is encountered here after the scheduling
of 53 and 54. The remaining time from 0 to 20 is not enough for J l and 52. If one
proceeds with strict backward scheduling the scheduled start time of 52 would be 1 6 ,

TABLE 21.9 Data for Example 3

Orders (Jobs) J1 52 53 54
Run Time 10 20 30 40
Due Date 14 13 110 60

0 20 40 60 80 100 120

Time

Figure 21.6 Backward schedule for Example 3.

21.3 SCHEDULING APPROACHES 687

TABLE 21.10 Computation of Due Date-Based Criteria

Job Completion Time Flow Time Due Date Tardiness

J 1 70 70 14 56
52 20 20 13 7
53 110 110 110 0
54 60 60 60 0

Total flow time = 260 Total tardiness = 63
Number of tardy jobs = 2

0 20 40 60 80 100 120

Time

Figure 21.7 EDD schedule for Example 3.

which means that the processing of 52 should have started 16 time units earlier than
the time of scheduling. Therefore, most backward scheduling procedures also define
mechanisms to avoid unfeasible schedules. Here, a decision has been made to schedule
J1 as a late job in order to generate a feasible schedule.

The computations of the total flow time, total tardiness, and total number of jobs are
shown in Table 21.10. In contrast, a forward schedule, based on the earliest due date
rule (i.e., gives priority to the order with the earliest due date), is shown in Figure 21.7.
The criteria values for this schedule are computed in Table 2 1 .11 .

This example illustrates the concept of a dominant schedule with respect to criteria. If
one considers the total flow time and total tardiness, the EDD schedule provides a better
performance and so it dominates the backward schedule with respect to these criteria.
However, if the number of tardy jobs is also important, the EDD schedule cannot be
called "dominant" anymore. Because the backward schedule has two late jobs, it is
therefore better than the EDD schedule for this measure of performance.

21.3.2 Optimization-Based Approaches

Optimization-based approaches are designed to develop optimal schedules to mini-
mize or maximize a scheduling criterion. The advantage of these approaches is that

TABLE 21.11 Performance of the EDD Schedule

Job Completion Time Flow Time Due Date Tardiness

J I 30 30 14 16
J2 20 20 13 7
53 100 100 110 0
J4 70 70 60 10

Total flow time = 220 Total tardiness = 33
Number of tardy jobs = 3

688 SIMULATION AND SCHEDULING

the scheduling criterion is explicitly considered during the development of a schedule.
However, this requires that the quantifiable objective(s) be determined for the particular
scheduling application. These approaches also require a considerable amount of solu-
tion time to obtain an optimal schedule if the number of alternative solutions is large.
Therefore, some optimization-based approaches sacrifice from optimality in exchange
for faster solutions. A fast solution may not consider all the possible alternatives explic-
itly but may choose from a subset of available alternatives and evaluate them before
reaching a solution. These approaches are generally classified as heuristics. Some of
these can also be classified as artificial intelligence- and knowledge-based approaches
and they are covered in Section 21.3.3.

Optimization-based approaches covered in this section include:

1. Approaches based on optimal scheduling rules

2. Implicit enumeration techniques

3. Mathematical programming

Optimal Scheduling Rules. This approach is based on evaluating the optimality of
a schedule using the mathematical properties of the problem and using the characteris-
tics of a schedule. The schedules in question are generated using a set of rules: there-
fore, once optimality of the schedule is proven for most general cases of the scheduling
problem being considered, the optimal scheduling can be applied to all other problems
in this problem class. The following examples illustrate the various properties of the
optimization-based approaches.

Example 1A Consider Example 1 as given above. Refer to Table 21.12 for the problem
data. The objective is to minimize the total or average job flow times. Consider any two
orders that are adjacent in any schedule. We can compare the contribution of any change
in sequence to the objective function. For example, for orders J1 and 52, the calculations
are as follows:

Sequence 51-52

Flow time for J l = start time of J1 + 10

Flow time for 52 = start time of J1 + 10 + 20

Sequence 52-51

Flow time for 52 = start time of J2 + 20

Flow time for J1 = start time of 52 + 20 + 10

Since the only difference between the two schedules are the positions of J1 and 52,

TABLE 21.12 Data for Example l A

Orders (Jobs) J1 J2 J3 54
Run Time 10 20 30 40

21.3 SCHEDULING APPROACHES 689

TABLE 21.13 Comparison of Alternatives for Example 1

Difference in
Objective Alternative

Alternatives Compared Function Value Selected

51-52 vs. 52-51 - 10 31-52
51-53 VS. 53-51 - 20 51-53
51-54 vs. 54-51 3 0 5 1-54
52-53 VS. 53-52 1 0 52-53
52-54 vs. 54-52 2 0 52-54
53-54 VS. 54-53 1 0 33-54

start time of J1 = start time of 52

Then sequence 51-52 is better than sequence 52-51 by 10 time units. The rest of the
comparisons are given in Table 21.13.

The comparisons given in Table 2 1.13 are applicable regardless of the positions of these
orders in a sequence because of the specific objective function used in this example. There-
fore, in an optimal schedule, to minimize the total flow time, 51 must be in the first position
followed by J2-33-54, in that order. In fact, Table 21.13 can be used to prove the optimality
of the shortest processing time (SPT) rule for any problem, which has the same structure
as Example 1 A. Hence given any problem of a similar type, an optimal schedule can be
found by applying the SPT rule to minimize the average flow time.

In the example we used the adjacent pairwise interchange technique as the math-
ematical analysis technique. In this method we evaluate the alternative sequences by
resequencing adjacent jobs in any given schedule and checking the objective function
value. The analysis here showed that one can improve the objective function by inter-
changing neighboring jobs. The optimal solution is found when no other improvement
is possible.

The optimization rule-based solution here has a definite advantage over total enu-
meration where each possible sequence must be explicitly evaluated. For example, for a
70-job problem similar to above, one has to sort 70 jobs to identify an optimum sched-
ule. Given the state of spreadsheet software today, this is a trivial task.* By comparison,
a complete enumeration-based approach would have evaluated all 70 sequences (i.e., all
possible permutations of 70 jobs).? "Brute force" or complete enumeration of all the
feasible schedules is therefore not possible because of the very large number of alterna-
tive solutions even for a moderate-sized industrial problem. This also leads to the use
of some rules that are known from statistical evidence that they can find nearly optimal
solutions. For example, Johnson's rule optimizes the maximum completion time in job
shops if there are two machines in the shop. A near-optimal scheduling rule was devel-
oped using Johnson's rule for the general flow shops with any number of machines.

"Even by hand, one has to go through at most 70 x 70 (there are more efficient sorting methods available)
calculations to do this task.
t For a 70-job single-machine problem, there are 70! = 10 exp(100) possible sequences. Assuming that each
job sequence yields a different schedule, we leave it to the reader to calculate how long it would take to
enumerate all of these schedules. (Note: Assume that a very fast computer is available to you and evaluate
each alternative in only I ns.)

690 SIMULATION AND SCHEDULING

There are many other approaches besides the adjacent pairwise interchange tech-
nique. However, due to space limitations, we do not present any other techniques here.

Implicit Enumeration Techniques. The enumeration-based approaches use mathe-
matical analysis (and often mathematical programming) to reduce the size of the compu-
tational task for obtaining an optimal solution. Here mathematical relations are still used
to evaluate all the feasible schedules and select from the best among them. However,
once it is established that some set of schedules cannot contain the optimal solution,
they are eliminated from further consideration. Therefore, one can expect to eliminate
enough nonpromising solutions so that the computational burden will not be impos-
sibly large. The following example illustrates the ideas behind implicit enumeration
algorithms without going into the mathematical detail.

Example 2A Refer to Example 2. The data are repeated in Table 21.14. The example
illustrates cases where the adjacent pairwise interchange argument cannot be used due to
the problem structure (i.e., nonzero release times). In this case an analysis that considers
not only the individual pairs but also the entire schedule is necessary for finding the
optimal sequence. The resulting schedule is shown in Figure 21.8. This schedule has a
total flow time of 150. The improvement over the simulation-based schedule exceeds
15% in this simple example.

Like other optimization techniques, implicit enumeration requires a simultaneous
evaluation of alternatives. They have the ability to "look ahead." For example, in Table
2 1.15, elimination of an alternative is based on the entire schedule rather than the current
position in a schedule. Also, in Table 21.15 a total of eight alternatives were evaluated.
A total enumeration of the alternatives would require evaluations of 4 x 3 x 2 x 1
= 4! = 24 sequences. The technique used above implicitly enumerated all of the 24
alternatives by using a mathematical argument. For evaluating all the alternative orders
that can be placed in the current sequence position, the following argument has been
made: If order X is placed in this position, the resulting sequence can never yield a
better solution than order Y in the same sequence position, therefore do not evaluate
any sequences with order X in the current position. Obviously, the ability to distinguish
between the promising and the dominated sequences will increase the computational
efficiency of an implicit enumeration algorithm. Such algorithms are also known by the
name branch and bound, due to the fact that they branch to the possible solutions and
they bound the possible alternatives by deleting unpromising solutions.

TABLE 21.14 Data for Example 2A

Orders (Jobs) JI 52 53 34
Run Time 10 20 30 40
Release Time 55 20 0 25

M1 53 J2 J1 J4
I

I I I I
0 20 40 60 80 100

Figure 21.8 Optimal schedule for Example 2.

21.3 SCHEDULING APPROACHES 691

TABLE 21.15 Implicit Enumeration-Based Optimal Schedule

Objective Function Value
or Reasons Why Not

Alternative Considered Action Taken

31-X-X-X While waiting for J1, 52, Ignore all sequences starting
and/or 33 can be completed. with J1. Refer to J2-X or J3-X.

J2-X-X-X 40 - 20 = 20 Continue to develop a schedule
using the partial schedule 32.

J2-J3-X-X (40 - 20) + (70 - 0) = 90 Partial sequence 33-32 is
preferred. Ignore all sequences
that include partial schedule 52-53.

J3-X-X-X 30 Continue to develop a schedule
using the partial schedule 33.

J3-J2-X-X 30 + (50 - 20) = 60 Continue to develop a schedule
using the partial schedule 33-32,

53-52-51-54 30 + (50 - 20) + (65 - 55) + Wait until all schedules are
(105 - 25) = 150" generated, then compare the

results.
53-52-54-51 30 + (50 - 20) + (90 - 25) + Wait until all schedules are

(100 - 55) = 170 generated, then compare the
results.

J4-X-X-X 33 is shorter and also Ignore all sequences starting
available earlier. with 53. Refer to J3-X.

"Selected.

It is also possible to use an implicit enumeration algorithm as a near-optimal procedure
by limiting the search for the optimum. When the stopping criteria reaches the algorithm,
it stops and presents the best solution found so far as the near-optimal solution.

Example 3A Refer to Example 3. This example illustrates the fact that the objective
function itself can change the nature of the optimization seeking. The data are repeated
in Table 21.16. All the release times are zero. Let us consider the criteria defined as
the total tardiness. The optimum schedule is given in Figure 21.9 and the scheduling
criteria defined previously are calculated for this schedule in Table 21.17.

Mathematical Programming-Based Solution Approaches. Mathematical pro-
gramming refers to the methods and techniques developed for solving constrained opti-
mization problems. Based on the mathematical structure of the relations between the
problem components, mathematical programming can more specifically be referred to
as linear programming (i.e., all relations can be expressed as a set of linear relations) or
integer programming (some of the variables are restricted to binary or whole numbers).
Most the scheduling optimization problems can be defined as integer programs as:

TABLE 21.16 Data for Example 3A

Orders (Jobs) J 1 52 53 34
Run Time 10 20 30 40
Due Date 14 13 110 60

692 SIMULATION AND SCHEDULING

Time

Figure 21.9 Optimal schedule for Example 3.

Minimize (or maximize)
objective function

Subject to
Constraints

where the objective function and the constraints are defined as mathematical functions.
This general structure is quite flexible in representing many different problem types.

However, they also suffer from the fact that the solution time of an integer program
may be very long even for moderately sized problems. Therefore, the use of mathe-
matical programming for solving industrial scheduling problems is limited. Other uses
of mathematical programming include the use of mathematical programming in implicit
enumeration schemes and using easy-to-solve versions of programs by relaxing some
of the hard constraints.

In special cases one can exploit the problem structure to obtain a solution. For exam-
ple, the number of machines may be a hard constraint in a scheduling problem. But from
another point of view this constraint could be removed by allowing outside help (i.e.,
outsourcing) for the bottleneck processes or buying more resources. Then the optimal
solutions to the relaxed cases could serve as beginning solutions in forming near-optimal
schedules for the realistic problem.

One of the techniques for relaxing the constraints for obtaining easily solvable ver-
sions of the problem, known as Lagrangian relaxation, has been used successfully for
some scheduling problems. Interested readers are referred to Fisher [23] for more com-
plete treatment of the subject.

21.3.3 Artificial Intelligence-Based Solutions

Artificial intelligence (A1)-based solutions are a developing area with much promise
due to the advance of computers. The basic approach is to develop feasible schedules

TABLE 21.17 Scheduling Criteria Calculation for Schedule Given in Figure 21.9

Flow
Job Completion Time Time Due Date Tardiness

J1 10 10 14 0
J2 30 30 13 17
53 100 100 110 0
54 70 70 60 10

Total flow time = 2 10 Total tardiness = 27
Number of tardy jobs = 2

21.3 SCHEDULING APPROACHES 693

in order to satisfy the constraints. Therefore, this is sometimes called construint-bused
scheduling. For such a system to work, the constraints (rules) of the scheduling environ-
ment have to be clearly stated (i.e., gears must be ready before the final assembly). As
a result, this poses a problem when there are many and sometimes ambiguous, schedul-
ing rules. Second, AI-based systems are still in the developmental phase. Their solution
time may not be acceptable in a situation where there are a large number of rules. The
A1 approaches include:

1. Rule/knowledge-based approaches (also referred to as expert systems)
2. Genetic algorithms, tabu search, and simulated annealing algorithms
3. Simulated neural network applications

Rule /Knowledge-Based A p p r o a c h e s . Rule/knowledge-based approaches rely on
the rule that an expert would use to evaluate and develop schedules. Rule/knowledge-
based systems have three components:

1. A database that stores applicable rules in a format that can be processed by the
logic component.

2. A data input-output component that searches the orders to be scheduled, keeps
track of the scheduled orders and objective criteria, and presents the results to the
user.

3. A logic (or sometimes referred to as the engine) component that processes data
using the rules given in the rule database.

Numerous rule-based systems have been developed with different knowledge rep-
resentation and processing characteristics [6]. The basic ideas of these approaches are
illustrated below by example. Refer to Examples 1 and 1A. The data are repeated in
Table 21.18 for convenience. Consider the scheduling objective of minimizing the total
flow time. All the jobs are assumed to be arriving at the shop at time zero: the database
of an expert system at time zero with a database similar to Table 21.18.

Let us assume that the following rule is given in the expert system's rule database:

If
processing time of job i is less than that of job j

Then
schedule job i before job j

Using the rule, the expert system compares the jobs in the current database and
determines that J1 must be scheduled first, followed by 52, 53, and 54 in that order.
How this actually will be done differs from the way in which other techniques are
used. For example, an expert system may choose J1 as the first job, schedule it, then
may update the data table before proceeding with the selection of the second job.

TABLE 21.18 Data for Examples 1 and 1A

Orders (Jobs) J 1 J2 33 54
Run Time 10 20 30 40

694 SIMULATION AND SCHEDULING

TABLE 21.19 Data for Examples 3 and 3A

Orders (Jobs) J1 52 53 54
Run Time 10 20 30 40
Due Date 14 13 110 60

In some cases the rule database may not be sufficient to develop a schedule. Consider
the problem given in Examples 3 and 3A. The data are repeated in Table 21.19. Total
tardiness is selected as the scheduling criterion. Assume that in addition to the rule
defined above, the expert system's rule database includes the following rule:

If
the due date of job i is less than that of job j

Then
schedule job i before job j

Although both rules make sense intuitively, there are conflicts for the given problem.
Both rules agree that J1 and 52 should precede 53 and 54. But the rules give conflicting
results if they are applied to pairs Jl,J2 and J3,J4. In this case, different expert systems
use different techniques. For example, between J1 and 52 one can argue that the due
date difference is much smaller than the processing time difference; therefore, a measure
could be developed to evaluate the magnitude of rule violations and the expert system
could choose to minimize the total violation index. Another expert system could assign
a weight to the different rules and then evaluate the results of each rule as a vote. For
example, if the weight of a due date-based rule is 2 and the processing time-based rule
is 1. 52 is selected over J1 with a vote of 2 to 1.

Genetic Algorithms. Genetic algorithms mimic the Darwinian theory of natural
selection. The basic idea is to modify a set of initial alternative solutions to generate a
set of alternative solutions that will hopefully include a near-optimal solution. The gen-
eration of new solutions resemble the generation of offspring by crossing the parents'
genes. After enough alternatives are generated and evaluated, the best solution found is
presented. A typical genetic algorithm consists of the following steps:

Step I: Set generation counter I = 0.

Step 2: Create the initial population, Pop(i), by randomly generating N individuals.

Step 3: Increment to the next generation, i = i + 1
Step 4: Create the new population, Pop(i), by selecting N individuals stochastically

based on the fitness from the previous population, Pop(i-I).

Step 4a: Randomly select R parents from the new population to form the new chil-
dren by application of the genetic operators (e.g., crossover and mutation).

Step 46: Evaluate the fitness of the newly formed children by applying the objective
function.

Step 5: If the stopping criterion has not been met, go on to step 3.

Step 6: Print out the best solution found.

21.3 SCHEDULING APPROACHES 695

TABLE 21.20 Data for Examples 1 and 1A

Orders (Jobs) J1 52 53 54
Run Time 10 20 30 40

Example ZB Refer to Example 1 (data are repeated in Table 21.20). Although we have
an exact solution algorithm available for this problem, let us apply a simple genetic
algorithm to minimize the total flow time. Assume that the initial population includes
two schedules: 51-53-54-52 and 54-53-51-52. Let the population limit be two and the
maximum number of generations be four, and that the adjacent pairwise interchange
be used for generating new schedules. We also define a simple and more deterministic
natural selection rule: Evaluate the performance criteria value of all the schedules gen-
erated. Select the best schedules for the development of the new generation. Drop the
ones with the worst performance to keep the population in check.

Application of this simplified genetic algorithm to the problem is given below.

Generation 1: The population consists of 51-53-54-52 and 54-53-51-52 with
fitness (i.e., total flow-time values) of 230 and 290, respectively. Assume
that 51-53-54-52 are selected for reproduction. By interchanging 54 and 52,
51-53-52-54 is generated with a fitness value of 210. Select the two schedules
with the best fitness values.

Generation 2: The population consists of 51-53-54-52 and 51-53-52-54 with
fitness (i.e., total flow-time values) of 230 and 210, respectively. Assume
that 51-53-52-54 are selected for reproduction. By interchanging 51 and 53,
53-51-52-54 is generated with a fitness value of 230. Break the tie arbitrarily
between the two schedules with the same fitness value.

Generation 3: The population consists of 53-51-52-54 and 51-53-52-54 with
fitness (i.e., total flow-time values) of 230 and 210, respectively. Assume
that 51-53-52-54 are selected for reproduction. By interchanging 52 and 53,
51-52-53-54 is generated with a fitness value of 200. Keep the schedules with
the values of 200 and 210.

Generation 4: The population consists of 51-52-53-54 and 51-53-52-54 with
fitness (i.e., total flow-time values) of 200 and 210, respectively. Assume
that 51-53-52-54 are selected for reproduction. By interchanging 52 and 54,
51-53-54-52 is generated with a fitness value of 230.

The algorithm stops with the optimum schedule of 51-52-53-54 in this case. How-
ever, generally speaking, a genetic algorithm does not guarantee an optimum solution.
A genetic algorithm does not scan the entire solution space (i.e., all possible sched-
ules) implicitly or explicitly before stopping and presenting a solution. They sample
only through the solutions. Although the sampling is not entirely random (it is guided
by the crossing of genes), the generated sample solutions may not include the overall
optimum solution. The success of the search is determined largely by the problem struc-
ture and the specific design of the genetic algorithm developed to solve the problem.
This could be an advantage or a disadvantage, depending on the problem. The above-
defined rudimentary algorithm illustrates some of the possible weaknesses of a genetic
algorithm:

696 SIMULATION AND SCHEDULING

1. A way of recognizing what changes are desirable. The genetic algorithm could be
improved by keeping track of what pairwise interchanges (called genes) positively
affected the fitness value. This would avoid the generation of 51-53-54-52 since
J4-J2 is determined as a bad gene at generation 1 of the algorithm. However,
evaluating a fitness function could be computationally costly if the problem size
is large.

2. Cycling (generating the same population over and over again). This could occur,
especially when the population size is very limited. Crossing could be defined to
avoid this problem. The solutions can also be diversified by randomly or system-
atically changing the genes (i.e., mutation). Tabu search and simulated annealing
specifically address some of these issues.

3. The stopping rule. In this example the stopping rule is arbitrary and could be
improved.

A genetic algorithm was developed and used successfully [24] to solve a static job
shop scheduling problem. However, the computational cost of their algorithm exceeded
that of the tabu search and simulated annealing as reported in Morton and Pentico
[141.

Tabu Search. The tabu search tries to avoid stopping at a local optimum point when
no immediate improvement seems to be possible by searching the neighboring solutions.
To avoid cycling through the same thread of solutions, all the solutions developed during
the last m iterations can be kept and checked. These not-to-be generated solutions are
called tabu and the technique is called the tabu search. The tabu search for scheduling
problems relies mostly on developing a set of neighboring sequences that differ from
the current solution by a pairwise interchange of two of the jobs. The tabu search is
illustrated by the following example.

Example 2B Refer to Example 2. The data are repeated here in Table 21.21. Let our
tabu search use an adjacent pairwise interchange to develop the neighboring schedules
with m = 5. The tabu search algorithm then proceeds as follows:

Step 1: Start with an initial schedule.

Step 2: Develop all the neighbors of this schedule using the adjacent pairwise inter-
change.

Step 3: Evaluate all the neighbors using the total-flow-time measure.

Step 4: Choose, among the new schedules, the schedule with the minimum total flow
time. If the number of iterations = 5, stop and present the best solution so far as the
selected solution. Otherwise, use the schedule with the minimum total flow time as
the new initial schedule. Repeat steps 2 to 4.

TABLE 21.21 Data for Example 2A

Orders (Jobs) J 1 J2 J3 54
Run Time 10 20 30 40
Release Time 55 20 0 25

21.3 SCHEDULING APPROACHES 697

TABLE 21.22 Tabu Search-Based Optimal Schedule

Initial
Schedule Neighbors Generated (Value) and Actions

Iteration (Value) Taken

J 1-54-52-53 (350)
54-5 1-53-52 (270)
J4-32-5 1-53 (270)
Choose the new initial schedule (break ties

arbitrarily).
34-52-53-51 (290)
52-54-51-53 (230)u
54-J 1 -J2-J3 (tabu)
54-52-5 1-53 (tabu)
52-51-54-53 (245)
52-54-53-3 1 (250)
J1-52-54-53 (330)
52-54-5 1-53 (tabu)
52-5 1-53-54 (235)
J 1-52-53-34 (320)
52-53-51-14 (2 10)
J2-5 1-54-53 (tabu)

OSchedule selected by tabu search.

This algorithm is applied to Example 2B as given in Table 21.22. The tabu search
did not find the optimal solution in this case. However, if the stop rule was defined
as "stop after six iterations," the algorithm would have continued to search and would
have found the optimal solution. The additional step that would have been performed
until the optimal solution was found is given in Table 21.23.

A very simple algorithm is presented here due to the introductory nature of this
section. We refer the reader to [4] and [29] for more information on this topic.

Simulated Annealing. Simulated annealing gets its name from the physical process
of heating up a solid until it melts and then by cooling the melted solid until it again
becomes a solid with low free energy. Application of this physical process to combina-
torial optimization problems, specifically scheduling problems, is similar to that of tabu
search: Instead of selecting the neighbor with the best objective function value, simu-
lated annealing randomizes the selection of the next initial solution. The better the ob-

TABLE 21.23 Additional Steps for the Tabu Search Algorithm in Example

Initial
Schedule Neighbors Generated (Value) and Actions

Iteration (Value) Taken

53-52-5 1-34 (1 50)a
52-51 -53-54 (tabu)
52-33-54-5 1 (240)

'Schedule selected by tabu search that is also the optimal solution

698 SIMULATION AND SCHEDULING

jective value of a neighboring solution, the better chance it stands to be selected as the
next starting solution. The difference in probability of the two neighbors, one with a better
value of the objective function than the other, is also a function of the number of iterations
(i.e., "temperature"). As the number of iterations increases (i.e., the temperature drops) the
difference between the relative probability of a "good" versus " b a d schedule increases.
Simulated annealing has been applied to some job shop scheduling problems successfully
[25]. We refer the interested reader also to Aarts and Korst [27].

Artificial Neural Networks Applications. Artificial neural networks are informa-
tion-processing systems that are motivated by the goals of reproducing the cognitive
processes and organizational models of neurobiological systems [26]. The basic idea is
the recognition of patterns and rules that are embedded in a good schedule, therefore
quick recognition of a good schedule. Artificial neural networks accomplish this task
through the use of formally defined network topography and rules for "firing neurons."
This pattern of firing neurons is observed on a set of "training" problems where the
artificial neural network is presented with a problem and an acceptable solution. The
trained network then presented with a new problem, and based on the structure of the
network and firing rules, determines a solution as the "recommended" solution.

The successful application of neural networks to scheduling includes the identifica-
tion of a successful dispatching-based heuristic [26]. The authors developed and trained
an artificial neural network which then recognized the most successful one-pass heuris-
tic over 95% of the simulated problems reported in this study. The underlying approach
and the details of the studies cannot be presented in sufficient detail in this section due
to space constraints. We refer the interested reader to Hopfield [28].

21.4 SIMULATION OF JOB SHOPS

Simulation-based approaches are derivatives of dispatching rule-based approaches. In a
simulation-based scenario, one or more dispatching rules may be used to make a deci-
sion when a resource becomes available. Simulation-based approaches are restricted
mostly to a forward scheduling capability (i.e., where a schedule is constructed by start-
ing from a reference time and then advances the simulation clock as jobs are scheduled on
resources). Simulation models are able to represent the details of scheduling situations,
and simulation-based approaches are useful in communicating the specific details to vari-
ous levels of personnel because of the visual aids (e.g., animation) offered by simulation.

From the simulation point of view, a job shop is considered as a queuing network
where an order may require several different operations by different machines and may
have to wait in several different queues. If jobs arrive at the shop randomly over time,
the job shop is referred to as a dynamic job shop. Here we present a review of the basic
factors incorporated into simulation models of dynamic job shops and therefore provide
the user with a basic understanding of a job shop simulation model for scheduling anal-
ysis. The second goal of this section is to provide the user with a basic understanding
of scheduling rules and their performance in simulated job shops.

The most likely components of a job shop simulation model are as follows:

1. Order arrivals

2. Processing and setup times

3. Machines

21.4 SIMULATION OF JOB SHOPS 699

4. Job routings

5. Shop load factors

6. Due dates

7. Priority rules

21.4.1 Order Arrivals

The arrival of orders is modeled in one of the following ways:

1 . Instantaneous release of orders into the shop. In this approach the next order
arrival time is defined at the time of each order arrival. The time between these
arrivals is defined as a randomly generated variable.

2. Periodic release of all available orders at the beginning of the scheduling period
(day, week, etc.). This can be modeled in two ways:

(a) All the arriving orders as defined above accumulate at an order entry point.
All of these orders are released into the shop at predefined points in time.

(b) At each order release time, a number defined as a random variable of orders
is generated.

3. Order pooling. This is similar to the above, except that a subset of the available
orders is released into the shop at the beginning of each scheduling period. The
selection of orders to be released into the shop may be based on the shop load
and order characteristics.

The first approach is used in most models. The most popular arrival pattern is that
of the Poisson process (i.e., the Poisson arrival rate or exponentially distributed inter-
arrival times). If the time between arrivals is exponentially distributed, the rate (i.e.,
the number of arrivals per unit time) has a Poisson distribution. Therefore, the Poisson-
distributed arrival rate (in orders per unit time) is translated into interarrival time of the
corresponding exponential distribution. However, when periodic release or order pooling
is utilized, the Poisson may directly represent the number of orders arriving in an hour,
day, and so on. The Erlang distribution is the sum of exponential distributions and is also
used to model order arrivals. Other distributions for the interarrival times or arrival rates
are uniform, geometric, binomial, and empirical (actual shop data) distributions. Constant
interarrival times are also used in investigating shop performance or the sensitivity of shop
performance and the priority rules to some order and shop parameters.

The prevalence of the Poisson process is probably a result of its widespread use in
queuing theory and its observed validity in some practical situations (e.g., number of
calls arriving at a switchboard). The observed distribution of arrivals in actual shops,
however, shows a wide variety in the arrival rate, and the Poisson distribution is not
sufficient to explain or fit all the distributions observed. If the number of sources gener-
ating orders decreases, applicability of the Poisson assumption diminishes. For example,
if orders to the shop are generated by a distribution center based on minimum order lev-
els, the consolidated order patterns may be erratic, even if the customer order pattern
may be a Poisson process.

Several different studies report that the arrival pattern is not important in evaluating
the relative effectiveness of priority rules, although shop performance can be affected

700 SIMULATION AND SCHEDULING

by the arrival pattern. Studies investigating periodic release and order pooling indicate
similar results. In general, shop performance decreases with the increasing variance of
the interarrival time distribution. Under periodic release, the following conclusions were
obtained in various simulation studies:

1. The mean and variance of the inventory level are higher with an increase in the
release period [7].

2. Utilization is higher than average at the beginning of a scheduling period but is
lower at the end [7] .

3. Fewer jobs are tardy for periodic release; however, the jobs that are tardy have
longer periods of tardiness [8].

4. Due date performance is improved when period release is combined with a
scheduling rule [9].

Job pooling (i.e., releasing a subset of orders at predefined intervals) is more restric-
tive and usually causes a decrease in shop performance [XI. However, if the subset is
selected to balance the machine workloads, job pooling has a positive effect on shop and
workload balance measures but has no significant effect or worse results on variance
of lateness distribution and average tardiness [lo].

21.4.2 Processing and Setup Times

In most job shop simulation models, the processing times are determined when an order
arrives at the shop. Two approaches are possible at this point:

1. Generate the actual processing times from a specified distribution; the processing
times are random variables from a distribution such as the exponential distribu-
tion.

2. Generate the estimated processing times; the estimated times are the informa-
tion available for scheduling purposes. When an order is placed on a machine, a
random variable called a work rate factor is generated and is multiplied by the
estimated time to give the actual time required. The most common distributions
are exponential and uniform for the estimated times and triangular, normal, or
uniform for the work rate factor. This approach simulates the fact that in most
cases the scheduler's knowledge of the processing times is not accurate and the
process times fluctuate during day-to-day operations due to uncontrollable factors.

The specified family of processing time distributions and associated parameters affect
shop performance. More important, some priority rules, such as SPT, are more sensitive
to processing time distributions than are others. In general, as the variability of the order
processing time decreases, performance of the non-due-date scheduling rules improves.

The setup times are included in the processing times in most models. In some models
the setup time is assumed to be a function of the processing time. When sequence-
dependent setup times are used, the distribution of these times must be selected along
with the parameter values. As the variance increases, the desirability for minimizing
the setup times increases. The relative values of the mean setup time and the mean
processing time are also important considerations. When the mean setup time is large
with respect to the mean processing time, there are more benefits obtainable from the
scheduling rules that minimize the setup times.

21.4 SIMULATION OF JOB SHOPS 701

In recent models, due to the increased capability and ease of modeling, a sequence-
dependent setup time has been used. The presence of sequence-dependent setups
changes both shop performance and the performance of the priority rules. Priority rules,
which take setup times into consideration, are more successful than the others when the
setup times are strongly sequence dependent (e.g., changing form J1 to 52 takes 10
minutes but changing from 53 to 52 takes 120 minutes).

21.4.3 Number of Machines

The number of machines used in simulation models varies greatly. In hypothetical mod-
els designed to evaluate the performance of scheduling rules, the number of machines
range from 4 to 15. There seems to be a consensus that a four-machine shop model is
large enough so that the results can be extrapolated to the more complex shops. Some
comparative studies have investigated the effect of shop size on the relative effective-
ness of the priority rules and conclude with similar results: that neither the size nor the
configuration of the shop changes the relative effectiveness of the priority rules.

21.4.4 Job Routing

Job routing determines the required sequence of operations so as to predict the traveling
pattern of orders among the machines. Diversity of order types is imported to the mod-
els via a routing matrix, which defines the transition probabilities of orders from one
machine to the next. The extreme cases are the pure flow shops, where there is only one
routing, and the pure job shops, where the transient probabilities between the machines
are equal for subsequent operations. Pure job shop models are the most common types
of models in simulation studies. This is partly because of the easier load control over
the shop in pure job shop models.

Often in real systems, some or all orders may have alternative routings such that an
operation may be performed on any one of a number of machines. Two approaches are
possible when alternative routings exist:

1 . Place the order in all feasible operation queues. Perform the operation on the
first available machine; remove the order from the other queues when the order
is assigned to a machine.

2. Assign the order to an idle machine that is capable of performing a feasible oper-
ation; if there is no such idle machine, place the order in a queue according to
some queue selection rule (e.g., shortest queue length, least work in queue, etc.).

Alternative routing has a significant impact on shop performance and on the rela-
tive effectiveness of the priority rules: It provides better performance and reduces the
difference between the priority rules.

21.4.5 Machine and Shop Utilization

The combined effects of order arrival distribution, job routing, and processing times
determine machine utilization. From the standpoint of job shop simulation, machine uti-
lization is important because it affects queue lengths. If the average queue length is too
small, the scheduling rules used in the model may not be forced to make discriminating

702 SIMULATION AND SCHEDULING

order selections. When this situation occurs, it is difficult or impossible to evaluate the
effectiveness of the scheduling rule. Adverse effects also result from machine utilization
that is too high. If utilization is near 1.00, transient conditions may extend over long
periods and require excessive CPU time in order to obtain a steady state that permits
data to be collected for comparison purposes. Machine utilization commonly found in
the literature ranges from 0.85 to 0.95. Utilizations in this range usually cause queues
to reach a length that permits scheduling rules to select an order from several in the
queue but does not lead to very long queues.

Sequence-dependent setup times may require careful consideration due to their
effects on machine utilization and hence queue lengths. When some scheduling rules
yield significantly different average setup times than some other rules, the model results
may be altered significantly. For example, if one rule tends to minimize setup times, it
may produce small queues. On the other hand, if another scheduling rule does not con-
sider setup times, the combined setup plus the processing times may cause a saturation
of the shop and thus produce an undesirable effect.

21.4.6 Due Dates

Several different studies indicate that shop performance and the relative effectiveness
of priority rules are affected by due date assignment methods as well by the tightness
of due dates. The following considerations relate to due date assigment:

1. Through policy (fixed) parameters, each order is assigned a due date when it
arrives at the shop. The due date assignment method may or may not use current
shop information:

(a) Static due date assignment rules consider only order data such as the arrival
time, routing, and operation processing times of an order. Hence the order
allowance time is a fixed amount for a given order of data and does not
depend on the shop status when the order arrives.

(b) Dynamic due date assignment methods employ order and shop data. In addi-
tion to the arrival times, operation times, and routing, other factors in due date
determination may include the current shop load and the average waiting time
of the orders.

2. Due date assignment and order sequencing decisions may be considered together
and simultaneously as two dependent factors in the planning process. This leads
to a new problem that requires determination of both the optimal set of due dates
and schedules for a given situation involving the shop status and order parameters.

Table 21.24 shows the most frequently used static due date assignment rules in the
literature.

21 -4.7 Priority Rules

In the stochastic-dynamic scheduling literature, a variety of terms, such as scheduling
rule, priority rule, dispatching rule, or heuristic, refer to the rule that selects an order
from the orders waiting in a queue to be processed next by the machine. However, a
distinction is possible for clarification purposes: Usually, a priority rule is defined as a

21.4 SIMULATION OF JOB SHOPS 703

TABLE 21.24 Common Due Date Assignment Procedures

Abbreviation Name Definition

RND
N

SLK

NOP

TWK

VTWK

Source: Ref. 11.

Random
Constant

Slack

Number of
operations

Total work

Variance of
TWK

Random
Arrival date + constant order

allowance
Arrival date + total processing

time of order + constant
Arrival date + constant (number of

operations)
Arrival date + constant (total

processing time)
Arrival date + constant (total

processing time) exp(constant)

method of assigning a scalar value to each order in a queue for scheduling purposes.
A dispatching rule is defined similarly but implies that after the priorities are assigned,
the job with the most priority will be dispatched to an available machine. A heuristic
implies that more complex mathematical rules are used in determining the priorities.
Finally, a scheduling rule may employ one or more priority rules and/or more complex
mathematical or heuristic concepts in determining the next order to be processed. In
practice, the basic term priority or dispatching rule is used for all of the above.

Priority rules may be classified according to their time dependency (static versus
dynamic rules), the type of data they use (local versus global rules), or both. A static rule
determines only one priority value for each operation of an order during its existence in the
shop. A dynamic priority value, in contrast, changes over time; to assign the right order
(i.e., the order that has the highest actual priority) to an available machine. The priority
values of orders must be updated before each decision is made. Hence more calculation
is involved in dynamic rules. Adam and Surkis [I21 investigated the effects of updating
policy and of updating the intervals on computation requirements and the effectiveness of
priority rules. They concluded that due date performance is sensitive to the updating policy
and to the updating intervals especially at high utilization (i.e., 92 to 96%).

Panwalkar and Iskander [I31 described and categorized 113 priority rules. The func-
tional categorization is given below.

1. (a) Simple priority rules are based on order and/or shop data such as process-
ing times, due dates, number of operations, cost(values), setup times, arrival
times, and slack.

(b) The combinations of simple priority rules are the applications of two or more
priority rules with the selection of which rule to use at a specific time being
a function of the queue and order characteristics.

(c) Weighted priority rules involve the application of rules in l(a) and/or l(b)
combined with different weights.

2. Heuristics involve more complex considerations, such as the solving of static
problems at the beginning of each scheduling period, look-ahead, and so on.

3. Other rules.

704 SIMULATION AND SCHEDULING

The body of job shop simulation research established the validity of the basic
assumption that given that all the other shop parameters are the same, shop performance
is strongly affected by the priority rules being used. However, there is no clear winner
claimed for all the performance measures and shop and order parameters. A summary
of the results is provided below.

Results for Completion Time-Based Criteria. The shortest processing time
(SPT) rule is superior to the other simple priority rules for completion time-based crite-
ria. However, some weighted priority rules have been found to be slightly more effective
than the SPT rule for the average flow time and the average number of jobs in the shop.
One such rule is the weighted priority rule, consisting of SPT and AWINQ (anticipated
work in next queue), as indicated by Conway [3,14]. SPT could not show the same
superiority for the other criteria in this group. First in system, first served (FISFS) is
the best among the simple rules for the variance of flow times. SST (shortest setup time)
is best for the total or average setup times. The complex heuristic rules, based on job
pooling, are usually better than SPT in balancing the workload among the machines.

The simplicity of SPT has led to attempts to find rules combining SPT with FCFS
(first come, first served) to yield better performance for the variance of flow times with-
out increasing the average flow time. These attempts have included:

1. Alternate SPT and FCFS in predetermined time intervals [5] .

2. Use SPT until the waiting time of a job reaches a specified limit in the queue;
use FCFS for jobs with long times in queue (truncated SPT).

3. Use FCFS until the queue length reaches a specified limit; use SPT to reduce
queue length (relief SPT).

The last combination effectively reduces the flow-time variance without increasing
the average flow time.

Results Related to Due Dates. SPT, S/OPN, SLACK, and S/RPT are superior to
the other simple priority rules in terms of all the measures of due date performance.
Among these dominant simple rules, SPT and S/OPN are slightly better than SLACK
and S/RPT. The consensus appears to be that SPT gives the best results for average
lateness, and S/OPN is the best rule for minimizing the variance of the lateness distri-
bution. However, the superiority of SPT and S/OPN are highly dependent on shop and
job parameters for the remaining due date performance measures, such as the fraction
of tardy jobs and mean tardiness. In general, high utilization, tight due dates, and due
dates independent of processing times favor the superiority of-SPT. S/OPN is more
successful in moderate utilizations. Less tight and/or TWK due date assignments also
favor S/OPN.

The relative success of SPT and S/OPN for due date-based criteria formed a basis to
develop a number of combination rules, weighted priority rules, and heuristics. Although
these rules incur additional computation, there is enough evidence to show that they also
perform better. Improvement in performance is a function of how a rule is designed and
of the shop and order parameters in which the rule has to perform. It is suggested that
a specific simulation model be used to investigate which of the following approaches
should be taken. The following list is used as a starting point:

21.4 SIMULATION OF JOB SHOPS 705

1. Weighted Rules. The priority value is defined by a weighted total of process time
and slack per operation values.

2. Combination Rules (e.g., Truncated SPT). The priority function changes based
on shop or order parameters. For example, use SPT after an order becomes late.

3. Sequential Application of Priority Rules. Similar to rule 2 above; however, here
the first rule is used for reducing the candidate set; then the.other rules are used as
sequential tie breakers. For example, a sequential rule could use slack < 5 days to
eliminate the jobs with loose due dates, then could use a SPT-like rule to classify
them into processing time intervals. Finally, within each group, S/OPN could be
used to select the next order to be processed.

4. Luok-Ahead Heurisrics. These rules can also consider processing time, job slack.
and the current load of machines. There are several studies indicating that a
specifically designed look-ahead rule is usually better than a simple priority rule.
Again, the question here is how much effort should be devoted to the develop-
ment and testing of such a rule. Simulation is of great value in evaluating the
effectiveness of such an effort as well as for the testing of heuristics.

Results for Cost-Based Criteria. The main objective in many industrial systems is
to minimize the total cost. However, there are two difficulties in developing cost-based
simulation models:

1. Cost parameters are difficult to obtain and their relation to schedule-dependent
performance measures are hard to evaluate in real-world situations.

2. The results obtained from cost models are usually sensitive to parameter values.
If any of the cost definitions or component values change, the results obtained
for another set of parameter values may not be valid.

For these reasons, the results given below should be considered as thought-provoking
ideas in developing one's own simulation model and not as robust results applicable to
any situation.

The relation between the costs of the idle machines, of carrying work-in process, of
long promises, of missed due dates, and of priority rules has long been established by
the use of cost models. Again SPT and S/OPN emerge as good rules in many studies.
Depending on the variance of job values and setup times, SST (shortest setup time first)
and JV (job with the highest value first) have been the declared winners in some studies
[8,15,16]. The relative success of these rules is a function of the variance of the setup
costs and job values. For example, as the variance of job values becomes larger, the JV
rule becomes more effective than the others in reducing costs if each cost component
is given as a nondecreasing function of the job value.

The application of the weighted and combination rules as well as the sequential
application of the simple rules is also valid for cost-based criteria. For example, Shue
and Smith [I71 reported a sequential application of S/OPN-JV-SST for setup, in-process
inventory, and late penalty costs. They also concluded that any sequential rule performed
better than its components.

Results for Some Extensions of the Basic Model. The effects of customer
requested due date changes has been investigated in several studies and it has been
found that those changes adversely affect the due date performance in all the prior-

706 SIMULATION AND SCHEDULING

ity rules, but the rules that use due date information are more responsive to due date
changes.

The effects of mixing made-to-stock and made-to-customer order jobs have also been
modeled. The models show that releasing made-to-stock items much earlier than their
required due dates reduces their chance of being late. However, the increase in in-
process and finished goods inventory costs offsets the benefits of decreasing the in-
tardiness penalty.

The effects of expediting in the shop have also been investigated. The general con-
sensus is that "shops in general are no better or worse off by using expediting" [IS] on
the average. However, expediting may be useful for tardiness-related criteria, especially
under moderate loads and customer requested earlier due dates.

21.5 SIMULATION-BASED SCHEDULING: APPLICATION

In this section we describe the use of simulation in addressing interrelated issues such as
bottleneck analysis, work center loading, due date determination, operator requirements,
and shift scheduling in a complex manufacturing environment. This application also
illustrates the use of simulation for some simplified scheduling needs.

The company illustrated here specializes in products that are manufactured from
steel tubes. The products are a result of complex manufacturing processes with reeen-
trant flows, batching, and process-type operations and have a high level of sensitivity
with respect to due dates. There are over 100 products that are manufactured simulta-
neously in the shop at any given time. The specific interest of this application is a fam-
ily of drawn products. Within this family there are several subfamilies of product. The
first challenge of the simulation study is to organize the products into these subfamilies
in such a way that the project objectives can be achieved in a short time and that the
simulation models be accurate enough to represent the shop realities.

Management is particularly interested in:

1. Delivering the products on time with the existing resources

2. Minimizing the setup times and maximizing personnel and equipment utilization

3. Minimizing the work-in-process and establishing routine operating policies, such
as predefined shift patterns rather than overtime.

At the beginning of the simulation project, these goals are determined at
management-level meetings. After the goals are determined, data collection and trans-
formation of goals into measurable criteria began.

21.5.1 Data Collection and Simulation Models

Although classifying modeling steps is necessary when describing model development,
in reality data collection, modeling, verification, and validation go hand in hand. At the
beginning of the simulation study, a preliminary data analysis showed that the products
in question could be divided into eight major classes and that one other class described
all the other products. For each of these eight major classes, routings were identified
and developed using spreadsheets. Engineering and production personnel verified these
routings. While this activity was taking place, modeling started. The first model took
two products of families that could easily be identified and whose data were relatively

21.5 SIMULATION-BASED SCHEDULING: APPLICATION 707

complete. The simulation model included the following components, which are found
in most simulation models:

1. Reentrant or looping operations

2. Yield factors that may be a function of the operation
3. Batching and unbatching operations

4. Alternative routings
5. Various shift patterns for equipment and different operators

The model also included some specific characteristics of the manufacturing process.
For example, a somewhat unique first article inspection was included. After verification,
the models were run against the real operations. Also, a walk-through was performed to
validate the models. Validation of the pilot models was finalized at a top-level manage-
ment meeting. The project goals were again summarized, along with the model assump-
tions, and a "results versus reality" discussion took place.

Of particular interest were the criteria that established the success of the project.
These was defined as:

1. The model's ability to predict the due date performance of the shop
2. The model's ability to show the key equipment and personnel utilizations

After verification and validation of the pilot models, the data analysis continued with
respect to the other subfamilies. Clustering techniques were used to analyze the process
routings for the various subfamilies and to classify them. For better time management,
the simulation models were built incrementally, adding one product family at a time,
verifying and validating the model after each major milestone. This allowed for a better
understanding of the models by company personnel as well as for quick completion of
the model development. At the end of the model development, another formal top-level
validation meeting was held, which provided a green light for the rest of the study.

21.5.2 Simulation Experimentation and Results

Experimentation included running the models under different shift and order schedule
scenarios. We chose a simulation length of 6 months to 1 year. Instead of a warm-
up period, a realistic work-in-process status in the shop was used. This was achieved
through a file downloaded from the company's tracking system. The ASCII file was
manipulated on a spreadsheet program for proper formatting before it could be read by
the simulation model.* This file contained information regarding the order number, order
quantity, product type (subfamily name), order due date, current location of the order
in the shop, and other attributes that were used in the simulation model. An example
of this file is shown in Table 21.25.

*ProModel for Windows simulation software was used in this study. However, there is other simulation soft-
ware that can fulfill modeling needs. Due to very rapid changes in the simulation software industry, we refrain
from providing a list of possible alternatives here. Frequent reviews appear in related periodicals, such as IIE
Solutions [publisher: Institute of Industrial Engineers (IIE)], APICS [publisher: American Production and Inven-
tory Control Society (APICS)], O R / M S Today [publisher: Institute for Operat~ons Research and Management
Science (INFORMS)], Simulation [publisher: Society for Computer Simulation (SCS)], and Munufacturing
Engineering [publisher: Society of Manufacturing Engineers (SME)].

708 SIMULATION AND SCHEDULING

TABLE 21.25 Sample Order File for ProModel Input

Entity
First Order Job Number of

Location Arrival Size Number Draw Cycles

Small-Getter-Tube
Larger-Getter-Tube
Round2E4C
Round-2-B4C
Round-2E4C
Round-2-B4C
Round-2-B4C
Round-2-B4C
Round-2-B4C
RoundZE4C
Round-2E4C
Race-wire
Race-wire

Weld-in
Weldin
QARI
Clean
QARI
QARI
QARI
Q ARI
Q ARI
Draw-in
Q ARI
Straightenin
Straightenin

The simulation model's external file read and write capability was very useful in per-
forming the experimentation. The output of the model included the standard output, such
as:

1. Equipment utilization
2. Operator utilization
3. Average work in process and queue sizes
4. Statistical output with respect to user-defined criteria such as order lateness.

The output of the model also included two files:

1. An ASCII file that was used to assess order tardiness. This file was read directly
onto a spreadsheet program for computing the planned shipment versus the sim-
ulated completion of each order (Table 21.26).

2., An order tracking file in the shop that was utilized to develop the Gantt charts.

21.5.3 Continuous Use of Simulation Models for Shop Loading

The successful completion of the simulation project included evaluation of the shop
performance. Therefore, the project included the development of models for continuous
use. This required not only the read and write capability mentioned above, but graphical
tools that would provide quick output for the user to analyze the shop performance. For
this purpose, Pros Scheduler software from MMS Soft Corporation was used.

Pros read the files (called duration j les) that indicated the operation start and com-
pletion times for each operation. This information was obtained via explicit write state-
ments in the simulation model. It was, therefore, user-definable. Figure 21.10 shows the
information flow among the various components of the system. Upon reading the dura-
tion file, Pros initialized the start of the scheduling horizon and placed the operations
on a Gantt chart, as shown in Figure 2 1.11.

The user could also manipulate the results by changing the shift patterns. This
allowed the user to see the impact of adding new shifts or of changing the existing

21.5 SIMULATION-BASED SCHEDULING: APPLICATION 709

TABLE 21.26 Sample Output for Order Lateness

Order
Job Release Planned Ship Simulated

Number Date Date Ship Date

Duration $1 u.4.

t
Shift

pros
Gantt

Pattern Chart

Figure 21.10 Information flow.

shifts on the schedule completion of orders. The Gantt charting program also provided
an order-based or resource-based reporting capability. These reports showed the opera-
tion completion and start times for each order on the resources. Therefore, it could be
used for analyzing the performance and also could be used as a dispatch list to distribute
the plan to the shop floor.

21.5.4 Case Study: Heatcraft, Inc. Scheduling Success

Mixed Model Scheduler (MMS),* a finite capacity scheduling software, was installed to
schedule the production of heat transfer coils for the ADP business segment of Heatcraft,
Inc., replacing a very time consuming manual process [21]. Each morning the Master

"MS by MMS Soft Corporation is used here. There is other scheduling software that could possibly fulfill the
requirements. Due to very rapid changes in the software industry, we refrain from providing a list of possible
alternatives here. However, frequent reviews appear in related periodicals such as IIE Solutions [publisher:
Institute of Industrial Engineers (IIE)], APICS [publisher: American Production and Inventory Control Society
(APICS)], ORIMS Today [publisher: Institute for Operations Research and Management Science (INFORMS)],
and Manufacturing Engineering [publisher: Society of Manufacturing Engineers (SME)].

710 SIMULATION AND SCHEDULING

............................ .. is ">............................. "

S;3d=
SpdJ

spat 415

Figure 21.11 Sample Gantt chart.

Scheduler had to create a manual schedule for the next day. It took about 4 hours a day
to create the next day's schedule. Updating the schedule due to a machine breakdown
took about another 4 hours. This downtime was very costly to the ADP. Moving an order
up or down in the schedule or changing assembly lines also took about 4 hours. Flexi-
bility of the scheduling process was a major problem. Also, visibility of the purchased
parts was limited. Often, an order would reach the assembly line before ADP personnel
discovered that a purchased part needed was not available for the order. Therefore, units
would have to be set aside to wait for the purchased part. Before the MMS implemen-
tation, the ADP had an average of 75 orders per week to schedule. This took about 4
hours a day. Today, with MMS, ADP has an average of 140 orders per week to sched-
ule and it takes about 5 minutes. The scheduling of these many orders manually would
take at least 7 hours a day. The time saved allows the Master Scheduler to look more
closely at the purchased parts inventory. This has eliminated the problem of running
out of purchased parts for an order when it has already reached the assembly line. In
this application the following issues were very important to the success of the project.

Data Downloads and Uploads. Making sure that the downloaded information was
accurate and in the required format took several iterations. The interface between the
scheduling system and the MRP and/or shop floor data collection systems had to take
into consideration possibilities such as material availability, orders on hold, and quality-
related issues. A database management system shell was used to interface between the
scheduling system and the company-wide MRP and management information systems.
This should be fully automated and require only a routine inquiry to be run by the
scheduling personnel for data downloads and scheduling uploads.

Variety of Components. Typically, there are multiple components that must be com-
pleted before initiating the final assembly. Each component has its own operation steps,
setup base grouping, and resource availability issues (Figure 21.12). The scheduling
systems must include constraints coming from the component part completions.

Sequence-Dependent Setup Times. Sequence-dependent setup times combined
with product mix may cause unexpected bottlenecks at the resources. In some cases,
these resources are dynamic bottlenecks. The current mix of products and the running
sequence at each resource determine the bottleneck status. The scheduling system must
account for the sequence-dependent setup times and the current availability of the var-
ious order types. A resource with enough available time does not need to be optimally

21.5 SIMULATION-BASED SCHEDULING: APPLICATION 71 1

Figure 21.12 Schedule resulting from operation, setup, and resources.

scheduled. However, running an arbitrarily bad sequence on a nonbottleneck resource
with a given mix can turn a nonbottleneck resource into a temporary bottleneck. This
situation is called a dynamic bottleneck and cannot be addressed by static tools such
as spreadsheets or simple sorting-based algorithms. It is also difficult to resolve using
simulation-based approaches because of the large number of possible alternatives. A
FCS system such as the Mixed Model Scheduler with its setup optimization features
accommodates dynamic bottlenecks. Upon determining the bottlenecks, the scheduling
system is capable of sequencing jobs to minimize the setup times. The user should also
be able to determine the set of noncritical resources, which can be scheduled in such a
way as to provide the bottleneck with enough work at all times.

Resource Utilization Issues. The scheduling system should keep track of the var-
ious grades of labor and other resources utilized at the various machine and assembly
line resources. The labor and work centers are usually the constraining resources when
creating a schedule, with the work centers typically having a larger influence. Due to
this, labor requirements will fluctuate throughout the schedule. It is important for the
FCS system to recognize these requirements and inform the scheduler of such. These
numbers can be used for scheduling additional shifts or overtime.

71 2 SIMULATION AND SCHEDULING

Work-in-Process and Waiting Times. Schedulers should be able to evaluate the
effects of the schedules produced on the work-in-process (WIP) levels. As mentioned
earlier, dynamic bottlenecking can play havoc in scheduling the shop floor. Large WIP
inventory may move around on the shop floor, depending on the schedule run. It is
important to be able to evaluate the WIP levels created by the schedule and alter the
schedule appropriately to minimize this inventory. Also, knowing the average time a job
spends in queue prior to a resource is beneficial in determining the potential bottlenecks.

Dynamic Updates. Although not very common, it is possible for a bottleneck
resource to go down. This causes a major change in the availability of certain com-
ponents and may require complete rescheduling of orders for the final assembly as well
as at the component levels. Changing the resource availability on the fly and reschedul-
ing based on the new resource availability is a definite advantage within the scheduling
software.

An estimated downtime savings of 2 hours per month was attributed to the MMS
implementation because of the speed of generating a new schedule based on an unavail-
able resource. This represented a savings of $360,000 per year. The average number of
units per day increased 40%. Most of this increase was attributed to converting to a
demand flow approach to manufacturing that was supported by the tailored algorithm
used in the MMS software.

21.6 IMPLEMENTATION ISSUES

For most organizations, the question is not whether to use simulation and/or scheduling,
but how to solve an existing or future problem related to capacity planning and schedul-
ing. Although are guidelines are provided, there is no foolproof recipe that guarantees
success.

In practice, the desire to use a software tool to solve a problem usually arises in
a crisis situation, such as in times of rapid expansion, change of business climate, or
physical movement of business location. At such times, the internal (i.e., usually top
management) or external (i.e., consultants) sources often order personnel to "implement
scheduling" or "use simulation" to help with the crisis. Forming a committee to identify
and evaluate the software usually follows the recommendation. After several vendor
visits and evaluations, software is finally chosen and implementation starts. At this point
the success of the project is still more of a chance event than a sure result if the following
issues are not observed:

1. Start with an end in mind with respect to the desired solution and the objectives.
Do not start with software or general methodology predetermined.

2. Investigate the problem and possible solution techniques. Use a team building
approach, not a "software evaluation committee." Use the diversity of the exper-
tise in the team to approach the problem from different viewpoints. For example,
the information system (IS) specialist point of view could be very different from
that of a production supervisor. Use all points of view to arrive at solutions and
do not pit one against the other. Remember that there are no opposing objectives
in an organization-only a single goal: to become a more profitable organization
(short and long term).

21.6 IMPLEMENTATION ISSUES 71 3

3. Rely on both theoretical expertise and common sense. If any solution does not
make common sense, do not buy the argument. Any truth, however complex, can
be explained in a layperson's terms. If this is not possible, there is a fundamental
fault in the proposed theoretical solution.

4. Implement the solution properly and completely without hesitation once it is
started. Allocate the proper resources and time for its success. Most implementa-
tions fail because of improper allocation of resources (budget constraints) or time
(due date constraints).

21.6.1 When to Use Scheduling or Simulation

Although they are not mutually exclusive, finite capacity scheduling and simulation tools
address difficult problems. Traditionally, simulation is a tool for medium- to long-run
capacity planning, whereas scheduling is used for day-to-day detailed order sequencing.
However, technological advances have made it possible, so that these tools can be used
somewhat interchangeably. Although their academic validity may be questionable, the
following observations offer some insight based on the practice of scheduling [20].

1 . Finite-capucity scheduling is mainly a deterministic tool, whereas simulation is a
stochastic tool. Most finite-capacity scheduling models or systems do not consider ran-
domness explicitly. The rework and reject loops and the probabilistic routings between
the operation steps are not considered in finite-capacity scheduling (FCS). The FCS
models use deterministic process times, setup times, and transport times, whereas sim-
ulation almost invariably uses probability distributions for the process, setup, and trans-
port times. Some of this is due to the aggregation of different products or different units
into an "entity" in simulation models. Most of the variability, however, is valid even for
one product. For example, assembly times in an assembly line may be different from
one assembly to another.

2. Finite-cupacity scheduling addresses shorter horizons, whereas simulation
addresses longer planning horizons. Current use suggests that simulation is a valuable
tool for addressing long-term design and planning problems, whereas finite-capacity
scheduling is an excellent tool for addressing short-term and on-line execution prob-
lems. This is partially related to the uncertainty issue above. Finite-capacity scheduling,
being a deterministic approach, is more successful when the level of accuracy is high.
Usually, the shorter the scheduling interval, the higher the accuracy. Therefore, most
current applications suggest a shorter time horizon for scheduling applications.

3. The degree of detail is different in jnite-cupacity scheduling than in simulation.
This is not to suggest that finite-capacity scheduling models are more detailed than
simulation, but the degree of detail is different because the purpose of these modeling
tools is different. Scheduling systems have a more detailed representation of the real
part numbers, product types, and routing steps, whereas simulation models are much
more representative in probabilistic routings and in modeling secondary and additional
resources.

21.6.2 Step-by-step Implementation Plan for Scheduling

Following a sound scheduling methodology will help to ensure that implementation of
the scheduling software will be successful. The basic steps of this methodology are:

714 SIMULATION AND SCHEDULING

1. Team Building. Develop an implementation plan that draws expertise from all
areas of the facility.

2. Dejinition of Performance Metrics. Determine how you will measure the success
of the scheduling project.

3. Selection of a Generalized Approach. Evaluate if the problem is a candidate for
optimization.

4. Design of Required Reports. Ensure that the software chosen is capable of pro-
ducing all of the output reports required.

5. Determination of Data Sources. Determine where data are required for the cre-
ation of a schedule [e.g., Material Requirements Planning (MRP) and/or shop
floor data collection systems].

6. Analysis and Rejinement of Specific Approaches. Use computer simulation to test
some of the basic ideas for the scheduling solution. This process will also help
to cost justify the scheduling implementation.

7. Selection of the Implementation Method. Since most of the preplanning work has
been completed, many finite-capacity scheduling (FCS) packages can be elimi-
nated at this point. The user should now be comfortable in fitting the correct
software to the scheduling problem.

8. Deployment. Choose a prototype site within the organization. Once the solution
has been successfully implemented at that site, expand the solution to the rest of
the facility.

By following these steps, the scheduling implementation should progress relatively
smoothly through a successful completion.

21.6.3 Role of Simulation in Scheduling

Using simulation as a precursor to the implementation of a finite-capacity scheduling
system not only saves time and money in the long run but will also allow for testing of
some of the basic scheduling rules. Avoidance of design and operational mistakes, as
well as the minimization of cycle times, are just a few of the areas that can be studied
in detail prior to scheduling. Simulation can be used to determine the medium- to long-
term resource levels. It can be used as a strategic tool in determining the number of
required machines, for example. The scheduling system specifically should be used as
a tactical tool to determine how jobs should be sequenced through the machines in the
next scheduling period.

Simulation allows the user to analyze a system without disrupting its operation. The
capacity of the system can be evaluated before a new product is added to the production
process. Instead of buying additional capital equipment at the start, simulation can help
to justify the purchase or prove that the existing equipment is capable of handling the
increased workload. This method takes into account variability and randomness such
as machine breakdowns that occur on the shop floor. Simulation is also a good tool
for identifying the constraints or bottlenecks on the shop floor. Once these have been
identified, the scheduler knows where to focus.

It is important to remember that striving for high efficiencies at all the operations
does not guarantee a higher overall system throughput. Having high efficiencies at all
the operations may lead to increases in WIP at the bottleneck as well as other opera-

21.7 CONCLUDING REMARKS 71 5

tions upstream. It is quite possible that starving or blocking nonbottleneck operations
will have no impact on the overall system throughput. This is easily shown through
simulation by studying the impact of the varying efficiencies (i.e., evaluating different
downtime, repair time, and cycle time distributions) on the operations. By doing this
sensitivity analysis, the engineer will have a better understanding of the impact of vary-
ing parameters in the system and how the bottlenecks or constraints move around the
system.

Through better management of the constraints, throughput in the facility can be
improved. Some basic scheduling algorithms can be utilized in the simulation model
to see their effects on the overall system. By showing improvements in the system
through simulation, the cost justification of a more detailed scheduling solution, such
as a FCS system, will be easier.

21.7 CONCLUDING REMARKS

Scheduling problems and the solution approaches were introduced in this chapter. First,
the scheduling problems are defined and classified. The non-simulation-based solution
approaches were discussed as a background with an emphasis on various solution tech-
niques. Each major technique is illustrated with a numerical example. Simulation of job
shops is covered, with an emphasis on the effects of priority rules on various schedul-
ing performance measures and other components of simulation models which also affect
scheduling performance.

The research and the practical applications suggest that simulation could be a very
useful tool in approaching scheduling problems, specifically in the areas of system
design, algorithm testing, and system integration. Simulation provides the ability to
investigate various what if's that may require questioning of some of the constraints.
For example, instead of accepting a given number of machines and trying to opti-
mize their utilization, a properly constructed simulation model could justify acquiring
more machines, therefore increasing the scheduling performance. The simulation-based
approaches are also very useful in identifying and solving implementation issues.

As suggested by the cases presented in this chapter, scheduling and simulation are
complementary approaches. So the question that arises in many situations: "Do I need
to use simulation or do I need a tool for scheduling?'should not be the focus. The
recommended approach is to use the right tool at the right time. So in this short chapter
we have tried to give the reader the main ideas that he or she could use for a decision
on when to use available simulation and scheduling models and techniques.

REFERENCES

1 . French, S. (1982). Sequencing and Scheduling, Ellis Horwood, Chichester, West Sussex, Eng-
land.

2. Baker, K. R. (1974). Introduction to Sequencing Scheduling, Wiley, New York.
3. Conway, R. W., W. L. Maxwell, and L. W. Miller (1967). Theoy of Scheduling, Addison-

Wesley. Reading, Mass.
4. Morton, T. E., and D. W. Pentico (1993). Heuristic Scheduling Systems, Wiley, New York.
5 . Panwalkar, S. S., R. A. Dudek, and M. L. Smith (1973). Sequencing research and the indus-

71 6 SIMULATION AND SCHEDULING

trial scheduling problem, in Proceedings of the Symposium on the Theory of Scheduling and
Its Applications, Springer-Verlag, Berlin, pp. 29-38.

6. Kusiak, Andrew, ed. (1989). Knowledge-Based Systems in Manufacturing, New York: Taylor
& Francis Ltd.

7. Panwalkar, S. S., M. L. Smith, and R. A. Dudek (1976). Scheduling with periodic release of
orders for production, presented at ORSA/TIMS Special Interest Conference on Theory and
Application of Scheduling, Orlando, Fla.

8. Ulgen, 0 . (1979). Application of system methodologies to scheduling, unpublished Ph.D.
dissertation, Texas Tech University, Lubbock, Texas.

9. Holloway, C. A,, and R. T. Nelson (1974). Job shop scheduling with due dates and variable
processing times, Management Science, Vol. 20, No. 9, pp. 1264-1275.

10. Irastorza, J. C., and R. H. Deane (1974). A loading and balancing methodology for job shop
control, AIIE Transactions, Vol. 6, pp. 302-307.

11. Kiran, A. S., and M. L. Smith (1984). Simulation studies in job shop scheduling, I: A survey.
Computers and Industrial Engineering, Vol. 8, No. 2, pp. 87-93.

12. Adam, N. R., and J . Surkis (1980). Priority update intervals and anomalies in dynamic ratio
type job shop scheduling rules, Management Science, Vol. 26, No. 12, pp. 1227-1237.

13. Panwalkar, S. S., and W. Iskander (1977). A survey of scheduling rules, Operations Research,
Vol. 25, No. 1, pp. 45-61.

14. Conway, R. W. (1964). An experimental investigation of priority assignment in a job shop,
Memo. RM-3789-PR, February, RAND Corporation, Santa Monica, CA.

15. Agganval, S. C., and B. A. McCarl (1974). The development and evaluation of a cost-based
composite scheduling rule, Naval Research Logistics Quarterly, Vol. 12, No. 1, pp. 155-169.

16. Jones, C. H. (1973). An economic evaluation of job shop dispatching rules, Management
Science, Vol. 20, No. 3, pp. 293-307.

17. Shue, L., and M. L. Smith (1978). Sequential approach in job shop scheduling, Journal of
the Chinese Institute of Engineers, Vol. 1, pp. 75-80.

18. Hottenstein, M. P. (1970). Expediting in job-order-control systems: a simulation study, AIIE
Transactions, Vol. 2, pp. 46-54.

19. Kiran, A. S., and M. L. Smith (1984). Simulation studies in job shop scheduling, 11: Perfor-
mance of priority rules, Computers and Industrial Engineering, Vol. 8, No. 2, pp. 95-105.

20. Kiran, A. S., and T. Unal (1993). Simulation and scheduling in a TQM environment, Pre-
sented at IIE Conference.

21. Kiran, A. S., and J. Green (1996). Manufacturers meet global market demands with FCS
software, IIE Solutions, August.

22. Little, J. D. C. (1989). A proof for the queueing formula: L = XW, in Stochastic Modeling
and the Theory of Queues, Ronald W. Wolff, ed., Prentice Hall, Upper Saddle River, N.J.,
pp. 383-387.

23. Fisher, J. L. (1993). An applications oriented guide to Lagrangian relaxation, in Heuristic
Scheduling Systems with Applications to Production Systems and Project Management, T. E.
Morton and D. W. Pentico, eds., Wiley, New York, pp. 10-21.

24. Della Croce, F., R. Tadei, and G. Volta (1992). A genetic algorithm for the job shop problem,
D.A.I., Politecnico de Torino, Italy. Also, Heuristic Scheduling Systems with Applications to
Production Systems and Project Management, T. E. Morton and D. W. Pentico, eds., Wiley,
New York.

25. van Laarhoven, P. J. M., E. H. L. Aarts, and J. K. Lenstra (1988). Solving job shop scheduling
problems by simulated annealing, preprint, Philips Research Laboratories, Eindhoven.

26. Rabelo, L., S. Alptekin, and A. S. Kiran (1989). Synergy of artificial neural networks and
knowledge-based expert systems for intelligent FMS scheduling, in Proceedings of the 3rd

REFERENCES 71 7

ORSAITIMS Conference on Flexible Manufacturing Systems: Operations Research Models
and Applications, Cambridge, Mass., Elsevier Science Publishers, Amsterdam, pp. 361-366.

27. Aarts, E., and J. Korst (1989). Simulated Annealing and Bolfzmann Machines: A Stochastic
Approach to Comhinatorial Optimization and Neural Computing, Wiley, New York.

28. Hopfield, J. J. (1988). Neural networks and physical systems with emergent collective compu-
tational abilities (Neural Systems Incorporated), Neural Networks-Theory and Application,
August, pp. 2554-2558.

29. Glover, F. (1990). Tabu search: a tutorial, Interjaces, Vol. 20, No. 4, pp. 74-94.

PART V

PRACTICE OF SIMULATION

CHAPTER 22

Guidelines for Success

KENNETH J. MUSSELMAN
Pritsker Corporation

22.1 INTRODUCTION

Few things in this world are static. This is particularly true of simulation projects. They
seek continually to redefine themselves. As a project develops, discoveries are made.
Some of these discoveries reinforce the project's original direction, while others force
a change in heading. Most of these heading corrections result in only slight changes.
Others, however, force major adjustments, possibly even reversing general understand-
ings held at the start of the project. Beyond these recurring discoveries, interests change.
What first drives a customer to pursue a problem may not be what sustains his or her
interest over the course of the project. As knowledge is gained, some issues take on
less importance, while others begin to dominate the customer's attention. Indeed, the
customer can easily become engrossed with questions that were not even considered
when the project began.

Success in such a dynamic environment requires working to a set of principles.
Without well-founded principles, a simulation project can drift aimlessly, increasing its
chance of failure. With these principles, a project remains true to course. Reactionary
moves and radical changes in direction are far less prevalent. Issues are judged with con-
sistency and forethought. All this helps to keep the project moving in the right direction
and away from troubled waters.

The principles presented here serve as navigational guidelines for conducting a suc-
cessful simulation project. They highlight the underlying managerial skills needed in
each step of the process, such as directing the project, controlling model development
and analysis, and improving customer relations. Technical fundamentals are not empha-
sized. This is not to minimize their importance, for technical knowledge and compe-
tence are necessary to ensure valid results. Instead, the purpose is to emphasize the
role practical management plays in every successful project. By following these princi-
ples, the technical aspects of a project continue with fewer distractions and disruptions.

Handbook of Simulation, Edited by Jerry Banks.
ISBN 0-47 1 - 13403- 1 O 19% John Wiley & Sons, Inc.

722 GUIDELINES FOR SUCCESS

The result is improved project performance and increased likelihood of the project's
recommendations being implemented.

22.2 PROJECT STEPS

A simulation project is a process of interpretive, developmental, and analytical steps
[I-31. Table 22.1 lists these steps, which are intrinsic to all simulation projects. The
process outlined provides a framework within which many diverse yet interdependent
activities relate in an orderly sequence.

Admittedly, not all simulation projects follow this exact sequence. Often, the project
team is challenged into rethinking the model late in the process because of knowledge
gained along the way. This, in turn, forces revisitation of earlier steps, such as model con-
ceptualization, data collection, and model building. Recurrent processing of these steps is
characteristic of the vast majority of simulation projects. In the end, though, all steps are
visited, for each is important to the process of delivering a valued and defensible result.

22.3 GUIDELINES

In this section we present specific guidelines for conducting a simulation project. Each
step in the process is repeated below, followed by assorted principles that support the

TABLE 22.1 Simulation Project Steps

Step TY pe Description

Problem
formulation

Model
conceptualization

Data collection

Model building

Verification and
validation

Analysis

Documentation

Implementation

Interpretive

Analytical

Developmental

Developmental

Analytical

Analytical

Interpretive

Developmental

Define the problem to be studied, including a
written statement of the problem-solving
objective

Abstract the system into a model described by
the elements of the system, their
characteristics, and their interactions,
all according to the problem formulation.

Identify, specify, and gather data in support
of the model.

Capture the conceptualized model using the
constructs of a simulation language
or system.

Establish that the model executes as
intended and that the desired accuracy
or correspondence exists between the
model and the system.

Analyze the simulation outputs to draw
inferences and make recommendations for
problem resolutions.

Supply supportive or evidential information
for a specific purpose.

Fulfill the decisions resulting from the
simulation.

Source: Refs. 4 and 5

22.3 GUIDELINES 723

activities at that step. The positioning of each principle reflects where it should be given
particular attention in the process. In acting on a principle, the project team is more
likely to avoid a usual pitfall, reduce risk, or maximize the activity's effect on the
project's outcome. Keep in mind, however, there are no definitive rules about when
to employ a given principle. Some principles may need to be initiated well ahead of
where they are positioned here and engaged repeatedly. Furthermore, these principles are
directed at the project team. This team may consist of people internal to the customer's
organization, external to it, or a combination of both. Whatever the team's composition,
the principles remain equally relevant.

22.3.1 Problem Formulation

Problem formulation is the most important step in the process, for it guides all other
project activities. It is here that the team begins to establish the central issues and project
scope. Guidelines that direct this activity include:

1. Start off on the right foot.

2. Work on the right problem.

3. Manage expectations.

4. Question skillfully.

5. Listen without judgment.

6. Communicate openly.

7. Predict the solution.

Start Off on the Right Foot. First impressions are important. The customer is
entrusting the project team with solving a significant and probably costly problem. From
the start, give the customer assurance that this team is right for the task. Establish con-
fidence in this election to move forward with the project by beginning with a clear and
effective start.

To get off to a good start, consider holding a kickoff meeting. This meeting should
be held after some preliminary investigations have been done but before any substantial
work has begun. Its purpose is to lay a foundation for success. In the meeting, intro-
duce all the team members, restate and possibly refine the project's objectives, lay out
the proposed schedule with milestones, define areas of responsibility and accountability,
establish lines of communication, and begin to develop an understanding-of both the
simulation process (for the benefit of the customer) and the system to be examined (for
the benefit of the project team). Explain why the project is being conducted, what the
specific approach is, and what opportunities exist. Gauge the customer's understanding
of the project and the simulation process. Early on, work to surface everyone's needs.
Honor all views, but be careful not to let those who invent or reinforce obstacles dom-
inate the meeting. Acknowledge their concerns, but work to mitigate them. Focus on
benefits and functionality more than technology. Getting a good start like this can make
a big difference in how well the project eventually finishes.

As with all meetings, control the flow. Have respect for the customer's time. First,
break the agenda down into small topics that can be clearly stated and managed. Then
communicate this agenda in advance. People contribute more if they know what is
expected. Invite key organizational members, both support staff and upper-level man-

724 GUIDELINES FOR SUCCESS

agement, but keep the meeting as small as possible, opening it only to contributing
members. Allowing someone to attend who will not add to the discussion or be respon-
sible for an aspect of the project can affect the meeting negatively. Agree at the start on
the topics to be discussed and the time allotted for each topic. This further signals to
those gathered what the most important topics are and the level of discussion expected.
Take notes on what is discussed. This not only provides a log of what was said, but
also makes the participants feel as though their ideas are being heard, inspiring them to
contribute even more. Then use their ideas to target the solution approach. Handle all
objections with finesse. There are likely to be people in the meeting with some strongly
held beliefs, which is probably why they are there. Welcome their objections. View
them as requests for more information. Never discard them, for they might just hold
the key to the project. Importantly, stay on time. If discussion on a topic is to last an
hour, hold to that. Finally, summarize the meeting before adjournment. This 5-minute
activity brings proper closure to this critical early step.

During the kickoff meeting and afterward, be observant. Watch team member inter-
actions. These are the people who will be instrumental in seeing the project to a suc-
cessful conclusion. Look for signs of leadership among them. Success requires a project
champion: someone at the customer's site who is a consistent advocate and at a high
enough level in the organization to exercise influence. When the project needs a push,
this is the person who will make it happen. But most of all, be mindful of the fact that
the project ultimately depends on how the team members collectively perform. Without
their total support, success is unlikely.

Maxim A strong finish begins with an effective start.

Work on the Right Problem. Nothing is less productive than finding the right solu-
tion to the wrong problem. Although this is never the team's intention, it happens more
frequently than it should. Often, this is due to misunderstood or poorly stated objectives.
For this reason, establishing sound objectives is critically important. Obscure objectives
make it difficult to succeed. Unless the project team members know what they need to
accomplish, they have little chance of doing it. Accordingly, construct objectives that
are precise, reasonable, understandable, measurable, and action oriented to convey a
proper sense of direction and to distinguish between primary and subordinate issues.
Write them down. Then continue to have the team refer to and be guided by them
throughout the project. The goal is to satisfy these objectives, not simply to complete
the project. Having these objectives clearly defined goes a long way to keeping the
project focused and, in the end, measuring its degree of success.

Maxim Fuzzy objectives lead to unclear successes.

Manage Expectations. The customer's expectations must be properly set and con-
tinually managed. Allowing them to go unchecked can easily force a project off course.
Expectations must always agree with the project's objectives. Otherwise, project team
members can find themselves obligated to work on tasks only to satisfy an expectation,
not an objective.

Start by setting the correct expectations upfront. Be enthusiastic, but be careful not
to oversell. Be realistic about what can be accomplished and how much time it will
take. Make sure that the customer understands what issues the model will and will not
address. There are limits to what technology can do. It is far better to discuss these

22.3 GUIDELINES 725

limitations from the beginning than to state them for the first time when the results are
presented.

Once set, expectations must be managed continually. Quickly throttle any unrealistic
hopes or ideas. Do not allow the customer to be misled into assuming that the team is
delivering capability it cannot or does not intend to deliver. The team needs to be clear
about what it plans to do. Not only is this the right thing to do; it is the smart thing
to do. If expectations go unchecked, both parties come away disappointed from the
misunderstanding. Therefore, work with the customer to understand his or her viewpoint
and come to a mutually acceptable resolution.

As issues arise, do not rush to agreement. Timing can be important. Every project
has its ebb and flow. Knowing when to draw the line or adjust a position can be critical
to keeping the project moving forward. If agreement cannot be reached immediately,
look for a way to work around the problem. For technical issues, consider using the
model to explore options or to bound the problem to see if the issue really matters. For
nontechnical issues, usually the passage of time can bring both parties to a reasonable
and balanced compromise. Learn to practice patience. Often, it is time well spent.

Maxim It is easier to correct an expectation now than to change a belief later.

Question Skillfully. Questions wield tremendous power. They can cause customers to
reveal, often for the first time, key pieces of information or cause them to keep silent, refus-
ing to cooperate. They can lead people toward joint discoveries or divide them against each
other. They can help bring about a quick solution or complicate the problem to such an
extent that the project becomes a worthless, endless journey. Therefore, project team mem-
bers should be as attentive to question selection as they are to the customer's answers.

Skillful questioning requires forethought. Work to create a safe and open forum for
gathering information and exploring new ideas. To accomplish this, keep the following
in mind. First, probe with proactive questions. Begin to force new thinking on the part
of the customer. For example, consider the following questions: What if one releases the
work later? Earlier? Suppose that one carries more work-in-process inventory? Less?
How about eliminating it altogether? Try compressing, adding, subtracting, multiply-
ing, substituting, combining, and reversing the process. Lack of system knowledge is
an advantage here. Look at the system and explore how it could run. Encourage the
customer to look at it in the same light. This not only helps clarify how the system
currently works, but also opens the customer's mind to what is possible.

Second, learn to ask open-ended questions. Simple "yes" or "no" questions stifle
customer participation. Open-ended questions, on the other hand, invite explanation and
clarification. Phrase the question so that it leads to a more informative response. By way
of example, consider the following:

Poor: If you were to rerun these orders, would you sequence them the same way?
Better: If you could change the order sequence, what would you do?
Poor: Is your system functioning the way you want?
Better: What aspects of the system need attention, and why?

Third, avoid putting the customer on the defense. Many people are not comfortable
with having to justify their actions. Be less threatening. Avoid letting the customer feel
as if he or she is the problem. Try, instead, to make the customer feel a part of the
solution process. For example:

726 GUIDELINES FOR SUCCESS

Poor: Why did you select that order to run next?
Better: How do you decide order sequence?

Finally, be forward focused. Direct people's energies toward what should be done
rather than to what is wrong and who is to blame. For example:

Poor: Why do you route these parts to the other side of the plant when everything
could be done here?

Better: If you could redesign your flow process, what changes would you make?

Maxim The right solution starts with the right questions.

Listen Without Judgment. Successful simulationists are often viewed as gifted
modelers. They appear to capture with ease and creativity the essence of any system.
Upon further study, though, one learns that as good as they are at modeling, they are
even better at listening. They continually give the customer a chance to change their
way of thinking. Their statements are few; their questions are replete; and their listening
is intent. They remember that the goal is to solve the customer's problem, not theirs.

With this in mind, work on suspending judgment until the system and the situation
are better understood. Project team members should not be too anxious to showcase
their knowledge. Quickly sizing up the problem and then leaping to what is believed to
be the cause can easily backfire. The team members think they are proving their worth,
while the customer feels that he or she is not being heard. Instead, take time to know
who the customer is, what is being asked, and why. Concentrate on what is, as well
as what is not, being said. Draw out the facts and encourage further clarification. Do
not let vague answers or unfamiliar terminology curb the need to know. In short, fully
understand the problem first. Next, isolate it. Then, and only then, venture out to solve
it.

Also, be more circumspect. Part of finding a solution involves understanding its
implications. Be continually sensitive to the customer's needs, values, beliefs, and atti-
tudes. Watch for clues on how the customer, individually as well as collectively, views
the problem and the project. Then couch all comments, reports, documents, findings,
and presentations accordingly.

Maxim Don't look for a solution without first listening to the problem.

Communicate Openly. Poor communication is the single biggest reason that projects
fail. There is simply no substitute for good communication. Start by reaching an under-
standing with the customer about the project. Settle on objectives, key questions, per-
formance measures, scope, assumptions, and model input. Then put these findings in
writing and get it approved by the customer. At this stage of the process, everyone needs
to understand clearly the project team's collective knowledge and intent.

Next, orient the customer by establishing a project plan. Gain the customer's support
by explaining how the project will proceed and what to expect. Break the project into
phases. Emphasize the benefits associated with doing each phase as planned and prepare
the customer for potential problems. In short, give the customer a "road map" of the
project. By knowing what is coming and why, the customer is in a better position to
lend support. Without this knowledge, the customer may unintentionally work against
the project.

22.3 GUIDELINES 727

Finally, keep the customer informed. People like knowing where they are. Have
plenty of "sign posts" along the way. Easily identifiable deliverables are excellent for
this. Moreover, keep in mind that when it comes to projects, people do not like sur-
prises. When a problem arises, tell the customer. By reporting it early, the customer has
more options available and more time to deal with it.

Maxim Keep people informed, for the journey is more valuable than the solution.

Predict the Solution. In the beginning of a project, people often miss an excellent
opportunity to set the stage for success. They are too eager to get started. As a result,
they fail to do a simple, yet effective exercise.

At project initiation, ask the customer to conduct a quick, even crude, analysis of
the problem. This accomplishes several things. First, it gets the thought process started.
The customer begins to concentrate on the problem more than the model. This provides
early insight into the issues ahead and possible solutions. Caution is advisable, however.
Preconceived ideas can restrict thinking. Do not let this happen. Keep creativity alive.
This exercise should strengthen the thought process, not stop it.

Second, this starting solution provides a comparison base. If the project's results turn
out differently, interest is aroused. This leads to exploration into why these differences
exist and, eventually, to an even deeper understanding of system behavior.

Finally, this solution defines the customer's thinking at the beginning of the project.
This is important because, as stated earlier, as the project unfolds, knowledge is gained.
Without this beginning reference point, it is difficult to establish how the project
advanced everyone's understanding. Accordingly, the project's true value is unfairly
discounted.

Maxim Only by knowing where you started can you judge how far you've come.

22.3.2 Model Conceptualization

Following problem formulation, the task of conceiving the model begins (see Chapter
2). This involves dividing the actual or proposed system into its salient elements and
then synthesizing these elements into a simulation model. Guidelines include:

1. Direct the model.

2. Take calculated risks.

Direct the Model. With the project's objectives and scope now set, one is tempted to
begin model building immediately. Yet, before this activity can start, there is an impor-
tant next step: model formulation. Leaping into model building without first properly
setting its direction is a wasteful venture.

So how should the model be formulated? Is it better to go for a direct, one-to-one
translation between the system and the model or to work at a more abstract level? The
answer lies in what the team aims to get out of the process. If they seek, for exam-
ple, better intercellular coordination in the plant, a broader, higher-level model may be
appropriate. On the other hand, if accurate order sequencing within a cell is most impor-
tant, it may be better to formulate a more detailed model which differentiates among
the many intricate routes within this cell. In short, the model needs to reflect its pur-

728 GUIDELINES FOR SUCCESS

Overview system
Discuss current and future operations

Objectives Review system procedures
Set objectives

Identify and List questions to be answered
Prioritize Rank questions

Key Questions Identify key questions
Quantify benefits associated
with each key question

Outputs Needed Define required output

to Answer Review standard reports
Specify additional reports

Bound Model
Scope and

Restrict Detail 1
Look for physical and
logical boundaries
Focus on scarce resources
Examine available data
Document simplifying assumptions
Identify tailoring requirements

Specify Model Identify input requirements
(physical, logical)

Inputs Overview model

Figure 22.1 Objective-directed model formulation procedure.

pose. That is why the best guide for formulating a simulation model is a well-defined
set of objectives. This is also why these objectives must be set upfront. Through them,
the criteria against which all modeling decisions should be judged is established. This
results in a more directed model that better fits the needs of the project.

The most effective way to incorporate these objectives into the formulation process
is through a backward pass. Figure 22.1 displays the steps involved. By working from
the objectives, first generate a list of key questions. These questions serve to support the
objectives and identify those areas of the system that need to be modeled. For example,
suppose that an objective is to improve system throughput. Representative questions in
support of this include the following: What are the bottleneck work centers? Do any
work centers have excess capacity? How should orders be sequenced at the mill to do the
best job of getting the work out on time? As another example, suppose that an objective
is to reduce operational costs. Questions reflective of this objective include: What is

22.3 GUIDELINES 729

the expected backlog at each work center over the next several months? If we change
our current scheduling policy, can we reduce overtime without incurring any additional
late orders? How much maintenance in fabrication can be done on-shift before it starts
affecting delivery dates? Listing all questions, ranking them in importance, and selecting
the key ones helps to further direct the modeling process.

At this point, the team should also work to quantify benefits. Establishing the value
of an answer before knowing what the answer is increases the value of the benefits
associated with that answer. By settling on these benefits early, the value of the solution
is less apt to be as deeply discounted once the results are in.

Next, decide what output measures are necessary to answer these questions. By
focusing on these measures and only these measures, the model becomes even more
narrowly defined. For example, an objective regarding work center performance could
lead to the need for various measures of machine utilization. At this general level of
interest, dispatch lists for each machine in the work center are not justified. To answer
a question regarding utilization, a dispatch list provides more detailed information than
necessary. The objective here is to better understand the work center's load, not to sched-
ule it. By including only those system elements that support the key measures of interest,
the model is reduced in size without sacrificing value.

After the output measures are set, begin to establish the model's boundaries, both
physical and logical. These should be based on how the measures are defined. If, for
example, an output measure calls for line utilization, modeling the detailed differences
among the stations in that line may not be necessary. Conversely, knowing the size of
a particular station's queue in the line could prove helpful in routing upstream work.
Orders could be diverted based on the workload at this station. If this level of logic
is required to answer a key question, a more detailed representation of this line and
possibly other associated lines is warranted.

In turn, model boundaries drive input requirements. Consider system resources, for
example. Since only scarce resources set a system's flow rate, noncritical resources need
not be modeled explicitly. Instead, activities involving these elements may be left out,
represented simply as time delays, or modeled at a more generic level, not requiring
the express capture and release of specific resources within a group. Again, in this way
the model is fitted to its purpose.

Finally, in formulating the model, work to keep each new element at a level com-
mensurate with other elements. Broad characterizations in any one area can easily offset
exactness in other areas. Seek a balanced representation across the model. For example,
setting an activity time based on the entity types that transit this activity is pointless
unless entity attributes can be characterized properly. Poor data characterization can
easily undermine the value otherwise offered by the logic that is dependent on these
data.

The objective-directed formulation approach described above benefits the simulation
process in many ways. First, it streamlines model development. The resultant model,
which is usually cleaner and leaner by following this approach, is easier to understand,
build, verify, and maintain. One is not constantly wrestling with needless modeling
detail. This saves both time and money. Second, it supports quick feedback. Early ini-
tial results, albeit preliminary in nature, can pay big dividends, especially in those sit-
uations where the team is led in directions not considered previously. Third, the model
is easier to adjust. If the model is too cumbersome to adapt easily to change requests,
the project team can find itself arguing against a change only because of the effort
involved-a weak argument against a valid request. Fourth, the project's degree of suc-

730 GUIDELINES FOR SUCCESS

cess improves because the model remains consistent with the objectives originally set
forth. The project is less apt to drift aimlessly during model formulation and develop-
ment. Fifth, by reminding everyone at the end of the project of the benefits established
earlier, the value delivered is further reinforced. Finally, this approach better serves the
users' needs since their key questions are what drive the model's scope, level of detail,
and reporting. Also, by being involved in the process, the users better appreciate the
model's strengths and have greater confidence in its predictions.

Maxim Advance the model by formulating it backward.

Take Calculated Risks. Growth requires stretching. By reaching beyond one's lim-
its, learning takes place. Consequently, constantly challenge the status quo. Be bold!
Begin to color outside the lines. Strive to try something new on every project. Maybe it
is approaching the problem in a new way, using an unfamiliar section of the simulation
language, or experimenting with a new analysis technique. Whatever it is, make a com-
mitment to break with convention, provided that the risks do not outweigh the rewards.
For when one does, one frees oneself to see other possibilities for the first time.

Taking calculated risks also means experiencing failure. If the project team contin-
ually pushes the envelope, it is impossible to avoid this condit iondespi te the team's
best efforts. Things can and do go wrong. Very few projects beat a direct path to suc-
cess. Even the most successful projects experience setbacks. The crucial issue is how
the team deals with them. Failure should influence, not dictate, direction. The team must
learn to use failure as a steppingstone to new ideas. Moreover, by being open to failure,
the team can take on additional risk, which, in turn, can lead to even better ideas. Taken
in this way, failure simply becomes a part of the process, not the end of it.

What about reporting failure? Should the team report the problem immediately and risk
unnecessarily alarming the customer, or try to recover quickly and not notify the customer
unless the problem persists? The answer depends on many factors. As a rule, however, no
one appreciates being the last to know. Keeping the customer informed, be it good news or
bad, is always prudent. Customers are usually much more accepting of a message, what-
ever the content, provided that it is timely. The customer looks for continual assurance that
somebody is standing watch over the project. Having an early warning system, although
it may be flawed, is much better than having no warning system at all.

Maxim If you never fail, you limit the extent to which you can succeed.

22.3.3 Data Collection

All simulation models require data (see Chapter 3). Collecting system information, or
estimating it if the system does not exist, is a necessity. Furthermore, this activity is
often repeated, for additional data are frequently requested as the system becomes better
understood. Guidelines here include:

1. Question the data.

2. Make assumptions.

Question the Data. Challenge all data collected. Do a quick audit. Consider the
source, what was collected, when it was collected, and how it was collected. Does it

22.3 GUIDELINES 731

make sense'? Is it at an appropriate level of detail? Is it within the scope of the project'?
How is it going to bias the results? Good data are critically important. If the data are
limited in some way, so are the results. Moreover, if the data appear in error, inconsis-
tent, or irrelevant, it undermines the customer's trust in the results. Without this trust,
no action is taken. Therefore, support a strong defense of the results by making sure
that all input data are statistically representative of the process being modeled.

Strive to get all the necessary data, but be open to compromise. A model need not be
so rigid as to force an extensive data collection effort. Requiring more data can easily
delay a project. The more prudent approach is to start with the data that are available.
Then request additional information once the need can be verified. Working in this way,
model conceptualization and data collection proceed in parallel, with each influencing
the other activity.

For example, suppose that the data collection activity grouped truck interarrival times
at a distribution center. That is, the time between arrivals of a particular truck type
are confounded with other truck types. If truck type is important in processing work
at the distribution center, this information is also important to the model and should
be a distinguishable attribute of arriving trucks. One could require recollection of the
interarrival times by truck type, but this would probably delay model development. To
avoid this delay, one could use instead the confounded interarrival times together with
an estimate of the relative frequency of each truck type. In this way, progress on the
model could continue. Then, by testing the sensitivity of the model's outputs to the
full range of input possibilities, in this case the truck type frequency, one can judge if
better data are necessary. If sensitivity is shown, good reason exists to get the additional
information.

Keep in mind that data easily affect what a model can address. Expecting a model
to handle issues that cannot be supported with the requisite data is wishful thinking.
Suppose, for example, a project team seeks to build a scheduling model, yet the manu-
facturer's data collection system only records closed operations, not partial completions.
If operation times were of significant length, not knowing the time remaining on all
partially completed operations would adversely affect schedule quality. Although this
level of imprecision jeopardizes the use of the model for detailed scheduling, it has less
of an effect on planning. The requirement for precise startup conditions diminishes as
the horizon of interest lengthens. Since better scheduling begins with better planning,
perhaps by formulating a planning model first the project would be better served with
the data that are available. This better planning model could then lead the way to an
improved scheduling environment.

Maxim Don't take data for granted.

Make Assumptions. Data collection is inevitably on the critical path. Do not let the
project be held captive by a lack of information. Be willing to make assumptions to keep
the project moving forward. Have the customer take an educated guess at what is not
known. Then use the model to judge the sensitivity of the system to this information.
It may be of little consequence.

As the project develops, regularly review and adjust, as necessary, all modeling
assumptions. Assuming something at the start of the project does not mean that the
team must hold to it. Encourage flexibility. The team must learn to revise its thinking
and assumptions throughout a project. Making an unconfirmed assumption is a prob-
lem only if it is treated as a fact. Information is being gathered continually. Expect this

732 GUIDELINES FOR SUCCESS

to force reconsideration of certain system assumptions. As stated earlier, this rethink-
ing of the model may force revisitation of earlier steps. This should be anticipated and
embraced. Then, before presenting results, have the team reexamine and revalidate all
assumptions. If the project's results are to be challenged, the argument will ultimately
be directed at the assumptions.

Maxim Be willing to make assumptions.

22.3.4 Model Building

A simulation model is constructed using the conceptual blueprint established earlier. Yet,
just as with other applications, substantially different models can be built from the same
blueprint. To help further direct the model building task, consider the following guidelines:

1 . Focus on the problem.
2. Start simple.
3. Curb complexity.

4. Maintain momentum.
5. Review.

FOCUS on the Problem. Many simulation projects inappropriately concentrate on
model building more than problem solving. Getting the model up and running becomes
the overriding objective. Understanding the problem and deriving possible solutions
become subordinate. Consider, instead, spending more time experimenting and less time
building. Develop the initial model in less than half of the total project time. Then work
with the remaining time to explore various what-if questions. This encourages use of
the model to generate ideas. By having the time and freedom to explore beyond cur-
rent thinking, the team gains additional insight into the problem and possible solutions.
Remember, building the model is not the primary task; finding the right solution is.

Maxim Focus on the problem more than the model

Start Simple. Use the model to reduce the problem. Building a detailed model can
easily undermine the team's ability to solve the problem. Too much time is wasted man-
aging the model, verifying it, and then trying to understand it. The model can become
more complex than the problem it is trying to solve. Avoid this by starting with a simple
model, one that captures just the essence of the system. This may be some portion of
the original system or a simplified view of it.

For example, when modeling a manufacturing system, start with just the basic pro-
duction process, void of any complex flows, decision logic, or disruptions. Work to
recognize the cause-and-effect relationships in this simplified model. This establishes
a foundation on which to build an in-depth understanding of the system's more com-
plex behavior. Then, following verification and validation of this basic model, begin
to expand the model both down and out. In this example, this may involve adding
complex routings, rework, planned maintenance, material handling systems, shifts, or
random downtimes. At each new stage of development, the model needs to be reverified
and revalidated. Here again, the simulation process loops back on itself-a convolution
of data collection, model building, verification and validation, and analysis.

22.3 GUIDELINES 733

By incrementally developing the model in this way, the team can better see and
understand why things happen as they do. Complex interactions are seen in stages, basic
and secondary effects are easier to discern, and the verification and validation process
becomes a less daunting task.

Simple models also help maintain modeling freedom. If a model is too cumbersome
to work with, the effort involved in changing it becomes a significant factor in deciding
if the change should be made. As detail is added, the model begins to impose its own
limitations. It is much better to maintain modeling freedom as long as possible. This is
done by considering, at each new stage of development, not only the value gained by
adding the detail, but also the freedom that may be lost as a result.

Maxim Add detail; don't start with it.

Curb Complexity. Complexity can easily creep into a model. With perfect informa-
tion available, a model's control logic, for example, can become so sophisticated that
it allows the model to outperform the actual system. Alternative routes may be chosen
based on instantaneous knowledge of where all the other work currently resides. This
level of control in the model can conceal fundamental system design flaws. Be careful
not to let the model cloud actual behavior. Its purpose is to expose these flaws, not hide
them.

Moreover, do not lose sight of what is reasonable to implement. Consider, for exam-
ple, a situation where one is deciding the logic to use in selecting the next-best job to
run on a machine. By including both waiting and incoming jobs in this search, system
performance is likely to improve. Yet how intelligent should the model be? Can this
logic be implemented on the shop floor? Be ever mindful of what is practical. It can
save precious modeling time and effort.

Maxim Don't let the model become so sophisticated that it compensates for a bad
design, or so complex that it goes beyond the customer's ability to implement the solu-
tion.

Maintain Momentum. A simulation project is a journey. Along the way, it is impor-
tant to update the customer on how the project is coming. By showing progress and
having the customer acknowledge this progress, enthusiasm for the project is kept high.

One means of showing progress is through frequent deliverables. These need not be
major pieces of work. The best deliverables are quick to accomplish, hold value for the
project, and are clearly identifiable. Examples include a model specification, prototype
demonstrations, model delivery, animations, training, analyses, model documentation,
progress reports, presentations, and a final report. Timing these deliverables judiciously
over the project breaks the project into manageable tasks, gives the customer a reliable
measure of progress, and reinforces confidence in the team's approach.

Maxim It is better to work with many intermediate milestones than with one absolute
deadline.

Review. Review the project while it is ongoing. Set aside time to sit back and reflect,
stepping outside the details of the model for a moment. Evaluate the significance of
what the team is now doing. If it is not advancing the project, stop! Reconsider. Direct
all energies toward the project's objectives.

734 GUIDELINES FOR SUCCESS

Formal project reviews are helpful for this. Periodically, examine how far the project
has come, what needs to be done next, and how much more there is to do. The timing of
these reviews can vary. Some projects require frequent and regular interaction since they
tend to lose sight of their objectives. Others, conversely, develop along predictable lines
and can be effectively managed with fewer, irregularly scheduled reviews, such as when
project milestones are met. As a general guideline, though, monthly reviews are sensible.
At this frequency, enough has happened on the project to warrant another exchange.
More frequent reviews than this tend to oversteer the project, while less frequent reviews
cause important opportunities to be missed.

Maxim Take time to realign the project.

22.3.5 Verification and Validation

For verification, the model's actions are tested (see Chapter 10). This entails examining
if the data are read in correctly and if the entities flow as specified. Once verified,
model validation begins. Here the model is calibrated for reasonable agreement between
simulated and actual performance or, in the case of proposed systems, simulated and
expected performance. Guidelines for this phase include:

1. Control changes.

2. Be mindful of the customer's perceptions.

Control Changes. Change requests are inevitable. As a project progresses, newly
acquired information forces reexamination of the model. This provokes the customer
into calling for change requests. Therefore, expect them, plan for them, and most of all,
control them.

Begin by being smart from the start. Do not accept a small change just because
the project is going well now. Argue against any change that is not properly aligned
with the project's objectives and scope. Admittedly, it can be difficult to say no to a
customer. But when circumstances justify it, the project team has no choice. Naively
agreeing even to a minor change can be disastrous, for the true implications of a change
usually only become evident much later in the project: during verification, validation,
and implementation. Costly delays easily result.

Agree to a change only if necessary. Be aware that accepting a change can lead to
other changes, with possibly even bigger consequences. Therefore, proceed with cau-
tion. Remember also that a change can delay deliverables that others are expecting.
Consequently, be sure to inform all affected parties of the implications of each change,
especially as to the added time and costs.

Consider delaying changes by moving them to a later phase of the project. Get
baseline results out first. Then look to incorporate these deferred changes. This allows
progress to continue under the original schedule while still acknowledging and eventu-
ally satisfying the change requests.

Include the customer in all change request meetings. This gives the customer another
chance to become even more involved. Further involvement strengthens the customer's
advocacy for the project. It also helps him or her understand, in light of the project's
objectives and scope, the reasonableness of these change requests, and their impact on
the project.

22.3 GUIDELINES 735

Get all change requests in writing. A record of these requests and their judgments
fosters good customer relations. If no record exists of what was agreed to or, more
important, what was not, the project team is more likely to consent to the change.

Be especially alert to changes in project personnel. Most successful projects have,
throughout their lifetime, maintained the same team members. Therefore, when circum-
stances justify it, argue against a switch in personnel. Understandably, this is not always
possible. When there is no choice, hold a project meeting immediately. Review the
team's accomplishments, what tasks remain, and who needs to be involved. Be cog-
nizant that anyone who enters the project in midstream does not have the benefit of
earlier discussions and decisions. Take the time necessary to properly transition all tech-
nical and administrative information. Make sure that each team member knows what
this means to him or her personally. Poorly executed transitions can quickly cause an
otherwise successful project to derail. Do not miss this opportunity to get the project
back on track. At the end of the project, it is too late to take the time to do it right.

Maxim Verbal agreements aren't worth the paper they're printed on

Be Mindful of the Customer's Perceptions. Through experience, one develops a
way of doing things that works well. The process becomes almost rote. What is impor-
tant to establish early and what can be left for later is understood and proven to work
well.

Customers, on the other hand, have their own experience base to draw on and for that
reason may have a different perspective. What is currently unimportant to a project team,
based on where the project is in the process, may be very important to a customer. A
known, minor programming error, for example, if left unattended, can rankle a customer,
causing a lack of confidence in the model and the project. This, in turn, can cause
the verification and validation effort to extend well beyond what would otherwise be
considered reasonable. What would have been a simple correction turns out to be a
major disruption. Therefore, quickly correct any mistakes the customer perceives as a
problem.

Maxim Customer perceptions require attention.

22.3.6 Analysis

Experiments are conducted with the simulation model to draw inferences. This involves
the application of analytical techniques, such as estimation procedures, variance reduc-
tion techniques, and design of experiments (see Chapters 6 to 9). The inferences drawn
relate directly to the objectives established earlier for the project. In performing this
step, the following practical guidelines are offered:

1. Work the model.

2. Question the output.

3. Understand the model's limits.

4. Know when to stop.

5. Present a choice.

6. Sell success.

736 GUIDELINES FOR SUCCESS

Work the Model, A simulation model is built to stimulate thinking. With it, the project
team begins to see, often as never before, the system working as a dependent set of sub-
systems. Given the opportunity, the model can lead the team to fascinating discoveries,
each revealing valuable insights about the system's various cause-and-effect relation-
ships.

These insights come from the team exercising the model, not from the model itself.
The model is the medium through which perceptive observations are made. Think of it as
a window to the system. Through it, the system can be studied from various perspectives.
At times, the picture may be blurred, but by using the team's collective judgment skills,
the details can be filled in. At other times, the picture may be especially clear, offering a
telling view of dependencies and unexplored relationships. By continually repositioning
the window, the model becomes an invaluable tool to generate and test ideas, observe
the system's sensitivity to changes, and examine its underlying behavior.

Maxim Let the model work for you.

Question the Output. Challenge the model's outputs. Can they be explained? Can
they be defended without getting into technical details? Do they make intuitive sense?
If not, check the work. Something is wrong! Examine the assumptions. Reverify and
revalidate the model. There must be a rational explanation.

At the end of the project, compare the results with the crude analysis the customer
did at the beginning of the project. Are they different? If so, why? If not, evaluate
whether the project should have been done. What value did it offer? How did it change
the customer's thinking? In the future it may not be necessary to simulate a system that
exhibits such predictable behavior.

Maxim If it doesn't make sense, check it out.

Understand the Model's Limits. At best, a model is less than reality. By its very
nature, it is an abstraction of the system, one that is roughly right. This means a solution
for the model is not necessarily a solution for the system. A degree of interpretation
must accompany each analysis. Caution is advised here. Be careful not to stray beyond
reasonable limits. Extrapolating results outside the model's inference space is risky. To
judge what is reasonable, revisit the model's objectives, assumptions, and inputs.

For example, suppose that a model does a superior job of evaluating policy decisions
over a range of demand patterns. Predicting the relative performance of these policies is
within the scope of the model. However, it does not necessarily follow that this model is
also a good predictor of future workload. Besides setting the policy, this would require
identifying the representative demand pattern of the future. Absolute results such as this
require another level of model validation. Carrying this further, assume that these poli-
cies are on a national level. Claiming regional behavior in the output could be valid only
if regional effects were characterized in the input. Without this, any regional findings
are groundless.

Models are not meant to replace individual thought. Their purpose is to support the
decision-making process, not to supplant it. Successful projects depend on valid models,
sound statistical analyses, and cogent reasoning. This is why it is so important to keep
the customer involved. Ultimately, it is the customer who must drive the value of a
solution. The model cannot do this.

22.3 GUIDELINES 737

Maxim People decide; models don't.

Know When to Stop. More can always be done on a project. The model can be
expanded, the data refined, and the output reformatted. Analysis can also continue. Per-
haps it would be helpful to test the sensitivity of the results to boundary conditions,
conduct a more rigorous statistical evaluation, or examine several more alternatives.
And, if this is not enough, surely more training and better documentation are in order.
The list is never ending.

Prepare the customer for this eventuality. During the project, work with the customer
to define a suitable stopping point. This is a judgment call, but one with which the
customer must feel comfortable. Transition the customer into owning the continuation of
the project. This could involve teaching the customer how to modify the model, decipher
errors, and interpret output. The project is deemed far more successful if progress can
continue following the project team's involvement.

Maxim Ultimate truth is not affordable.

Present a Choice. The customer may ask for a solution but really wants a choice.
Narrowing the solution set to one option is often too confining. It limits the extent to
which other reasoning can enter the picture. Moreover, if this solution is rejected for
any reason, the project has no place to go. The team risks having the entire project
rejected. Alternatively, by presenting a range of possibilities, the customer has more
freedom, naturally becomes more involved in the evaluation process, and gains a better
understanding of why the best is best. The knowledge gained here by the customer can
be more valuable than the solution itself. Besides, with a choice, the customer has a
harder time finding fault. It is much easier to dispute one solution than a set of solutions.

Maxim People don't resist their own discoveries.

Sell Success. Selling the value of a project continues throughout its life . . . and
beyond. It starts with the proposal and continues past implementation. Seize every
opportunity to reinforce the original reasons for doing the project and trumpet the
value-from the customer's perspective-of what has been done. Pursue these oppor-
tunities aggressively. Success does not come to the project; the team needs to go after
it.

Learn to accentuate the positive. The team will have enough support in exposing the
negative. Moreover, sell success, not underachievement. Compare the project's progress
more to where it was than to where it is going. It will always be short of its objectives
until the end. Continue to remind everyone where the project started and how far it has
come. At every opportunity, make known what has been accomplished.

Maxim Report successes early and often.

22.3.7 Documentation

Simulation models are built to be used. Through use, they evolve. Having complete
documentation of the model and the project provides the requisite information to support
continued use of the model and to extend, if necessary, the model building and analysis
efforts. Guidelines here include:

738 GUIDELINES FOR SUCCESS

1. Adhere to standards.

2. Report progress.

Adhere to Standards. Following good programming and documentation standards is
always prudent. While some simulation models are built to examine a current issue and are
never used again, others are built to study afull range of issues, both current and future. The
latter models can last decades. The importance of maintaining good programming and doc-
umentation practices is quite evident in those cases where the model is projected to have an
extended life. As for the short-lived models, on the other hand, the need is not as evident.
This is why these "disposable" models are not often held to the same set of standards. Yet
model longevity cannot be predicted with certainty. Many so-called quick-and-dirty mod-
els have resurfaced years later. With little documentation to go by, the effort to reverify
the model can be substantial. Moreover, if the need arises to revise or extend the model,
the team is severely handicapped. Consequently, good programming and documentation
practices should be applied consistently whatever the model's life expectancy.

The value of establishing and working to a set of standards is manifested in many
ways. Communication among team members is improved, debugging time is minimized,
and model maintenance is less onerous. Although working to standards is usually not
recognized and seldom appreciated by the customer, it nevertheless is a worthwhile
activity. This is especially true if the customer becomes involved with debugging, mod-
ifying, or maintaining the model.

Maxim Conform for clarity.

Report Progress. Progress reports provide an important, written history of a project.
They give a chronology of work done, decisions made, what worked, and what didn't.
This can prove to be invaluable as one strives to keep the project on course.

Reporting should occur at least monthly. In this way, people who are not directly
involved in the project's day-to-day activities can stay involved. By regularly reporting
the project's status and plans, these people have an extended opportunity to advance
the project and its chance of success. Regular reporting also surfaces misunderstandings
early in the process, when problems are most easily resolved and changes are less costly.
The project team cannot afford to have problems fester. By reporting on them early, their
impact is minimized.

Keeping a project log is also important. The log should provide a comprehensive
record of accomplishments, noteworthy problems, change requests, key decisions, ideas
for follow-on work, and anything else of major or even minor importance. This can be
indispensable when developing a historical record of the project, especially one in which
objectives, scope, schedules, or personnel have changed.

Maxim Document, document, document!

22.3.8 Implementation

A simulation project needs to lead to some concrete action by the customer, for ulti-
mately this is how a project is judged. If system performance improves as a result of
taking this action, the project is considered successful. To get to this all-important point
of action, the following guidelines are offered:

22.3 GUIDELINES 739

1 . Inspire trust.

2. Have a winning attitude.

3. Foster teamwork.

4. Involve key influencers.

5. Structure presentations.

6. Advocate improvement.

7. Follow up.

Inspire Trust. If there is any quality that is vitally important in the team's relationship
with the customer, it is trust. This is the root of the relationship. It is this firm belief in
the integrity and reliability of the project team that, in the end, gives the customer the
necessary confidence to take action. Having to live with the consequences of any project
action, the customer remains keenly aware of these qualities in the team. Without this
confidence, no action results.

The project team must constantly work to win this trust. This is not easily done, for
trust is something that is earned-not through words but through actions. It is built by
maintaining high principles and keeping one's word. Once earned, trust must never be
taken for granted. One thoughtless moment can quickly erase what the team has worked
so hard to accomplish. Once lost, it is all but impossible to recover.

Maxim Only promise what can be delivered and always deliver what was promised.

Have a Winning Attitude. Failure is far too common-failure to understand, failure
to try, failure to take action, failure to perform. On the other hand, success, which is
unquestionably more pleasing, is not common enough. S o how can the team improve
the project's chance of success? Attitude is a great equalizer.

Any project has a much better chance of succeeding if the team's attitude is aligned
accordingly. Setting a positive tone creates a successful climate. Stay upbeat. Exhibit
positive, optimistic thinking. Expect success and keep it in the forefront of everyone's
mind. Truly own the attitude. Feel it, show it, say it, repeat it, and picture it. Help others
to see and feel the same way. The team's attitude goes a long way toward influencing
the results that can be achieved.

Keep in mind that wanting to succeed is not the same as expecting to succeed. Every-
one on the team wants to be associated with a successful project, but not everyone
expects to be. Some expect the approach to the problem to fail. Some expect interest in
the project to wane. Others expect the results to be inconclusive. Still others expect no
action to be taken by the customer. Work to create positive thinking at the beginning
and throughout the project. Dispel any doubt and disbelief. As the team gets accustomed
to thinking the project will succeed, it will.

Maxim Success is an attitude.

Foster Teamwork. A simulation project is more than building a model or managing
a process; it is working with people. The team must work well together if the project
is to succeed. This means having trust and respect for each other. It means taking full
advantage of the team's collective strengths, with each member adding to the team's
understanding based on his or her distinct knowledge and experience. It means working

740 GUIDELINES FOR SUCCESS

as a unified body, with all members being aware of their role and importance to the
general outcome of the project. It means avoiding pointless conflicts. And it means
being open to sharing crucial information that will help advance the project. By having
the team specify, build, search, discover, and conclude together, the entire project is
enriched. To the degree the team succeeds, the project succeeds; to the degree the team
fails, the project fails.

Recognize that some people could have a self-interest in seeing the project fail, for
they may feel threatened by its success. This could be for many reasons, including job
security, exposure, or power. Identify these people early and move quickly to resolve the
conflict. People working in harmony get a lot more done than those who are working
at cross purposes with each other.

Organizations are inherently political. It follows that implementation, which involves
working with people at all levels of an organization, is necessarily a political process.
To succeed requires skill in practical politics. Observe the customer closely and make
an effort to understand what is occurring not only in his or her department, but the
company in general. Use this knowledge to put the right spin on the project, whether
it is in presenting the results or in asking for an extension. Be continually armed with
accurate information about the company and the industry in which it competes. Then,
in moving the implementation forward, use this information to rally the project team
and work the organization. In other words, go beyond just solving the problem; move
the customer to action.

Maxim Focus on possibilities, not personalities.

Involve Key Influencers. Serve the needs of both the key decision makers and the
process owners to avoid project meltdown. If the key decision makers are not already
directly involved, meet with them upfront to agree on objectives, scope, and approach.
Get their commitment, incorporate their ideas, and allay their concerns. Then meet with
them periodically to inform them of the team's progress and to reaffirm their commit-
ment. As for the process owners, they are the ones who will be most affected by the
project's findings. For this reason, they have a vested interest in the results. Work dili-
gently to gain their support. Their involvement is particularly important during problem
formulation, model conceptualization, validation, analysis, and implementation. By get-
ting both the key decision makers and the process owners involved from the start, neither
camp is likely to disrupt progress in the middle of the project by resetting expectations.
This avoids what could be a costly and demoralizing development.

Watch for signs of the project not being a priority, such as data-gathering delays, end-
user unavailability, management dissociation, decision postponements, deadline slip-
pages, and apathetic or even hostile attitudes. When these signs appear, call on upper
management to reset the priorities.

As stated earlier, changes in project personnel can be very harmful to a project. To
help prevent these changes, enlist the support of departmental management. Make sure
that they understand the commitment required of their people and the project's value
to their department. By getting their early support and then keeping them informed of
the project's progress, the project team is less likely to be forced to replace or reassign
people.

Maxim Pull in key influencers to prevent the project from being pushed out.

22.3 GUIDELINES 741

Structure Presentations. Too often project teams lose a great opportunity to make a
difference because they fail to make a persuasive presentation. Their techniques obscure
the message. While good techniques cannot save poor results, poor techniques can cer-
tainly weaken good results.

Take time to present the message in a clear manner by focusing on organization,
editing, preparation, and delivery. Organize the presentation to be clear, interesting, and
relevant. Have an unmistakable purpose, direction, and strategy. Anticipate questions,
preanswering them in the presentation material. Strive for a logical flow throughout,
appealing to reason and building toward a believable and convincing close.

Next, edit the presentation for punch. Know what the project team wants from the
audience and go directly after it. Brevity is an asset. Show more than write. Illustrate
more than explain. Stress benefits more than details or features. Focus on qualitative
insights more than quantitative results. Use visuals to hold attention, emphasize points,
improve understanding, and clarify the message. But mainly, get to the point. A pre-
sentation is a compendium, not a thesis. The customer can get the full story later.

Once the message is set, prepare the delivery. Become familiar with the material,
committing to memory the important points and their sequence. Memorize a strong
introduction and a concise close. Learn the presentation point by point, not word for
word. Then rehearse it to correct potential problems.

Finally, deliver the message. Flavor the presentation using voice pitch and tone to
emphasize particular points. Use pauses to attract attention. When presenting visuals,
inform the audience of what they should see. Explain meanings and implications more
than the visual itself. Carefully choose words and phrases to get the desired results.
Avoid excuses, for they deflate the message. Use gestures to add interest, variety, and
impact. Through careful use of voice and body, one can inform, convince, and motivate
the customer into action.

Maxim Presentation is as important as content.

Advocate Improvement. A simulation project usually results in system improve-
ments. These improvements are the result of change, such as a new operating policy,
a different cell configuration, or a new order allocation scheme. Whatever the change,
expect resistance and take action to overcome it. Enlist management support, educate
those affected as to the value of the change, sell the team on the importance of being
proactive and enthusiastic about the change, and educate the customer as to the benefits
associated with carrying out the change. By involving everyone in the change process,
resistance is mitigated.

As stated earlier, getting customers to make a change is heavily dependent on their
confidence to take action. Giving a customer a sense of control over the project helps
instill this confidence. Learn, therefore, to guide the simulation process without usurping
the customer's control. With loss of control, the customer becomes either angered or
uninterested. In either case, the project falls into disfavor, and any attempt to implement
constructive change is unlikely.

Maxim Be a change agent; have a bias for action.

Follow Up. At the end of the project, know that it is not over. Keep the line to the
customer taut by taking the time to stay in touch. Be proactive in making sure that the
objectives are satisfied. Were the recommended actions taken? How were they received?

742 GUIDELINES FOR SUCCESS

Have any new issues been raised? How has performance changed? Are the benefits
being realized? Focusing on the objectives throughout the project naturally leads to a
genuine interest in how these objectives are eventually fulfilled.

After the project, continue to nourish the relationship with the customer. The effort
put forward to establish this valued connection in the first place should not be wasted.
Periodically, renew contact. Keep the relationship fresh. Find out what the customer's
current needs are and offer suggestions. Even though the project went well, further con-
tact and encouragement are required to maintain a lifelong partnership. By occasionally
investing the little time necessary to make another positive impression, one continues
to build a strong and healthy relationship with the customer.

Maxim Projects never end; they just transition to another state.

22.4 CONCLUSIONS

Everyone's project experience is different. What may hold true for one simulationist
may not hold for another. Yet, as one's experience grows, so does one's belief in cer-
tain fundamental truths. The specifics of the simulation process invariably change from
project to project, but the basic activities associated with this process do not. Accord-
ingly, a set of principles can be developed.

This is not to suggest there is only one way to be successful or only one set of
principles by which to conduct a simulation project. The complex combination of factors
that affect a project is too bewildering for this. However, working from a well-founded
set of principles can make a difference. Projects proceed in a more directed manner
with fewer distractions and delays. The result is an increased likelihood of success.

The guidelines presented here are straightforward actions that have repeatedly proven
their value. While each is exceedingly important, one fundamental truth transcends them
all: customer value governed by responsible action. By accepting and following an ethic
that places the welfare of the customer first, the more temporal goals of building a valid
model, performing an exhaustive analysis, or completing the project on time and within
budget become overshadowed. By putting the customer first, in the end and long after
these other goals have faded, one is left with the deep satisfaction that comes with
having succeeded for the customer.

ACKNOWLEDGMENTS

The contents of this chapter are taken primarily from two papers [6, 71 originally pub-
lished in the Proceedings of the Winter Simulation Conference. Both papers have been
revised and updated for this chapter.

REFERENCES

1. Banks, J., J. S. Carson 11, and B. C. Nelson (1996). Discrete-Event System Simulation, 2nd
ed., Prentice Hall, Upper Saddle River, N.J.

2. Law, A. M., and W. D. Kelton (1991). Simulation Modeling and Analysis, 2nd ed., McGraw-
Hill, New York.

REFERENCES 743

3. Pritsker, A. A. B., C. E. Elliott Sigal, and R. D. J. Hammesfahr (1989). SLAM 11 Network
Models for Decision Support, Prentice Hall, Upper Saddle River, N.J.

4. Pritsker, A. A. B. (1995). Introduction to Simulation and SLAM 11, 4th ed., Wiley, New York.

5. Pritsker Corporation (1993). Simulation: A Decision Support Tool, Pritsker Corporation, West
Lafayette, Ind.

6. Musselman, K. J. (1992). Conducting a successful simulation project, in Proceedings of the
I992 Winter Simulation Conference, J . J . Swain, D. Goldsman, R. C. Crain, and J. R. Wilson,
eds., IEEE, Piscataway, N.J., pp. 115-121.

7. Musselman, K. J. (1993). Guidelines for simulation project success, in Proceedings of the 1993
Winter Simulation Conference, G. W. Evans, M. Mollaghaserni, E. G. Russell, and W. E. Biles,
eds., IEEE, Piscataway, N.J., pp. 58-64.

CHAPTER 23

Managing the Simulation Project

VAN NORMAN

AutoSimulations, Inc.

JERRY BANKS

Georgia Institute of Technology

23.1 INTRODUCTION

In this chapter we discuss management of the simulation project. It begins with the
motivations for simulation. Then we take a reversed role and discuss situations when
simulation is not appropriate. Next, the manager's role as a consumer of simulation is
discussed. Then we describe the steps in starting a simulation project and the roles of
the manager after the startup is completed. Next we suggest ways to avoid problems
or pitfalls in the simulation process. Finally, we discuss ways that the manager can get
information and training about simulation.

23.2 MOTIVATIONS FOR SIMULATION

There are many possible motivations for simulation. We have discussed this material in
other settings (Banks and Norman, 1995) as "justifying simulation to managers." Our
concern then was for the simulation analyst who needed to convince management that
simulation was the appropriate technology. In this setting we present the material for the
same reason as previously, but also for the case where the manager must also convince
others once the decision has been made to use simulation.

23.2.1 Will the System Accomplish Its Goals?

Perhaps the most frequent question asked of the simulation analyst is: Will the system
accomplish its goals? A system is designed to achieve a specified performance level or
throughput, and the designer wants to know if the intended throughput will be achieved.

Handbook of Simulution, Edited by Jerry Banks.
ISBN 0-471-13403-1 0 1998 John Wiley & Sons, Inc.

746 MANAGING THE SIMULATION PROJECT

The simulation model to answer this question can possibly be less detailed than when
more specific questions are asked, such as those about the waiting times of entities at
different parts of the system.

23.2.2 The Current System Won't Accomplish its Goals; Now What?

The flip side of the first question is the second question: The current system won't
accomplish its goals-now what? In this case, the system already exists, but it is not
functioning at its designed level, or the requirements have changed. In this situation the
simulation analyst will examine many possible scenarios. These scenarios are posed by
the client. In an unusual situation, the client, out of desperation, asked the simulation
analyst to develop a scenario. By the time the situation had reached this state (many
scenarios had been examined, but none accomplished the goals of the system), the sim-
ulation analyst had become so familiar with the interactions within the system that a
scenario was posed that was better than any suggested by the client (although the system
still did not accomplish its goals).

23.2.3 Need for Incremental or Continuous Improvement

This situation arises in several ways. In some instances there is excess capacity, under-
utilization of resources, and rightly or wrongly, it is desired to increase utilization. So
the simulation analyst is asked to see how much additional throughput is possible. In
the other case, an ultimatum might be given, such as: "Give us a 5% increase in out-
put, or economics dictate that this unit is going to have to be closed." This statement
was made to a large producer of an important commodity that became a major user of
simulation. Simulation led to improvements, much greater than 5%, and the production
facility is still going strong many years after the ultimatum was given.

23.2.4 Resolve Disputes

An actual case led to the inclusion of this as a reason to simulate. The client wanted to
increase throughput substantially in an existing facility, as it was staggering under the
existing load. A systems consultant made a claim to the client that the current facility
could handle the existing load without any expansion required. The client challenged
the systems consultant. After some failed attempts to prove the point, the system consul-
tant called a simulation consultant to help them prove that their intuition was accurate.
The simulation consultant showed that indeed the system consultant was right with a
reorganization of the current system. The client saved a great deal of money.

23.2.5 Solve a Specific Problem

The client recognizes that a bottleneck exists. The bottleneck is a symptom rather than a
cause. Two such situations, both in the field of rapid transit, are provided. A rapid transit
system in a major U S . city was very concerned about the impact on system performance
related to providing legally mandated handicapped access. When a handicapped person
wanted to enter the train, the loading time at a station was much greater than usual.
This affected the entire system of trains on the line. But handicapped access occurred
only on an occasional basis. The transit system wanted to better understand the systemic
effects of handicapped access, and they wanted to try different control strategies in the

23.2 MOTIVATIONS FOR SIMULATION 747

event of handicapped access. Simulation was very instrumental in establishing policies
to operate under the new laws.

In another case, a major city used parallel lines for their rapid transit system (like a
highway with two lanes). A major repair of the northbound line was planned between
two stations. The rapid transit planners wanted to know what was going to happen to the
system when both northbound and southbound trains had to travel on the same track.
Control algorithms were simulated to help understand how the system could be operated
while the repairs were under way.

23.2.6 Create a Specification or Plan of Action

In this instance the model algorithm becomes the plan of action. There are at least two
situations where this might occur. Consider the situation where a new manufacturing
system is being designed. A machine is needed, but the designer doesn't know what
the machine specifications should be. Simulation might be used with different machine
capabilities inserted for the unknown machine. When the system operates as intended
(in the simulation), the (simulated) machine specifications are provided to the machinery
supplier as design requirements.

We are seeing an increased use of simulation to create a plan for implementation
(the second situation). Thus the simulation model is constructed and fine tuned. Then
the simulation is followed as the implementation plan. An example is a new method
of assembly-line sewing in which workers move forward to the next operation (and
physical location) with the lot that they are sewing if there is no worker currently at
the next operation. There are many variations of this concept.

23.2.7 Sell an Idea

With the advent of simulation animation, managers (and customers) can readily under-
stand a new concept or proposal. After all, many managers immediately say "No!"
to any new idea. It's easier to say "No" than "Yes." But with simulation, much more
information is transmitted to the manager than with a thick report, lots of tables, and
numerous graphs. The new simulation analyst will be quite pleased to see the smile on
a manager's face and that "Aha!" body posture when the manager or customer gets the
new idea via animation. Even the old simulation analyst gets a positive charge from
this.

A real example illustrates how simulation was used to sell an idea. However, the
name of the tirm has been changed. The first day of the model review, there were 12
Apex Products people in the meeting from various parts of the organization. Some were
at the VP level of operations, some were floor managers, and others ran the shipping
docks. For most of them it was their first exposure to simulation. Most were skeptical,
and there was not much participation with what was going on in the model. We were
projecting the model 6 ft by 6 ft on the wall. The first day there were a lot of arms folded,
and we weren't sure whether they would come back for the second day of review and
experimentation.

The second day, each person who was responsible for a different part of the plant
took a turn in front of the screen where we were projecting. Each seemed to take a
sense of ownership in the area that had been redesigned. The simulation became the
focal point of the discussions, and each person anxiously awaited the results of the
next run. We found problems and fixed them on the fly. We did what-ifs to satisfy the

748 MANAGING THE SIMULATION PROJECT

curiosity of several of the area managers. We pushed the system to see where it would
break. At the end of the day, all seemed to be satisfied that we had tested the system
adequately.

What happened between the first and second days? There were several factors. First,
the model was not quite verified on the first day. We were down to the wire getting the
model up and running for the review meeting. Within 20 minutes that lack of verification
was apparent to all. With animation there is no hiding what is really happening, and
those who knew their operation were not amused. Also, because of the (Apex Products)
project team's unfamiliarity with simulation, there was a certain "decompression" period
required before they were comfortable that simulation wasn't just a toy, and that serious
answers could be derived from the model.

Even though animation was very important in the example, simulation analysts real-
ize that animation is just pictures. It is useful to have animation for selling ideas and
for verifying and validating models. But the important aspect is the understanding that
comes from the simulation.

23.2.8 Direct Order

Fortunately for the simulation community, the direct order is becoming more prevalent.
In days past, selling simulation was an uphill battle. Now, more managers are aware of
the technology and are insisting that it be used.

An example is given by the following: A well-known sporting goods firm had a
single distribution center in the United States. This distribution center had been designed
without the use of simulation. The distribution center never achieved its goals, regardless
of what was done: adding shifts, adding overtime, and so on. The distribution center
manager called for a massive redesign of the system but insisted that it be simulated
first. At the outset it was stated that there are many reasons for simulation. Eight of
them were given here, and many more could be given, each with examples from the
real world.

23.3 WHEN SIMULATION SHOULD NOT BE USED

Simulation modeling has become an essential tool for many types of industrial systems:
for analyzing anticipated performance, for validating a design, for demonstrating and
visualizing the operation, for testing hypotheses, and many other uses. It is the preferred
tool in a variety of industries. In some industries, simulation is now even required prior
to decision making for all major capital investments. A question that is often overlooked
should be asked: Is simulation modeling the right tool for the problem? In this section
we discuss cases in which simulation modeling is inappropriate. This section is based
on an article by Banks and Gibson (1997).

In the past, simulation modeling was reserved for very large or specialized projects
that required one or more programmers or analysts with specialized training and much
experience. The recent proliferation of simulation software has lead to a significant
increase in applications-many by users without appropriate training or experience. It
has also lead to an increasing dependence on simulation to solve a variety of prob-
lems. Although many of these projects are successful, the tool can be-and sometimes
is-misapplied. We're concerned that this can lead to unsuccessful projects and that
simulation modeling--or the simulation software--can be mistakenly held at fault. An

23.3 WHEN SIMULATION SHOULD NOT BE USED 749

awareness of when "quantitative" problem requirements or "qualitative" project dynam-
ics indicate that simulation may not be appropriate should help avoid this mistake.

In this section we present some guidelines to consider before selecting simulation
as an analysis tool and 10 rules for determining when the technique is not appropriate
or may not lead to a successful outcome.

23.3.1 The Problem Can Be Solved Using Commonsense Analysis

Consider an example such as the following: An automobile tag facility is being designed.
Customers arrive at random to purchase their automobile tags at a rate of 100 per hour.
The time for a clerk to serve a customer varies but averages 5 minutes. What is the
minimum number of clerks required?

The utilization rate, p , is given by

where X is the amval rate (100 per hour), p is the service rate (12 per hour), and c
represents the servers (the unknown quantity). To avoid an explosive condition, p < 1.
Thus

Multiplying across gives

Solving for c gives

Thus, to avoid an explosive situation, at least nine clerks will be needed. The more
clerks, the shorter will be the average time waiting. This problem could have been
analyzed by simulation, but that is unnecessary and would take much longer to program
and run than the solution above.

23.3.2 The Problem Can Be Solved Analytically

There are steady-state queuing models, probabilistic inventory models, and others that
can be solved using equations (i.e., in a closed form), and this is much less expensive
then simulation would be. In the license tag example above, assume that all the times

750 MANAGING THE SIMULATION PROJECT

are exponentially distributed. How long do the customers wait in the queue, wp, on
average, if there are 10 clerks? This is called an M/M/c queueing model, where the
first M indicates Markovian arrivals, the second M indicates Markovian servers, and
c is the number of parallel servers. Markovian is another way of saying that the time
values are exponentially distributed.

An equation can be used to determine the probability that the system is empty, from
which the average number in the system can be determined. A graph was developed
by Hillier and Lieberman (1995) to accomplish the same result. Using that graph, the
average number in the system, L, is 10.8.

Little's equation relates L and w, the time in the system, as follows:

L 10.8
w = - = - = 0.108 hour

X 100

Customers spend their time either waiting in queue or being served. Thus

where 1/p is just the average service time, or hour. Then

wp = 0.108 - 0.083 = 0.025 hour

This is certainly a much faster analysis than using simulation.

23.3.3 It Is Easier to Change or Perform Direct Experiments on the Real
System

That it is easier to change or perform direct experiments on the real system might gen-
erally seem obvious, but not always. Consider the case where a detailed model of a
drive-through fast-food restaurant was constructed and used to test improvements on
customer service time by adding a second drive-up window. The model took weeks
to complete. A competitor tested the same concept by staging a second person with a
remote hand-held terminal and voice communication along the drive-up line and com-
pleted the entire study in a matter of days.

The rule of thumb here is: If the problem involves an existing system which can be
perturbed or measured without undue consequences, look first for a direct experiment
to answer the questions. In addition, a direct experiment avoids all questions relating
to whether the model was detailed enough, was properly validated, and so on.

23.3.4 The Cost of the Simulation Exceeds Possible Savings

Although almost every simulation project has many "qualitative" benefits, the expense
of the model, data collection, and analysis is usually justified by the expected quanti-

23.3 WHEN SIMULATION SHOULD NOT BE USED 751

tative payback. It is possible that a model may actually cost more than the potential
savings at stake. Accurately estimating the total costs of a simulation project requires
some experience, and many factors must be considered, including:

Project planning. problem definition, and process documentation

Model development and testing

Data collection, review, and formatting

Model validation

Experimentation and analysis

Possible updates or enhancements to the model

Project documentation and presentations

Also to be considered are the costs of the simulation software (if not readily avail-
able) and computer resources. Simulation of a complex problem can easily run into
the tens of thousands of dollars. Models of large facilities with complex operating pro-
cedures and control logic (such as a large distribution center) or the need to use real
(historical) data or actual product location and quantities can raise the cost even higher.

Generally, simulation project costs are compared to potential savings or cost avoid-
ance. If the potential savings are not clearly greater than the estimated simulation costs,
the model may not be justified. On the other hand, some simulation projects are under-
taken because of perceived risk-for systems that are too complex to understand other-
wise. These models provide a level of insurance to understand if and where possible
problems lurk.

23.3.5 Proper Resources Are Not Available for the Project

Primary resources required to complete a successful simulation project include people,
software, and money. The most critical component in any successful simulation project
is people-an experienced analyst who understands the problem, selects the proper level
of detail, translates it into a simulation model requirement, programs the model, and
so on. It is surprising how often there are attempts to solve important problems with
simulation by a person with little or no training and without proper experience.

The advanced simulation software now widely available certainly helps, but it is not
a substitute for the proper people resources for a project. If a properly trained simulation
modeler is not available for a project, it might be best (and less risky) to look for outside
help. Remember that a poorly constructed model is worse than no model at all, because
the flawed results may be used anyway.

Proper funding for a project is also critical. Assume that you are to manage a project,
that you have properly trained people, and that you have the appropriate software, but
the project cost estimate is twice the available project funding. How to proceed? Our
recommendation is: Don't simulate. The project objectives will probably have to be
compromised and comers cut in the model design and planned analysis experiments in
order to come close to the budget. This will put the project goals at risk in that the
resulting model may not be capable of providing the required results. Simulation, or
the software selected, or both, will mistakenly be held at fault. Often they are not at
fault-they are just misapplied.

752 MANAGING THE SIMULATION PROJECT

23.3.6 There Isn't Enough Time for the Model Results to Be Useful

A time constraint is usually caused by one of two reasons: (1) the project schedule is too
short, or (2) model development and testing takes too long. This is a very frustrating but
not uncommon problem. You've worked hard to complete a model, carefully verified
and validated it, and are in the middle of running experiments when you're told: "The
decision has already been made to proceed with the facility-we didn't have time to wait
for the simulation results." Sometimes a project has a decision "window" when results
are needed. Earlier results may be ignored or may miss critical data or assumptions not
yet available. Late results may arrive after the window has been closed-the decisions
are already made. Timing the results when they are needed can be a challenge!

Simulation studies tend to be commissioned at the last minute, often as a "final
check." Often, the schedule is unrealistic to begin with. If there isn't sufficient time
to conduct a proper project, the analyst must make coarser assumptions, skip details, or
otherwise cut comers in an attempt to meet the schedule. How do you know if critical
detail was left out and the results are not meaningful? No textbook can define where the
level of detail or complexity should be set-this is based on experience, on a project-
by-project basis.

A simulation model should be detailed enough so that the questions posed can be
answered, but not too detailed. A typical error for an inexperienced user to make is to
start with too much detail in the model, which invariably takes longer to develop and
test than was initially estimated and scheduled.

If not enough time has been allowed in the overall project schedule to produce results
and put them to use, it may be better if you don't use simulation. This means allowing
time to change the system design and resimulate if needed!

23.3.7 There Are No Data-Not Even Estimates

During the design phase of a simulation project, one of the most critical tasks is to
determine if the data required to meet project expectations and support the level of
detail planned for the model are available, and if not, how they can be obtained. In
some cases the data may not be available, and either impossible, impractical, or too
expensive to collect. Don't fall into the trap of committing to a project and building the
model before checking to see if the necessary data are available. The temptation will be
to proceed with the analysis anyway, since you've already expended the effort to build
the model, and people may be counting on the results.

It is possible to perform sensitivity testing using estimates of the data values, but
this still requires estimates about the range of values for critical data items! Guesses
can lead to inaccurate conclusions; remember, a model is only as accurate as the quality
of its input data.

23.3.8 The Model Cannot Be Verified or Validated

An inability to verify or validate is usually the result of a lack of one of three critical
ingredients; people, data, and time.

1. The project analyst may not understand how to verify the model properly (lacks
sufficient training and/or experience).

23.3 WHEN SIMULATION SHOULD NOT BE USED 753

2. There may not be useful performance data for comparing the model results against
test scenarios in order to validate the model.

3. The project schedule doesn't allow for sufficient testing and/or validation activ-
ities.

As indicated in Chapter 10, these are many test procedures that help to build con-
fidence in the model, but you must still question if those that are used are sufficient
to support the decisions that may be made based on simulation results. The topics of
verification and validation are mentioned again in Sections 23.6.6 and 23.6.7. If the
model is not properly verified and validated, results will be questioned and may not be
accepted (probably shouldn't be accepted!).

23.3.9 Project Expectations Cannot Be Met

Nine times out of 10, the failure to meet project expectations is due to a lack of prop-
erly educating management decision makers about what is realistic and possible when
solving the problem with a simulation model. Management may have unreasonable
expectations-usually, they expect too much too fast. When it can't be delivered, they
may mistakenly blame simulation technology or the analyst. People with no experience
in simulation often conclude that once a system is modeled, the model will be capable
of answering any question that they may wish to ask of it. It can be difficult to explain
that models are only capable of answering explicit questions that they were designed
to address.

In the remaining one of 10 times, the analyst overestimated either his or her own
capability or the capability of the software being used. Here's an example: The problem
is to simulate a large beverage plant, with production in the 100,000 cases per day
range. Questions to be answered require a very detailed model. The analyst decides to
model each individual can or bottle through the entire process. With a massive number
of active entities flowing through a detailed simulation, the model runs in something
close to real time, and the animation proves useless because of an unreasonably high
demand on graphics. The analyst struggles to validate the model but can produce only
one experiment run a day; management quickly loses interest. If the project expectations
are unreasonable and cannot be modified or controlled, the project will be very difficult
to complete successfully and may be a "don't simulate" candidate.

23.3.10 System Behavior Is Too Complex or Cannot Be Defined

The system to be simulated must be thoroughly understood and properly documented
before modeling begins. If not, there is no way to create an accurate model. The analyst
will be forced to guess or "be creative." Some systems are so complex that building an
accurate model (within an acceptable schedule and budget) is not possible. This is often
the case where (complex) human behavior is a critical part of the simulated system.

For example, modern automated distribution centers are complex, and because of this
are frequently simulated prior to implementation or modification. Most are driven by
computerized warehouse management system (WMS) software, which select and com-
bine orders to process. Almost all of the actual order processing (picking) is performed
manually-people run the facility, even in automated environments. Typically, the sce-
nario simulated is an average (in some cases, a peak) day, and the model results can be

754 MANAGING THE SIMULATION PROJECT

quite accurate. But in a real facility when an unusual event occurs and the orders start
falling behind schedule, people will change their normal behavior or activities to "find
a way around" the system constraints in an attempt to meet the schedule. This behavior
can be quite varied and virtually impossible to describe and simulate completely for all
possible scenarios. Model results for these "crash case" scenarios almost never match
what occurs in the real system and are simply unreliable.

23.4 MANAGER AS CONSUMER OF A SIMULATION PROJECT

In this section we examine the role of the manager as a consumer of simulation. In this
role the manager has determined that simulation is necessary, then works with the sim-
ulation analyst either internally or externally. We provide some common problems from
our experience as simulation consultants in working with our clients. We have observed
both effective and ineffective ways that managers work with simulation analysts. Some
of the important issues for managers are presented in the following paragraphs.

23.4.1 Decision-Making Window

Most decisions about systems have a window during which information is useful. But
after the window is closed, the information is virtually useless. Simulation studies need
to be planned and scheduled to provide information that can be used effectively, in a
timely fashion, by the decision maker.

23.4.2 Time and Resources

To meet the decision-making window, resources must be available. We estimate that
the costs for conducting a simulation are less than 1% of the total project cost. We
also estimate that it costs 10 times as much to make a change in a system than doing it
right the first time. There is also a cost of lost productivity during the correction period.
With this information and some idea of the subjective probability of making a mistake,
a decision can be made as to whether and how much resources should be expended for
simulation.

With respect to the cost of doing simulation, in 1998 dollars, hiring a simulation
consultant costs about $5000 per week, and an average simulation project lasts around 5
or 6 weeks. Thus the average project costs in the $25,000 to $30,000 range. If simulation
software is being purchased, its cost is additional.

23.4.3 Internal Versus External Simulation Analysts

Given the information in the preceding sections, the decision as to whether to have an
internal or an external team conduct a simulation study is in order. The first consideration
is the timeliness. The decision-making window must be considered. If an internal team
is used, learning or relearning the software must take place unless the team is constantly
performing simulation projects. If simulation is going to be a continuous activity of the
firm, it may be wise to have an internal capability. The analyst cost would probably be
less, the simulation team would be in place and able to schedule the project, and the
simulation team would be more familiar with the system.

We have had success in combining forces between the internal group and the exter-

23.4 MANAGER AS CONSUMER OF A SIMULATION PROJECT 755

nal simulation consultant. The consultant spends several intensive days at the startup, then
provides general direction to the internal group. Consultants also work for firms that have
internal teams. This is often the case when the internal team is fully occupied with other
simulation work, but a project must be accomplished by the time the window closes.

23.4.4 Experience and Qualifications

What type of people make good simulation analysts? First and foremost, simulation ana-
lysts need to be system thinkers. They have to see the whole as the sum of its parts and
to see the relationships and interactions between the components of a system. Simula-
tion analysts need to have a knowledge of engineering statistics (i.e., hypothesis testing
and regression) as a minimum. Experience in model building and analysis is necessary
for success as a simulation analyst. We suggest 3 to 6 months of training on small
projects, or assisting in segments of large projects, before an analyst does any model-
ing at all. Whether an internal team is being constructed or an external team is being
considered, the same experience and qualifications are required. More on this topic is
given by Rohrer and Banks (1998).

23.4.5 Questions That Simulation Can Answer

There may be incorrect assumptions about what simulation can do. Generally, simulation
is principally descriptive rather than prescriptive. Given a design, the simulation analyst
can model the system and determine how the system will operate.

Simulation models are run rather than solved. In a system with stochastic behavior,
sufficient history is generated to develop confidence intervals on measures of perfor-
mance (average WIP, for example).

Several simulation software packages have recently added a capability to use heuris-
tic procedures such as evolutionary algorithms and scatter search to converge on a
solution that approximates a global optimum. This topic is discussed in Chapter 25.
Combining simulation with this type of optimization is an active area of research as
improvements in efficiency and speed are sought.

23.4.6 Data Requirements

Simulation requires data-sometimes, lots of data. A problem occurs when the data
do not exist. Then they need to be collected, summarized, estimated, or guessed. The
simulation modeling can proceed, even in the absence of data. There are cases where
an estimate is sufficient. For example, the model may be insensitive to the input.

23.4.7 Suggestions

The simulation process in Chapter I requires managerial involvement. For a success-
ful simulation project, the involvement of the manager is a must. This point is made
repeatedly here. The manager should also ascertain that the model is being verified and
validated as the modeling progresses. Failure to do so until the modeling is complete
will result in a veritable mess. The model will just be too big to verify and validate.

While preparing training materials for a simulation software recently, one of the
authors remarked how difficult it had been to verify and validate a rather small (say,
40 lines of code) simulation model. Two people had been performing verification and

756 MANAGING THE SIMULATION PROJECT

validation for about 2 hours, and more time was required. Those who begin to perform
verification and validation after the model is built (say with a minimum of 2000 lines of
code) face a monstrous problem. Start simply, grow the model, and verify and validate
at each step in the process.

23.5 EXTENDED ROLE OF THE MANAGER IN THE SIMULATION
PROCESS

This section is for the manager of a simulation team, perhaps new to the task. It provides
a set of activities that might be useful in starting a simulation project, at least to the
point where the technical activity associated with the simulation actually begins. Then
we discuss four roles of the manager during the technical aspects of the simulation
process.

23.5.1 Starting a Project

Banks and Gibson (1996) present 12 steps in starting a simulation project:

1. Define the problem.

2. Understand the system.
3. Determine your goals and objectives.

4. Learn the basics of simulation.

5. Confirm that simulation is the right tool for your problem.

6. Attain support from management.

7. Learn about software for simulation.

8. Determine the data that are needed and what is available.

9. Develop a set of assumptions concerning the problem.

10. Determine the outputs needed to solve the problem.

11. Determine whether the simulation will be done internally or externally.
12. Kick off the project.

These steps are intended for the simulation analyst, but in many cases the manager
needs to be involved, particularly when the analyst has limited experience. For example
in step 3 it is important to have agreement from all that are involved, and this includes
management. Even though step 5 is partially technical, as explained in Section 23.3,
there are still many questions that a manager should address.

Step 6 mentions the manager directly. Without managerial support continuing
throughout the simulation study process, the potential for failure is very high. Step 7 can
also be accomplished by managers. Managers can be helpful in the selection process
by opining on the importance of the various criteria.

Step 11 should involve the manager. It is suggested that first-time users and those
who are infrequent users of simulation use external consultants or work in combination
with external consultants. The learning curve for proficiency can be rather high for
simulation analysts. It is also time consuming to relearn a software package that has
not been used for a year, which is now represented on the shelf by a newer version.

23.6 MANAGER'S ROLE IN ENSURING QUALITY AND SUCCESS 757

Finally, in step 12, the manager should be involved in the kick off of the project.
This will give the simulation credibility and provide for a strong beginning.

23.5.2 During Simulation Process

There are four aspects in which the manager can significantly improve the simulation
process: promoting quality, technical facilitation, corrective action, and continuing sup-
port. These are explored below.

1. The manager needs to promote quality. The manager improves quality by ensur-
ing that no mistakes are made during any step of the simulation process. Additionally,
this is accomplished by requesting frequent reports and by challenging statements and
actions that may be unfounded.

2. The manager needs to provide technical facilitation. This does not necessarily
mean that the manager provides the technical capability. But the manager should rec-
ognize when, and if, the simulation analysts are "in over their heads" and be willing to
call for external or additional assistance.

3. The manager needs to provide for corrective action. If the manager observes that
the analysts are off course, the manager should suggest corrective action. It is possible
that the analyst is so immersed in the technical aspects of the simulation that he or she
does not see what is happening from a larger perspective. The manager should be the
questioner of reasonableness. As an example, a group of military simulation analysts
were examining a scenario using some new strategy and tactics. Their simulation pre-
sentation was being made to a general. The simulation analysts made a statement that
the forward progress of the force was something on the order of 60 km per day. The
general (manager) indicated that this was much higher than the advance of the Israelis
in the Six-Day War, and that this was unreasonable and sent the simulation analysts
back to their computers. The simulation analysts found that they had made some faulty
assumptions.

4. The manager needs to provide support throughout the simulation process. Man-
agerial support is required for success. Here is an example from the consulting area: A
large distribution center was being simulated. The question to be answered was: How
much buffer space is needed in front of each picking station? The consultants were
well received by the distribution center manager. The project got off to a good start.
But the distribution center manager was called to New York for a major reorganization
study. This manager was at the distribution center for only one day per week. It was
next to impossible to get an audience with the manager during that one day. The project
was completed, the consultants were paid, but the results were never implemented (no
management support).

23.6 MANAGER'S ROLE IN ENSURING QUALITY AND SUCCESS

This section is an aid to ensuring that the entire simulation process is successful. We
have returned to the steps in the simulation process mentioned in Chapter 1, and we
show how these steps can go awry (Banks, 1994). By understanding the possible pitfalls
in the simulation process, the manager can assure a higher-quality result.

758 MANAGING THE SIMULATION PROJECT

23.6.1 During Problem Formulation

The manager should understand thoroughly the problem and the environment that cre-
ated the need for a simulation. It is possible to nod one's head "yes" but to really have
no conception of what is being discussed. This could be dangerous, as the manager
certainly will need to ask questions about the simulation project as it proceeds. If the
problem is not understood, it will be difficult to ask intelligent questions.

It is also possible that a type 111 error will be committed if the problem is not for-
mulated accurately. A type I11 error occurs when the wrong problem is solved. The
simulation might be technically marvelous in this case, but it just doesn't solve man-
agement's problem.

During problem formulation, a set of assumptions about the system needs to be devel-
oped. These assumptions are an interpretation of the system to be modeled. The manager
should be certain that these assumptions are valid and that all assumptions are included.
At the end of the simulation project, the modelers will fall back on the assumptions if there
is a question as to whether the real system is represented by the simulated system. If there
is a difference between the two, and the difference comes from the list of assumptions,
additional costs may be incurred to revise the model so that it represents the real system.

A major problem can occur if the manager is not totally committed to the simula-
tion study. Involvement of management throughout the study process is imperative in
assuring that the simulation study results in a successful implementation.

During the problem formulation, the manager needs to develop the questions that
are to be answered by the simulation. The simulation model can then be constructed
with these questions in mind. Asking the questions after the model is constructed almost
always results in added costs and time.

The manager can also propose a set of scenarios to be investigated. This might be
accomplished in concert with the modelers. Scenarios are the different possible imple-
mentations of the system. The current system, or base case, is the first scenario. For
example, we might consider adding another machine X as a second scenario.

23.6.2 During the Setting of Objectives and Overall Project Plan

During this step the manager should help in stating the important measures of system
performance. There are many, many possible measures of how a system is performing
but generally only a few that are important in each case. Average time in system may
be important in one case but unimportant in another case. The manager should work
with the simulation modelers in deciding the appropriate measures.

Also, during this step, the manager, with the help of the simulation modelers, will
want to specify exactly what the study excludes and includes. The more detail included,
the longer and more expensive the study. Yet it is possible to exclude certain aspects,
to narrow the boundary, without sacrificing very much in information gained.

Simulation is not free. Its cost was discussed in Section 23.4.2. The manager is
warned not to allow a project to start with fewer resources than anticipated to complete
a simulation study. This produces an unsatisfactory result and can be harmful to future
simulation opportunities.

Similar to the preceding, the manager should not promise the results of a simulation
sooner than they can realistically be completed. There are those that want to be agreeable
and make promises that are likely to be broken. But rushing a simulation study only
results in failing at some aspect of the project.

23.6 MANAGER'S ROLE IN ENSURING QUALITY AND SUCCESS 759

The person new to simulation may wonder how it is possible that the time required to
complete a study can be estimated with any accuracy. There are at least two approaches
to these estimates. First, a manager could allocate days for each step in the simulation
process, and sum those. Another technique is based on experience. After the project
formulation, the complexity of the problem is related to similar projects that have been
solved. For a problem of similar complexity, x days were required, so the current project
should also take approximately x days. The authors' experience indicates that experi-
enced modelers can regularly estimate the days required within plus or minus 20%.

23.6.3 During Model Conceptualization

A major concern during this step is to start the model simply and add complexity incre-
mentally. It is virtually impossible to prepare the entire model of a realistic system and
then begin verification and validation on the total model. As indicated previously, we
strongly advise the manager to insist that verification and validation be accomplished
as the model grows. For example, in a manufacturing and material handling environ-
ment, first model the manufacturing processes, then add the conveyors, then add the
AGVs, then add the downtimes, then add the shift schedules, and so on, verifying and
validating the model after each addition.

Your simulation modelers may ask whether to model system symptoms or causes.
Sometimes it is acceptable to model symptoms and sometimes it is better to model
causes. For example, if a complex machine is breaking down, it is usually more appro-
priate simply to model the time between failures as some statistical distribution rather
than model all the interactions between the components inside the machine (modeling
the symptoms). On the other hand, if bottlenecks occur, it is not acceptable to model
their occurrence using a statistical distribution. Rather, you should insist on modeling
their causes.

23.6.4 During Data Collection

Request only necessary data from the client. It simply infuriates a client to ask why you
need the data and have you answer "I don't know, but we might need it later." Another
problem with data collection includes using summary measures instead of individual
values. Simulation is usually based on random inputs. These are obtained, hopefully,
from historic data. However, using only the mean value is not using the distribution of
all the values, and these mean values are not as helpful in simulating the real system.
Also, be concerned about using past data when conditions have changed. This may be
necessary if there is nothing else available. But it is risky.

23.6.5 During Model Translation

Buy the most powerful and flexible software that you can afford. The price differential
among the popular software packages is not great. When the cost of a simulation analyst
is about $5000 per week, saving a few thousand dollars between software packages may
rapidly be offset by substantially decreased productivity. For example, software can vary
greatly in the implementation of a material handling construct. Some implementations
are simplified, others are much more realistic. If there is no competition for the resource,
treating it simply may be acceptable. But this may not be the case.

Consider a situation in which there are two cranes that are operating along the same

760 MANAGING THE SIMULATION PROJECT

bridge. Having simulation software that can adequately model bridge cranes can save a
great deal of time, as this is a rather tricky device to model (they compete for space on the
bridge). S o the manager needs to help in the selection of the right tools for accomplishing
the simulation. Power, speed, and accuracy of the tools are important. But also consider
other factors, such as technical support provided by the software vendor, the quality of the
documentation, and the frequency of updates and enhancements to the software. The topic
of simulation software selection is discussed further in Chapter 25.

23.6.6 During Verification

The major problem that occurs is when no planning for verification takes place.
Resources have not been allocated. If verification occurs at all, it is an afterthought
rather than something conducted from commencement of the modeling.

Even if verification is conducted, it may not exercise the model fully. For example,
have all possible combinations (routes that an entity can take through the system) been
tested? There are many techniques that can be used, as indicated in Chapter 10. A very
easy verification technique, often overlooked, is to check the output for reasonableness.

Virtually all of the major simulation software have an interactive run controller
(IRC); many call it a debugger. Using this feature, the progress of entities through the
model can be followed event by event. The IRC might have a feature in which it is
turned on whenever an entity enters a particular section of the model. Or perhaps the
IRC turns on whenever a particular situation occurs (e.g., whenever a particular queue
has 20 or more entities, turn on the IRC). The IRC can be tedious, but also very helpful.

Another verification tool that should be pushed by the manager is documentation.
Don't allow the simulation analyst to write 10,000 lines of code and then begin to
document what was done. Documentation should take place while the code is being
written.

Often, a model is built for the use of someone other than the developers of the model.
This might be called a turnkey situation. Thus your group builds the model, but another
group, perhaps totally unfamiliar with simulation, will exercise the model. A big concern
is data corruption by turnkey users. There are several ways to avoid such corruption.
One way is to build an interface that allows for changes in the model data, but only
through the interface. This will keep the turnkey user out of the model logic. Another
method is to use a run-time-only version of the model. This version might allow for
limited data changes but prohibit logical changes.

23.6.7 During Validation

The biggest problem is the manager who fails to insist on any validation whatsoever.
Many studies are reported in the literature that don't mention the word validation.
Whether validation was conducted or not is known only by the author. The definition of
simulation in Chapter 1 refers to the ability to draw inferences from the model. Valida-
tion provides that ability as a positive evaluation, saying in effect: "Yes, the simulation
model can be substituted for reality."

If validation is conducted, many stop it far too soon. They say, "yep, looks OK to
me." But look at the many techniques that can used, as indicated in Chapter 10. The
ultimate technique is where the simulation replicates the real environment with statistical
confidence. We only wish that it were that easy. Frequently, the environment that we
are simulating doesn't exist-it's only a concept in design.

23.6 MANAGER'S ROLE IN ENSURING QUALITY AND SUCCESS 761

23.6.8 During Experimental Design

Problems can occur in experimental design, including the failure to account for a warm-
up period or too few replications. Perhaps the manager is not a statistician, or studied
experimental design too long ago. Then it would be useful to become reacquainted
with the topic by reading Chapter 6. Also, some of the software products have built-in
statistical capability, including some basic experimental designs. The problem is that
using this capability blindly can result in some embarrassing moments, especially when
the manager is called upon to explain the technique or to explain how such statistical
results could occur.

23.6.9 During Production Runs and Analysis

Don't provide point estimates unless you are forced to do so; and then, do so only with
the caveat that it is a point estimate. This will save the manager from potential problems
when the actual value of the implemented system is different from that point estimate.
Even though many software packages have built-in statistical capability, pushing a but-
ton but not really understanding what is happening can be a very bad idea.

In~proper statistical interpretation can be a serious problem. Some experience in
statistics is needed. As indicated in Chapter 7, this subject is not to be taken lightly.

23.6.10 During More Runs

A concern to the manager at this step in the process is the amount of resources required
to conduct the appropriate number of replications and what options are being considered.
For example, if the variance is high and the required precision of the simulation is
also high, the number of replications can be very large. Let us say that the result of
the combination is n = 240, meaning that 240 replications are needed. Say that each
replication takes 30 minutes. Then 120 hours of computing are going to be required to
simulate this particular scenario. What if you don't have 120 hours of time to give to
this scenario? What if there are five scenarios and each takes about 120 hours? There
are several possibilities. One is to reduce the precision. Often, people ask for far too
much precision. They say, "I want the result to be within 1% of the true value of the
performance measure with 99% confidence." Perhaps it would be satisfactory to say,
"I want the result to be within 5% of the true value of the performance measure with
90% confidence." Rather than 240 (or whatever) replications being required, 20 might
do the job. Users need to evaluate the real requirements.

In consulting we are often faced with the dilemma of constrained time for analy-
sis. We would never perform just one replication of a simulation for a system with
randomness. Set a minimum number of replications, say five, and report the resulting
confidence interval.

23.6.11 During Documentation and Reporting

A serious matter is reporting what the client wants to hear rather than the actual model
results. Think of simulation as science, and the simulation analyst as a scientist, a
provider of information. Documentation should be thorough. It should describe all the
assumptions and methodology used in the simulation. Practice your presentation. We

762 MANAGING THE SIMULATION PROJECT

are very concerned that simulation be understood, perceived positively, and used more
widely. Documentation of the progress of the simulation is important also. Chapter 22
has much more to say about this.

23.6.1 2 During Implementation

Our position is that the simulation analyst be a reporter of the findings but not an advo-
cate. This is different from the position taken in Chapter 22. You decide which is best for
you. Also, the manager should anticipate continued support requirements (if you turned
the model over to another group). You need to plan on helping your client understand
the model and fixing any problems for an agreed-upon length of time, say 60 days.

23.7 SIMULATION TRAINING FOR THE MANAGER

In this section we discuss ways in which the simulation manager can enhance his or
her knowledge of simulation. We have participated in all the activities mentioned and
understand the benefits that can be derived. Let us assume that the manager has a tech-
nical background but that this background does not include simulation. The realistic
opportunities for the manager to become familiar with simulation are as follows:

Winter Simulation Conference

Simulation vendor-sponsored user group meetings

Short courses

Simulation in general

Software specific

Mentoring services provided by simulation consulting firms

Other conferences

23.7.1 Winter Simulation Conference

The Winter Simulation Conference (WSC) is the premier conference for discrete-event
simulation. It occurs in early December of each year; every third year in Washington,
D.C. WSC is sponsored by six technical societies and the National Institute of Standards
and Technology (NIST). Approximately 750 attend WSC, including academicians, prac-
titioners, and software vendors. Surveys indicate that about one-third of the attendees
have never been to a WSC. Thus many attendees may be new to simulation.

The technical program includes "tracks" that are of interest to newcomers to simu-
lation. One of these tracks consists entirely of introductory tutorials on all aspects of
simulation, presented by eminent persons in the field. These introductory tutorials are
well attended by approximately 80 people in each session. Another track of interest to
newcomers is on simulation software. The vendors, and sometimes others that use the
software, describe the latest release and give live demonstrations. Also of interest to
newcomers are the various applications tracks. Here newcomers can learn how others
solved a problem using simulation.

In addition to these formal sessions, there are three other features of WSC that are
important to newcomers. There is an exhibits area populated by some 30 booths. Here

23.7 SIMULATION TRAINING FOR THE MANAGER 763

the software vendors meet potential customers on a one-to-one basis. Another feature
is the reception, at which attendees mingle and discuss their favorite subject, simula-
tion. Third, the major software vendors have user group meetings at which they discuss
how they have addressed the challenges of the past year and explain features that are
upcoming in the next year.

The WSC is a boon to newcomers to simulation. Much information is exchanged.
The top people in simulation are in attendance and discussing their craft.

23.7.2 Simulation Vendor-Sponsored User Group Meetings

Generally, the major software vendors have an annual conference lasting from 3 to 5
days at a site near their principal location. These conferences include presentations on
applications of the software and training from basic to advanced on using the software.
These conferences provide an excellent opportunity for newcomers to see the entire
team that a vendor can field. It is an opportunity to talk to the vendor's support staff,
their training team, the software developers, and so on. Based on these interactions,
potential purchasers of simulation software can determine if there is a good fit between
their needs and what the vendor can provide. Usually, the vendor has a 'free for all'
in which they explain what improvements have been made in the software and what
enhancements are planned for the near future. Many of the attendees are extremely
familiar with the vendor's software and are not afraid to vocalize their concerns. This
is an opportunity for newcomers to glean how supportive vendors are to reasonable
requests by users. Warning: Some requests are unreasonable and newcomers may have
difficulty in separating these from reasonable requests.

23.7.3 Short Courses

There are two types of short courses: simulation in general and software specific. Gen-
eral simulation courses are of two types, public and private. Public courses are offered
by an educational institution or training group. These courses last from 1 to 3 days.
This is an opportunity to receive a vast amount of information in a short time.

Private courses may be more economical, depending on the number of people that
are to attend. Instead of sending five people to a public course for 3 days, it may be less
expensive to have the presenter come to your site for 3 days (one person travels for 4
days instead of six people traveling for 4 days). Also, the course can be tailored to meet
your specific needs. For example, your business may be heavily involved with material
handling. You may need a presenter who can talk about the simulation of power-and-
free conveyors and overhead cranes. Alternatively, your business may be services; you
may not need a discussion of material handling simulation at all.

23.7.4 Mentoring Services

Some consulting firms are willing to mentor those who need to learn more about the
simulation process. The visiting person works with simulation managers and consultants
on a full- or part-time basis on a specific project, usually related to the visitor's problem.
Much can be learned in a short time by "living the process."

764 MANAGING THE SIMULATION PROJECT

23.7.5 Other Conferences

Recently, other conferences have been organized to spread the word of simulation. For
example, the Society for Manufacturing Engineers (SME) has become quite involved
with simulation of manufacturing systems as has the Institute of Industrial Engineers
(IIE). Other groups that are supporting simulation presentations as part of a larger show
or conference include AUTOFACT (sponsored by SME) and PROMAT or NAMH (both
sponsored by the Material Handling Industry of America).

23.8 CONCLUSIONS

We have provided some suggestions for the manager of a simulation project. This man-
ager might be involved directly as manager of a simulation team, or indirectly as a
consumer of simulation, having ordered the service from a team not necessarily under
the manager's technical control. In either case, the suggestions made in this chapter
should help in completing the project successfully. This chapter is not a complete trea-
tise on the matter; it represents only what we have experienced over many years of
simulation consulting.

ACKNOWLEDGMENTS

The authors would like to thank Matt Rohrer of AutoSimulations Inc., and Randall R.
Gibson of Automation Associates Inc. for their suggestions. Material in this chapter is
adapted from Banks and Norman (1995), Banks and Gibson (1996). and Banks and Gib-
son (1997), with the permission of the Institute of Industrial Engineers, 25 Technology
Park, Norcross, GA 30092, 770-449-0491, Copyright O 1995, 1996, 1997.

REFERENCES

Banks, J. (1994). Pitfalls in the simulation process, Proceedings: New Directions in Simulation
for Manufacturing and Communication, S. Morito, H . Sakasegawa, K. Yonedo, M. Fushimi,
K. Nakano, eds., Tokyo, August 1-2.

Banks, J., and R. R. Gibson (1996). The 12 steps for getting started with simulation modeling,
IIE Solutions, November.

Banks, J., and R. Gibson (1997). Don't simulate when: 10 rules for determining when simulation
is not appropriate, IIE Solutions, September.

Banks, J., and V. Norman (1995). Justifying simulation in today's manufacturing environment,
IIE Solutions, November.

Hillier, F. S., and G. J. Lieberman (1995). Introduction to Operations Research, 6th ed., McGraw-
Hill, New York.

Rohrer, M., and J. Banks (1998). Required skills of a simulation analyst, IIE Solutions, May.

CHAPTER 24

How Discrete-Event Simulation
Software Works

THOMAS J. SCHRIBER
The University of Michigan

DANIEL T. BRUNNER
Systemflow Simulations, Inc

24.1 INTRODUCTION

A black-box approach is often taken in teaching and learning discrete-event simulation
software. The external characteristics of the software are studied, but the foundation on
which the software is based is ignored or touched on only briefly. The correspondence
between the foundation and its implementation in the software might not be studied
at all and related to step-by-step model execution. The modeler therefore might not
be able to think things through to develop good approaches for modeling complicated
situations, might not be able to use interactive tools effectively to come to an under-
standing of error conditions arising during model development, and might not be able
to use interactive tools to verify that complex system logic has been accurately captured
in a model. The objective of this chapter is to bring about a better understanding of the
particulars of discrete-event simulation and to motivate modelers to study the imple-
mentation of these particulars in the simulation software they use. The result will be to
improve the effectiveness with which modelers can build, verify, and use discrete-event
simulation models.

The approach taken in the chapter is to develop a generalized view of the logical
foundations of discrete-event simulation, introducing generic vocabulary and constructs
to support this view. Three instances of commercial simulation software (SIMAN, which
is the simulation language within ARENA; ProModel; and GPSS/H) are then discussed
in terms of the generalized view. Differences among the three implementations in several
modeling situations are described to highlight the need to understand the characteristics
of simulation software.

The chapter begins with a discussion in Section 24.2 of the transaction-flow world

Handbook o f Simulation, Edited by Jerry Banks.
ISBN 0-47 1-13403-1 O 1998 John Wiley & Sons, Inc.

766 HOW DISCRETE-EVENT SIMULATION SOFTWARE WORKS

view and the nature of discrete-event simulation, including units of traffic, events, and
identical event times. The discussion continues in Section 24.3 with entities, resources,
control elements, and operations, and goes on to a summary of model execution in
Section 24.4. The generic treatment concludes with the topics of entity states and entity
management structures in Sections 24.5 and 24.6. The mechanisms used in SIMAN,
ProModel, and GPSS/H to satisfy the logical requirements of discrete-event simulation
are described in Section 24.7. The chapter concludes with examples in Section 24.8 of
how the differences in implementation of the Section 24.7 software lead to differing
outcomes in several modeling situations.

Terms used generically in the chapter are not given special emphasis but terms used
by SIMAN, ProModel, and GPSS/H are capitalized. Tables relating generic terms to
their software-specific equivalents are included to help distinguish between the generic
and the specific.

24.2 ASPECTS OF DISCRETE-EVENT SIMULATION

24.2.1 Transaction-Flow World View

The transaction-jlow world view often provides the basis for discrete-event simulation.*
In this view, a system consists of discrete units of traffic that compete with each other
for the use of limited resources while moving ("flowing") from point to point in the
system. The units of traffic are sometimes called transactions, resulting in the phrase
transaction jlow.

A simple example of units of traffic competing for use of a limited resource is the
one-line, one-server system of Figure 24.1, where units of traffic are shown as circles,
the square is the server ("resource"), and the circle within the square is a unit of traffic
being served. The line of traffic waiting for service is called a queue. The combination
of the server, the unit of traffic being served, and those waiting to be served is termed a
queuing system. In practice, the units of traffic might be work in process and the server
might be a machine, or the traffic might be print jobs and the server might be a printer,
or the traffic might be patients and the server might be a physician, and so on.

Another example of units of traffic making use of limited resources is the one-line,
multiple-server system of Figure 24.2. Traffic waiting for service forms one line. The
unit at the head of the line goes to the next idle server. Such a system might consist
of incoming phone calls and a pool of phone operators at a phone-order business (e.g.,
J. Crew, L. L. Bean, Lands End), or of customers and a set of bank tellers, or of travelers
and check-in clerks at an airline counter.

Waiting Line Server
Figure 24.1 One-line, one-server queuing system.

*We estimate that 80% to 90% of current commercial discrete-event simulation software is based on the
transaction-flow worldview. Various alternative worldviews are discussed in Balci 1988.

24.2 ASPECTS OF DISCRETE-EVENT SIMULATION 767

.

Arrivals -0000
/

Waiting Line

Departures

Three Similar
Servers

Figure 24.2 One-line, multiple-server queuing system

Another type of transaction-flow system is the multiple-line, multiple-server system
of Figure 24.3. Here there are multiple waiting lines, one per server. A unit waits to be
served by the server at the head of its line. Systems of this design include toll-collection
points on toll roads, checkout systems in supermarkets, and airports providing two or
more takeoff runways (where the units of traffic are planes and the runways are servers).

The types of systems in Figures 24.1 to 24.3 are building blocks for more complex
systems. For example, consider the simple harbor system of Figure 24.4. Ships (units of
traffic) come to the harbor to load and unload cargo. There are two types of ships: type A
and type B. There are three types of servers: tugboats, type A berths, and type B berths.
Ships of type A and B can only use berths of type A and 8, respectively. Ships use
tugboats to move nonstop into the harbor and into a berth, and later use tugboats again
to move nonstop out of berth and out of the harbor. The number of tugboats needed by
a ship depends on the type of ship and whether the ship is inbound or outbound. This
system is characterized by multiple traffic types, multiple resource types, traffic needs
that depend on traffic type, static servers (berths), mobile servers (tugboats), and the
need for simultaneous control of more than one resource type by units of traffic (e.g.,
a ship needs to control a berth and a tugboat or tugboats before it can move nonstop
into the harbor and into a berth). Try to visualize how the building blocks of Figures
24.1 to 24.3 can come into play in the system of Figure 24.4.

Waiting Lines -

Arrivals Departures -- 00-lol-

Three Similar
Servers

Figure 24.3 Multiple-line, multiple-server system.

768 HOW DISCRETE-EVENT SIMULATION SOFTWARE WORKS

I
Type A Ship Open Water - Type B Ship

t
t Land

t
Land

Type A - Type B Type A Type B Type A
Berth Berth Berth Berth Berth

--

Figure 24.4 Harbor system.

Space is often a limited resource. In one interpretation of the multiple-line, multiple-
server system of Figure 24.3, for example, planes are traffic and the servers are runways
(space). In the Figure 24.4 harbor system, nothing is said about space. It is implied that
the harbor mouth is wide enough, for example, to have multiple ships move through it
simultaneously. Suppose, however, that the mouth is wide enough for only one ship at
a time. Then space is a limited resource, too, as shown in Figure 24.5. (Space interior
to the harbor is probably a limited system resource, too, but this is not shown in Figure
24.5.)

Numerous systems are subject to a transaction-flow interpretation. Included are many
manufacturing, health care, transportation, civil, communication, defense and informa-
tion processing systems, and queuing systems in general.

24.2.2 Nature of Discrete-Event Simulation

A discrete-event system is one in which the state of the system changes at only a dis-
crete, but possibly random, set of time points, known as event times. An event is a
change in system state. For example, suppose that a type A ship arrives outside the har-
bor mouth in the Figure 24.5 system. The arrival is an event. It occurs at a point in time
and changes the state of the system. (The number of type A ships outside the mouth
of the harbor increases by one.) Similarly, suppose that a type B ship takes control of
("captures") a tugboat. The capturing of the tugboat is an event, taking place at a point
in time and changing the capture status of the tugboat from "idle" to "captured."

A simulated clock records the time points at which events occur in a discrete-event

24.2 ASPECTS OF DISCRETE-EVENT SIMULATION 769

B
Type A Ship

t - Onen Water - e3 Type B Ship

+ Land + at a Time) - Land 4

-

T y p e A - T y ~ e B ~ T y p e ~ ~ T y p e ~ TypeA
Berth Berth Berth Berth Berth

Figure 24.5 Harbor system with space as a limited resource.

simulation. Such a clock is provided by discrete-event simulation software and its value
is managed automatically by the software. The clock's value advances during a simu-
lation, only registering the discrete time points at which events occur.

Some aspects of the state of some systems change continuously over time, instead
of changing at discrete points in time. For example, suppose that the process of load-
ing cargo onto a ship begins at 1.30 P.M. and continues for four hours, ending at 5:30
P.M. Then the degree of loading completion (which is a state of the system) changes
continuously during the 4-hour loading process. The loading process can be modeled
in discrete-event terms, however, by focusing on the two discrete events corresponding
to the initiation and the later completion of the process, interposing a simulated time
lag (representing the duration of the loading process) between these two events. Using
this approach, it is possible to model many continuous state changes in discrete-event
terms.

Discussion here is limited to systems in which all changes in system state can be
modeled as discrete events.

24.2.3 Units of Traffic, Events, and Identical Event Times

Units of traffic act when system conditions permit or require it. Such action results in
one or more changes in system state (events). In a harbor system, an arrival event occurs
when a ship arrives outside the mouth of the harbor. A capture event occurs when a ship
captures a tugboat. A service-initiation event occurs when the ship initiates the process
of being tugged into a berth.

770 HOW DISCRETE-EVENT SIMULATION SOFTWARE WORKS

Two or more events often take place at the same time point; that is, they have identi-
cal event times. For instance, two events occur at the same time point if a ship captures
a tugboat and immediately initiates the process of getting tugged into a berth. Here,
action taken by one unit of traffic results in a sequence of two events at one time point.
The simulation clock remains fixed in value while events with identical event times are
carried out one after the other. Real (wall-clock) time goes by while the computer works
to update the state of the model at the simulated time point in question.

Some sequences of events occur at increasingly later time points. For example, sup-
pose that the time between consecutive arrivals of ships at a harbor varies at random
and always exceeds zero. When a ship arrives, its successor will not arrive until a
later simulated time. As another example, if a ship initiates a loading process at one
time point, it will not complete the loading process until a later time point has been
reached.

Two units of traffic can be involved in multiple events at the same time point. In the
one-line, one-server system of Figure 24.1, for example, suppose that a unit of traffic
causes a service-completion event when the waiting line is not empty. This sets the stage
for another unit of traffic (the next to be served) to cause a capture event at that time
and a service-initiation event, too. Here, occurrence of an event caused by one unit of
traffic sets the stage for the occurrence of two follow-on events involving another unit
of traffic at the same time point.

Now consider a situation in which three units of traffic cause multiple events with
identical event times. Suppose that a ship in the Figure 24.4 harbor system is using
two tugboats to move out of the harbor. When the ship finishes this process it causes
a service-completion event, changing the capture status of the two tugboats from "cap-
tured" to "idle." If two other ships are each waiting to capture one tugboat, three units
of traffic can cause multiple events with identical event times (service completion; then
a tugboat capture, perhaps immediately followed by a service initiation; then another
tugboat capture, perhaps also immediately followed by a service initiation).

The simulated clock remains fixed in value while events with identical event times
are carried out one after the other. The first event occurs, then the second event occurs,
and so on. The fact that real time goes by at a fixed simulated time while the computer
pays attention to multiple units of traffic, one by one, and carries out multiple events,
one after the other, is illustrated in Figure 24.6. The figure corresponds to the scenario
described in the preceding paragraph, where three units of traffic cause multiple events
with identical event times.

The real-time order in which two or more events occur at a fixed time point is some-
times dictated by logical dependencies. For example, the next in line cannot capture a
server until the preceding user has put the server into an "idle" state, so the "free the
server" event precedes the next "capture the server" event. Similarly, a ship cannot
initiate a berthing process until it has captured a tugboat. Here, logic dictates the event
sequences.

The real-time order of events with identical event times is not always dictated by
logic. For example, when a ship puts two tugboats into an "idle" state and two ships are
each waiting to capture one tugboat, logic does not dictate the real-time order in which
the two capture events are to occur. Could the real-time order matter? Yes, it could.
Suppose that the two tugboats differ in type (e.g., one is more powerful and faster than
the other) and both ships prefer to capture this tugboat. The first ship to act will capture
the preferred tugboat, leaving the lesser tugboat to the other ship.

Another example in which two or more events can occur at a fixed time point, but in

24.2 ASPECTS OF DISCRETE-EVENT SIMULATION 771

the first1 the second the third
unit of traffic unit of traffic1 unit of traffic
is dealt with is dealt with is dealt with

a point in
simulated time

Real Time -
the same point in

simulated time

Figure 24.6 Real (wall-clock) time versus simulated time

an arbitrary real-time order, involves a global change in system state. In the Figure 24.5
harbor system, for example, suppose that a storm is in progress, so that no ships can
move out of the harbor. Eventually the storm subsides, so ships can now safely move
out of the harbor. If two ships are waiting to leave but only one at a time can move
through the harbor mouth, the real-time order in which the two ships take action will
determine which moves out of the harbor first and which must wait its turn to move
out later.

The preceding discussion involves situations in which sequences of dependent events
occur at the same time point. It is also possible for independent events to occur at the
same time point. In the Figure 24.4 harbor, for example, a type A ship might arrive
at the harbor at the same time a Type B ship completes a loading process. If the time
between arrivals of type A ships varies at random, and if the duration of a loading
process varies at random, the probability that the arrival and service-completion events
have identical event times is small. If the event times are identical, however, the real-
time order in which units of traffic try to take action can matter. In the example at hand,
suppose that the type A ship needs one tugboat to move into the harbor and the type B
ship needs one tugboat to move out of the berth and harbor. Also suppose that exactly
one tugboat is in an "idle" state. If the type A ship acts first and captures the tugboat,
the type B ship must wait. Alternatively, if the type B ship acts first and captures the
tugboat, the type A ship must wait. Which is it to be? It can be left to chance in the
model, or the modeler can determine how the real system operates in this case and then
build the model to imitate the real-system behavior accordingly.

The fact that multiple events can occur at a common time point can lead to logi-
cal complexities in discrete-event simulation. These complexities must be understood
and taken into account both by the model designer and, at a higher level, by the lan-
guage designer. The model designer must take the complexities into account in specific
modeling contexts, whereas the language designer must do so in a generalized way.
Choices and trade-offs exist, especially for the language designer. As a result, although
discrete-event simulation languages are similar in broad terms, they can differ in subtle
and important particulars.

772 HOW DISCRETE-EVENT SIMULATION SOFTWARE WORKS

24.3 ENTITIES, RESOURCES, CONTROL ELEMENTS, AND
OPERATIONS

Systems consist in part of entities, resources, control elements, and operations. The
following subsections provide particulars.

24.3.1 Entities

The term entity is used here as the generic name of a unit of traffic (a "transaction").
Entities model such things as ships in a harbor system, work in process in a manufac-
turing system, shoppers in a supermarket, planes at an airport, phone calls in a com-
munication system, and so on. As we have seen, entities take actions that change the
state of a system.

Modeling languages provide tools used to create and destroy entities during a sim-
ulation. Entities come into a model from time to time, just as ships come to a harbor
from time to time. Similarly, entities leave a model from time to time, just as served
ships leave a harbor. The number of entities in a model usually varies at random during
a simulation.

Entities can have attributes. Attributes of a ship at a harbor include arrival time, ship
type, the number of tugboats needed for berthing, a distribution of loading times, the
number of tugboats needed for deberthing, and so on.

It is useful to distinguish between two types of entities, here referred to as external
entities and internal entities. External entities are those whose creation and actions are
explicitly visualized and arranged for by the modeler. Entities of the types mentioned
above (e.g., ships, work in process, phone calls) are examples of external entities.

There often are two or more conceptual classes of external entities in a model, each
with its own characteristics and types of attributes. In a manufacturing system, for exam-
ple, there might be an entity class for orders of a certain kind, an entity class for workers
of a certain kind, and so on. (An order might have due date as an attribute, but a worker
would not. A worker might have skills as attributes, but an order would not.) In terms
of modeling, distinctions among different entity classes might only exist in the mind of
the modeler, who then would build a model that is logically consistent with these con-
ceptual distinctions. In contrast, formal definition of various classes of external entities
might be required in a model. Whether such formal definition is required would depend
on the modeling software being used.

In contrast to external entities, which are highly visible conceptually, internal entities
are "behind the scenes" entities that some modeling languages use to support various
needs in discrete-event modeling. Internal entities are created and manipulated implicitly
by the simulation software itself, and in this sense are invisible to the modeler. The
model designer might not even be aware that internal entities are at work in a model.

For example, internal entities are used in some modeling languages to trigger
machine breakdowns and the later return of the broken-down machines to a working-
order state. (The specifications for breakdowns and repair have to be supplied by the
model designer, of course, but the designer does not have to provide the logic for imple-
menting the breakdowns if internal entities are used for this purpose.) In contrast, some
modeling languages do not use internal entities to model machine breakdowns. In such
languages, the model designer works with external entities and explicitly provides the
logic needed to implement such breakdowns.

As another example, an internal entity is used in some languages to stop a simula-

24.3 ENTITIES, RESOURCES, CONTROL ELEMENTS, AND OPERATIONS 773

tion. A model designer might state that a simulation is to stop at the end of the eighth
simulated hour, for example, and the modeling software provides an internal entity to
make this happen. (If internal entities are not provided for this purpose, the modeler
works with external entities to achieve the effect desired.)

24.3.2 Resources

A resource is a system element that provides service. Resources in a harbor include
tugboats and berths. Resources in a manufacturing system include machines, machine
operators, transportation devices (such as automated guided vehicles and conveyors),
and space for temporary storage of work in process and finished goods. Among the
resources at an airport are parking spaces for cars, shuttle buses, redcaps, ticket agents,
security equipment, walkways, check-in counters, jetways, planes, and runways.

Some resources can only serve one user at a time. For example, a parking space can
hold only one car at a time, and a jetway can connect only one plane at a time to a
terminal. In some cases, however, a resource can serve two or more users at a time. An
automated guided vehicle might be able to move three units of work in process from
point A to point B at the same time, and a shuttle bus can move multiple people from
a parking lot to an airport terminal.

Resources are limited in number. At a harbor there might be three tugboats, two
berths of type A and three berths of type B. An airport might have three runways.
There might be 250 spaces in a parking garage. There might be four automated guided
vehicles (AGVs) in a manufacturing system.

The users of resources are usually entities. A ship-entity captures a berth and then
a tugboat so it can get pulled into the berth. A work-in-process entity captures space
in an input buffer feeding the next machine it will use, and then captures an AGV so
that it can be moved from its current position to the input buffer. An airline passenger
might sequentially use a shuttle bus, a redcap, security equipment, a series of walkways,
a check-in counter, a seat, and a jetway.

The fact that resources are limited means that entities must sometimes wait their turn
to use resources. When a unit of work in process asks for an AGV, it might have to
wait for its request to be filled. When the work in process eventually has been put into
the input buffer feeding its next machine, it might have to wait to use the machine.

Modeling languages have constructs that are used to control direct access to resources
by entities. Such constructs provide for the automatic recording of the resource's capture
status ("idle" or "captured) and operating condition ("in working order" or "broken
down"). When an entity tries to capture a resource, its capture status and operating
condition can be tested by the software to determine if the attempted capture can take
place.

24.3.3 Control Elements

In addition to resource constructs, modeling languages provide other constructs to sup-
port various control-related aspects of a system's state. The term control element is used
here for such constructs. A switch is an example of a control element. A switch is a
two-state variable (on or off). A switch might be used in a model of a harbor system,
for example, to signal whether a storm is currently in progress. (If it is storming, ships
might be forced to wait in the harbor until the storm is over.) In a banking context, a
switch might be used to indicate whether the doors into the bank are locked.

774 HOW DISCRETE-EVENT SIMULATION SOFTWARE WORKS

Counters are another type of control element. A counter might be used to count the
number of engine blocks that have had holes drilled in them since the last time the drill
bits were changed in a drilling machine. The policy might be to replace the drill bits
after 100 uses. Implementing this policy requires that a count be kept. The counter is
used to help control this aspect of system behavior.

Arithmetic expressions can be the basis for control elements. Consider a supermarket
that uses a multiple-line, multiple-server system for its checkout lanes. There might be
12 checkout lanes, but only several might be open at a given time. Suppose that if
the average number of customers waiting in checkout lanes is five or more, another
checkout lane will be opened. The modeler can introduce an arithmetic expression to
compute the average number of customers waiting in checkout lanes. An entity used to
simulate the "lane manager" can monitor the value of this expression to determine if
conditions require opening up another checkout lane. Here an arithmetic expression is
used to control the behavior of the lane manager.

Boolean expressions (truth-valued expressions composed with boolean operators
such as and, or, and not) can also be used as control elements. A ship might not be
able to leave a harbor, for example, until it can capture either one powerful tugboat or
two less powerful tugboats, and there is no storm in progress.

Like resources, control elements can force entities to wait, delaying their movement
through a system. The ways in which modeling software manages delayed entities are
discussed in Section 24.6.

24.3.4 Operations

An operation is a step or action carried out by or on an entity during its movement
through a system. Examples of operations include the arrival of an order in an order-
processing system, the capturing of an AGV by a unit of work in process, the x-raying
of a patient's broken arm, and the transfer of a unit of finished goods to finished-goods
inventory.

An ordered set of operations is a sequence of steps or actions taken or experienced
by an entity while it moves from point to point in a system. An integrated sequence of
operations is sometimes called operation logic. For example, this might be the operation
logic for movement of a ship through a harbor: arrive outside the harbor; capture a berth;
capture two tugboats; use the tugboats to get pulled nonstop into the harbor and into
the berth; free the tugboats; use the berth to load or unload cargo; capture one tugboat;
use the tugboat to get pulled nonstop out of the berth and out of the harbor; depart.

24.4 OVERVIEW OF MODEL EXECUTION

24.4.1 Projects, Experiments, and Replications

Conducting a simulation project involves carrying out one or more experiments and,
within each experiment, performing one or more replications (trials). This pattern is
shown in Figure 24.7, where rn experiments are indicated, each consisting of n repli-
cations. Experiments are differentiated by alternatives in a model's logic and/or data.
Replications are (usually) differentiated by using different sets of random numbers from
replication to replication and across experiments.

For example, suppose that a simulation project is conducted for the harbor system

24.4 OVERVIEW OF MODEL EXECUTION 775

Experiment 1
(Alternative 1)

Within an Experiment

I Replication 1 Replicat~on 2

Experiment "m"

Experiment 2
(Alternative 2)

E!!ad
Figure 24.7 Experiments and replications in a simulation project.

Replication 3 Replication "n"

of Figure 24.5. The purpose of the project, let us assume, is to study alternatives for
decreasing the delay experienced by ships at the existing harbor. Assume that the system
shown in Figure 24.5 describes the harbor "as is" (e.g., three tugboats, three type A
berths, two type B berths, and a harbor mouth only wide enough to accommodate one
ship at a time), and operation data are available (e.g., distributions of interarrival times,
berthing and deberthing times, and loading and unloading times for type A and type B
ships). Suppose that the service order for use of tugboats and berths is first come, first
served. Experiment I in Figure 24.7 might be with a model of the harbor as is. (The
purpose of experiment 1 might be to validate the model by comparing its characteristics
to characteristics observed in the real system. For example, the distributions of harbor
residence times for type A and type B ships in the model might be compared to those
in the real system.)

Experiment 2 of Figure 24.7 might study the effect (on the distributions of harbor
residence times) of widening the harbor mouth to accommodate two ships at a time.
Experiment 3 might study the effect of providing one additional tugboat. Experiment 4
might study the combined effect of widening the harbor mouth and providing one addi-
tional tugboat. Experiment 5 might study the effect of giving type A ships higher priority
for tugboat use than type B ships. Experiment 6 might study the effect of replacing the
three tugboats with three higher-speed tugboats. And so on.

As suggested in Figure 24.7, each experiment consists of one or more replications
(runs). A replication is execution of a simulation model that incorporates the model logic
and data for the experiment but uses a set of random numbers unique to that replica-
tion. A replication produces statistical results differing from those produced by other
replications. The statistical results can then be analyzed across the set of replications.

In some experimental designs involving variance reduction, the set of random num-
bers used in a replication might be deliberately correlated with those used in a compan-
ion replication. Furthermore, in some designs only one relatively long replication might
be performed.

776 HOW DISCRETE-EVENT SIMULATION SOFTWARE WORKS

24.4.2 Anatomy of a Replication

The phases within a replication are discussed in this subsection. For the sake of con-
creteness, the broad considerations are interpreted in the context of the harbor system
of Figure 24.4.

Initialization Phase. The Figure 24.8 flowchart shows the several phases making up
a replication. The replication begins with an initialization phase (box I), during which
the simulation clock has (we assume) an initial value of 0.0. Simulated times will then
be expressed relative to this starting value. For example, time 0.0 might correspond to
real-system time 9:00 A.M. on the first day in a series of simulated days making up a
replication.

I Initialization Phase I

I Set the simulation click to
0.0; Establish initial events I
and their event times; etc.

I

J. (2
Entity Movement Phase

C

Clock Update Phase w

I Set the clock to the time
I of the next earliest event I

Ending Condition
c Satisfied

I Analyze and report I
I the results I

Figure 24.8 Anatomy of a replication.

24.4 OVERVIEW OF MODEL EXECUTION 777

At the start of the initialization phase, no entities yet exist. During initialization, one
or more external entities are created and their immediate and/or eventual arrival at the
model is planned, as indicated in Figure 24.3 (box 1). In the harbor system of Figure
24.4, for example, the initial ship of type A to arrive at the harbor would be created
during the initialization phase and its eventual time of arrival, such as simulated time
23.5 minutes, would be determined. The determination is made by drawing a sample
from the interarrival time distribution of type A ships. Relative to the initial clock value
of 0.0, this sampled value is the simulated time at which the first type A ship will
eventually arrive. (For convenience, we assume that the clock units are minutes, but
the unit of time can be whatever the modeler wants it to be.) During initialization the
initial type B ship to arrive at the harbor would also be created and its eventual time
of arrival (let us say at simulated time 18.2 minutes) determined.

The preceding discussion is for the initialization-phase creation of externul entities.
If the model involves internal entities too, any needed initialization takes place for them
during the initialization phase, too. For example, suppose that the Figure 24.4 harbor
model is built with software that uses an internal entity to control the duration of a
simulation and the replication is to run until time 43,200 (the number of minutes in
thirty 24-hour days). Then an internal entity would be created during the initialization
phase accordingly.

Entity Movement Phases. As shown in Figure 24.8, an entity movement phase fol-
lows the initialization phase (from box 1 to box 2). Additional entity movement phases
then also take place eventually, after clock update phases (from box 3 back to box 2).
The purpose of an entity movement phase is to have all qualifying entities take whatever
action they can at the current simulated time. An entity qualifies to try to take action if
its planned action time equals the current simulated time.

The word movement is used in "entity movement phase" because in the transaction-
flow world view, units of traffic are visualized as moving from point to point in a system.
It is during the entity movement phase that entities carry out actions, some of which
simulate the movement of units of traffic in a system. For example, a type B ship,
having arrived at a harbor, acts to capture a tugboat (either immediately, or as soon as
possible) and then moves into the harbor. Action and movement are closely coupled.
Such phrases as action time, move time, and event time are often used interchangeably.

Initial Entity Movement Phase. The entity movement phase is initially entered from
the initialization phase at simulated time 0.0. If no initialization entities (either external
or internal) have a planned action time of 0.0, no actions take place during this EMP.
In the harbor model, for example, we have assumed that the arrival times of the ini-
tial type A and type B ships are 23.5 and 18.2 minutes, respectively. In this example
there are no actions to be taken by external entities during the initial entity movement
phase.

More generally, it might be necessary to take action during the initial EMP. For
example, if a bank opens for business at 9:00 A.M. (simulated time 0.0), there might be
three customer-entities waiting for the door into the bank to be unlocked. These three
entities would then each act one by one during the initial entity movement phase.

Subsequent Entity Movement Phases. Action always takes place during the entity
movement phases that follow clock update phases (from box 3 back to box 2, Figure
24.8). This is because a clock update phase (see below) always brings the state of the

778 HOW DISCRETE-EVENT SIMULATION SOFTWARE WORKS

model to the next earliest simulated time at which at least one entity is scheduled to
act.

In the harbor system we have assumed that the initial type B ship arrives at time
18.2. After the entity movement phase at time 0.0 (during which there is no action),
the clock update phase sets the time to 18.2 (the next earliest time for which action has
been scheduled; the initial type B ship has been scheduled to arrive later, at time 23.5).
Then the subsequent entity movement phase takes place and the initial type B ship acts
to capture an idle berth, capture an idle tugboat, and initiate the process of being moved
by the tugboat into the berth.

Clock Update Phases. After all possible actions have been carried out during an
entity movement phase, a clock update phase (CUP) takes place (from box 2 to box 3,
Figure 24.8). The purpose of the CUP is to set the clock to the next earliest simulated
time at which one or more actions have been scheduled. This next earliest simulated
time might be the current simulated time, depending on whether two or more entities
have been scheduled to act at the same simulated time and depending also on implemen-
tation choices made by language designers. Alternatively, this next earliest simulated
time might be a later point in simulated time. (The simulated clock never decreases in
value. Discrete-event simulations are not designed to make it possible to go backward
in simulated time.)

After a clock update phase is finished, the entity movement phase is performed again
(from box 3 back to box 2 in Figure 24.8) to give all qualifying entities the opportunity
to act at the current (newly established) simulated time. Then the clock update phase
takes place again, then the next entity movement phase takes place, and so on.

The heart of a replication is this alternating execution of the entity movement and
clock update phases. It is during the entity movement phase that simulated time remains
fixed and real time elapses while the state of the model is updated (see Figure 24.6). An
understanding of the complexities of the entity movement phase supports the modeler
in expressing subtle system logic correctly and making effective use of tools provided
by software to help troubleshoot and verify models.

Statistics Gathering. A goal in discrete-event simulation is to collect statistical
observations about the behavior of the system being simulated. Discrete-event simu-
lation software is designed to gather many types of statistics automatically during a
replication. For resources, such things as capture counts, average holding time per cap-
ture, and utilization might be measured automatically. For waiting lines, such things
as average content, average time in line, and maximum line length might be measured
automatically. In addition to gathering such statistics automatically, simulation software
also typically provides tools the modeler can use to gather customized statistics.

The observing and recording of statistics typically takes place during entity move-
ment phases (box 2 in Figure 24.8), both for statistics gathered automatically by the
software and for the gathering of customized statistics specified by the user. The result-
ing information is then used to produce reports at the end of the replication.

End of a Replication. When a replication takes place, a run-ending condition eventu-
ally occurs during either an entity movement phase or a clock update phase. The ending
condition might be time-based (e.g., 24 hours of harbor operation have been simulated)
or count-based (e.g., 500 units of product have been manufactured), or can be more
complex (e.g., the doors into a bank have been locked at the end of the afternoon and

24.5 ENTITY STATES 779

all customers already in the bank when the doors were locked have been served). The
ending condition can occur during either an entity movement phase (box 2 to box 4,
Figure 24.8) or a clock update phase (box 3 to box 4).

A reporting phase is then carried out (box 4), completing the replication. The state of
the model at the conclusion of the replication might be described, indicating such things
as the value of the simulated clock, the number of entities of various types that were
brought into the model, and the number of entities currently in the model. Statistical
aspects of the replication are typically summarized in the form of reports, including
resource and waiting line statistics.

24.5 ENTITY STATES

An entity is created at a point in simulated time, works its way through a model
while simulated time advances, and then is destroyed. During its life cycle the entity
migrates from state to state, usually passing through various states multiple times before
it is destroyed. (There is no requirement, however, that an entity must eventually be
destroyed; some entities might loop through part of a model repeatedly, but with inter-
mittent pauses, as part of the model design.)

There are five alternative entity states. These states, termed the ready stute, active
state, time-delayed state, condition-delayed state, and dormant state, are shown in
Figure 24.9. Also shown in the figure are points of entity creation and destruction, as
well as the paths along which entities migrate from state to state. The paths are num-
bered to support the following discussion. Figure 24.9 will be discussed "inside out."
That is, the discussion begins with the active state, then goes on to the ready state
and the time- and condition-delayed states and the dormant state. Entity creation and
destruction are also discussed.

24.5.1 Active State

There can only be one moving entity at any moment of wall-clock time. The
active state is the state of the currently moving entity. The active-state entity (active
entity) moves nonstop until it is delayed, or destroyed, or chooses to yield the
active state to some other entity before reentering the active state itself at the
same simulated time. No simulated time goes by while an entity is in the active
state.

If the active entity is delayed, it migrates from the active state to one of three alter-
native delay states: the time-delayed state (path 5 in Figure 24.9); the condition-delayed
state (path 7), or the dormant state (path 9). The roles played by these delay states are
discussed in Sections 24.5.3, 24.5.4, and 24.5.5. If the active entity makes a move that
results in its destruction (path 11 in Figure 24.9), it will be removed immediately from
the model and ceases to exist.

In some models the active entity might choose to leave the active state temporarily,
with the understanding that it will later reenter the active state at the same simulated
time. The objective in such a case is to let one or more other entities pass through the
active state to accomplish one or more tasks before the initiating entity again becomes
active itself at the same simulated time. The initiating entity accomplishes this temporary
yielding of the active state by migrating from the active state back to the ready state
(path 4, Figure 24.9).

780 HOW DISCRETE-EVENT SIMULATION SOFTWARE WORKS

state State
q G Z i q E + State

Dormant
State

Entity
Destruction 0

Figure 24.9 Entity states and migration paths.

24.5.2 Ready State

At a given simulated time there might be more than one entity ready to move, but only
one entity at a time can be in the active state. I f two or more entities want to move at
a freshly established simulated time, all but one must wait their turn to enter the active
state. The ready state is the state o f those entities waiting to enter the active state at
the current simulated time. No simulated time goes by while an entity is in the ready
state.

There are several paths in Figure 24.9 along which entities can migrate into the
ready state. Migration from the time-delayed, condition-delayed, and dormant states is
always into the ready state (paths 6 , 8, and 10, respectively), for example. Among these
possibilities, migration from the time- and condition-delayed states to the ready state
occurs most frequently.

The path to the ready state from the dormant state (path 10) is less frequently trav-
eled, because models do not always make use o f the dormant state. The path from
entity creation to the ready state (path 1) is followed only by entities that are ready to
move at the simulated time o f their creation (rather than first being ready to move at
some later simulated time). The path from the active state to the ready state (path 4) is

24.5 ENTITY STATES 781

least frequently followed. Most models do not require use of this migration path. (Some
discrete-event simulation software does not even provide this path.)

24.5.3 Time-Delayed State

The time-delayed state is the state of entities waiting for a known future simulated time
to be reached so that they can then (re)enter the ready state as a prelude to moving
again. Entities migrate into the time-delayed state from the active state (path 5, Figure
24.9) and from the point of entity creation (path 2). Later they migrate from the time-
delayed state to the ready state (path 6), when the known simulated time for which they
have been waiting is reached.

Consider an example of the interplay among the ready, active, and time-delayed
states. Suppose that an entity simulates a unit of work in process that needs to have
a hole drilled in it, and suppose that when the entity becomes ready for this operation,
the drill is idle. At the simulated time in question, the entity migrates from the ready
state to the active state (path 3, Figure 24.9), captures the drill, and then migrates to the
time-delayed state (path 5), remaining in that state while waiting for the known future
simulated time at which the drilling operation will end. (The entity "knows" the appli-
cable future simulated time because it samples the drilling time from the drilling-time
distribution when it migrates into the time-delayed state.)

Extending the example, now suppose that the simulation has reached the simulated
time when the drilling operation ends. The entity then migrates from the time-delayed
state to the ready state (path 6, Figure 24.9) as a prelude to moving. The entity then
migrates from the ready state to the active state and acts to change the capture status of
the drill from "captured to "idle." Suppose that the entity next needs to be transferred by
an AGV to its next destination. Also suppose that the AGV is idle. Continuing nonstop
in the active state, the entity captures the AGV and then migrates back into the time-
delayed state (path 5) while waiting for the known (sampled) future simulated time
when the transport operation will end.

When an entity is created, it starts its existence in the ready state or in the time-
delayed state, depending on whether the simulated time when it will first move equals
or exceeds the simulated time of its creation. If it first moves at the time of its cre-
ation, the entity starts in the ready state (path 1, Figure 24.9); otherwise, it starts in
the time-delayed state (path 2). Entities usually start their existence in the time-delayed
state.

Consider an example of entity creation. Assume that the time between arrivals of
phone calls to an information operator is exponentially distributed, and an entity simu-
lates a call. When a call arrives, the future time the next call will arrive is determined by
sampling from the exponential intercall-time distribution. A corresponding call-entity
is created and put into the time-delayed state (path 2, Figure 24.9), waiting for the
known future simulated time at which it will first move ("arrive," causing the phone to
ring).

For a second example of entity creation, suppose that when a bank opens at 9 : 00
A.M. (simulated time 0.0), three customers are waiting for the door to be unlocked.
Each of these customers will move into the bank when the door is unlocked. (In reality,
several seconds would go by while the customers enter the bank, one by one; but as
a first approximation, let us assume that all three enter instantaneously.) At simulated
time 0.0, the first customer-entity is created and put into the ready state (path 1 , Figure
24.9). The second customer-entity will also be created at time 0.0 and put into the ready

782 HOW DISCRETE-EVENT SIMULATION SOFTWARE WORKS

state. Finally, the third customer-entity will also be created at time 0.0 and put into the
ready state. During the entity movement phase at time 0.0, each of these customers will
migrate serially from the ready state into the active state and then take action.

24.5.4 Condition-Delayed State

The condition-delayed state is the state of entities whose movement is currently hindered
because of some condition. Such entities wait in the condition-delayed state until their
delay condition has been resolved. While condition-delayed, entities do not know when
the delay condition will be resolved, so they are waiting for an unknown simulated time
to be reached. (Contrast the condition-delayed state with that of the time-delayed state,
in which entities wait for a known simulated time to be reached.)

As an example of the condition-delayed state, consider a unit of work in process
(WIP) that needs to have a hole drilled in it. Assume that when the WIP-entity is ready
for this operation, the drill is not idle. (The drill is being used by some other unit of work
in process.) The active WIP-entity attempts to capture the drill but finds itself hindered.
Assuming that it has no other choice, it then migrates to the condition-delayed state
(path 7, Figure 24.9) and starts to wait its turn to use the drill. (There might be other
WIP-entities waiting to use the drill, too.) The WIP-entity remains in the condition-
delayed state until the drill becomes idle and it is this WIP-entity's turn to use the drill.
At that time it will migrate to the ready state (path 8), then into the active state (path
3), and then will capture the drill and migrate into the time-delayed state (path 5).

As suggested by the preceding example, a single event might be all that is needed to
resolve delay in some cases. These are cases of simple delay. If one or more units of work
in process are delayed, waiting their turn to use a drill, then when the current drill-user
puts the drill into an "idle" state, this single event resolves the delay for the next in line. It
is easy to detect the resolution of simple delay. Migration from the condition-delayed state
to the ready state can easily be related to the delay-resolving event in such cases.

For an example of a more complex condition-delayed state, consider a ship-entity
that having loaded cargo at a harbor, is ready to move out of the harbor. Suppose that
two conditions must be in effect for the ship to move out of the harbor: (1) the ship
needs a tugboat, and (2) the weather must be calm. Still in the active state after causing
the loading-completion event, the ship-entity checks to see if there is an idle tugboat
and if the weather is calm. (An on-or-off switch might be used as a control element to
signal the state of the weather. A boolean expression might be used as a control element
to test for an idle tugboat and calm weather.) If this compound condition is satisfied,
the ship-entity migrates from the active state to the time-delayed state (path 5, Figure
24.9) for the known (sampled) interval of simulated time required to move out of the
harbor; otherwise, it migrates from the active state to the condition-delayed state (path
7) and starts to wait for the unknown simulated time at which the two conditions will
be satisfied simultaneously.

In this case we have an example of complex delay. Resolution of complex delay
cannot be related to the occurrence of a single event. When a tugboat becomes idle,
there is no guarantee that the weather will be calm. When the weather becomes calm,
there is no guarantee there will be an idle tugboat. It is more challenging to detect the
resolution of complex delay than of simple delay.

The mechanisms used in discrete-event simulation software to cause an entity to
migrate from the condition-delayed state to the ready state will be considered in Sec-
tion 24.6.5. For now it is enough to point out that like migration from the time-delayed

24.5 ENTITY STATES 783

state, migration from the condition-delayed state takes place automatically during a sim-
ulation; that is, discrete-event simulation software is designed to be intelligent enough
to make this migration take place when conditions permit.

24.5.5. Dormant State

Like the time-delayed and condition-delayed states, the dormant state is one in which
entities are put into suspension for an interval of simulated time. Entities in the dormant
state are managed by the modeler, however, instead of being managed automatically
by the software. Particulars follow.

The ready, active, time-delayed and condition-delayed states are all managed accord-
ing to rules built into modeling software. For example, qualifying entities are automati-
cally transferred at the right simulated time into the time-delayed state and then into
the ready state.

Similarly, qualifying entities are automatically transferred into the condition-delayed
state and then eventually from there to the ready state when model conditions permit.
The modeler is provided with some flexibility in this regard, but only on a limited
basis. Consider a situation, for example, in which five entities are in a condition-delayed
state, waiting for a machine. When the machine becomes idle, which of the five waiting
entities will be the next to use it? That is, what service order is in effect? The modeler
can typically pick from a short list of alternative service orders in this regard (e.g.,
simple first come, first served; or first come, first served based on a prioritized ranking;
or last come, first served).

Sometimes more flexibility than provided by the condition-delayed state is required
to model complicated situations. In these cases the dormant state often can be used
to achieve the required entity behavior in a model. The key to the usefulness of the
dormant state is that the modeler specifies when, which, and how many entities will
migrate from the dormant state to the ready state (path 10, Figure 24.9) at appropriate
times in a simulation.

For an example of dormant-state use, consider a manufacturing system in which
"least remaining slack" is the service order used to determine which waiting job will
be the next to use a machine. Remaining slack is a measure based on the relationship
among a job's due date, the time now (i.e., the time at which remaining slack is being
computed), and the job's remaining operation time. (Remaining operation time is the
estimated remaining total processing time required by the job before it will leave the
system as a finished job.) Remaining slack is computed this way:

remaining slack = (due date) - (time now) - (remaining operation time)

The smaller a job's remaining slack, the more urgent it is to give the job preferential
treatment in an attempt to complete the job by its due date. Note that remaining slack
changes (decreases) while simulated time (time now) goes by. A job's remaining slack
therefore is not computed when a job arrives at a machine; instead, the remaining slack
is computed later, when the time has come (time now) for the machine to start another
job. While waiting for that time to come, delayed jobs can be kept in a dormant state.
When the time comes for the machine to start another job, the remaining slack for
each waiting dormant-state job can be computed and the job with the least remaining
slack can be transferred from the dormant state to the ready state, poised to capture the
machine.

784 HOW DISCRETE-EVENT SIMULATION SOFTWARE WORKS

TABLE 24.1 Alternative Entity States

State Description and Comments

Active The active state is the state of the currently moving entity.
Ready The ready state is the state of entities waiting to enter the active

state at the current simulated time.
Time-delayed The time-delayed state is the state of entities waiting for a known

simulated time to be reached so that they can then move into the
ready state.

Condition-delayed The condition-delayed state is the state of entities waiting for the
unknown simulated time when the condition causing their delay
will be resolved. When conditions permit, such entities will be
transferred automatically from the condition-delayed state to the
ready state using rules built into the sofiware.

The dormant state is the state of entities waiting for the unknown
simulated time when the condition causing their delay will be
resolved. When conditions permit, such entities will be
transferred from the dormant state to the ready state using logic
provided by the modeler.

Dormant

24.5.6 Summary of the Entity States

The various entity states are summarized with a brief description and comments in Table
24.1.

24.6 ENTITY MANAGEMENT

Simulation software manages entities by organizing them in linear lists. Each list corre-
sponds to an entity state and is ordered, with some entity at the top of the list, another
entity behind it, and so on, down to the bottom of the list. A generalized entity list is
pictured in Figure 24.10, where each rectangle represents an entity.

Top of the List

Figure 24.10 Entity list.

24.6 ENTITY MANAGEMENT 785

The ordering of entity lists raises questions about the rules used to determine the
order and the role order plays in list management. When an entity is inserted into a
list, how is its insertion point determined? When an entity is removed from a list, from
which position is the entity taken? Is it possible for entities to initiate changes in their
relative position in a list? These and other details of the five types of entity lists are
described in the following subsections.

24.6.1 Active-Entity List

There can only be one active-state entity, so this entity occupies a list of length one. This
"list" is not given a name here. The active entity moves nonstop at the current simulated
time until it migrates to another state (transfers to another list) or is destroyed.

24.6.2 Current Events List

Entities in the ready state form a single list named the current events list (CEL). This
name reflects that ready-state entities are poised to move at the current simulated time
and that their movement will cause events (such as arrivals, resource captures, and
departures) to occur in the model.

Various rules can be used to determine the insertion point for entities being put into
the current events list. In some cases, entities migrating to the CEL might be put at the
bottom of the list. In other cases, entities might be arranged on the CEL in order of
decreasing priority, where priority is an entity attribute. Priority ties might be resolved
by inserting the newcomer into the list below those with matching priority. In yet other
cases, entities might be put at the top of the CEL. These alternative approaches can
influence the real-time order in which ready-state entities will become active, and so
have important implications for the designer of simulation models. When the time comes
to transfer an entity from the ready state to the active state, the entity is typically taken
from the top of the current events list.

24.6.3 Future Events List

Time-delayed entities form a single list called the future events list (FEL). This name
reflects that these entities will not try to move again until some (known) future simulated
time is reached. The future events list is typically ranked top-down in order of increasing
entity move time. (An entity's move time is the simulated time at which the entity will
attempt to make its next move or set of moves in a model.) When an entity is inserted
into the FEL, its move time is calculated by adding the simulated clock time to the
known (sampled) duration of the time-based delay. Move-time ties are typically resolved
"first in, first out."

When a clock update phase occurs, the next earliest simulated time at which new
movement will take place in the model equals the move time of the entity at the top of
the future events list. The clock update phase sets the simulation time to this entity's
move-time value, then removes the entity from the FEL and inserts it into the current
events list. When a clock update phase starts, two or more entities at the top of the future
events list might have identical move times. The response of modeling software to such
move-time ties is implementation dependent. One approach is to transfer each time-
tied entity from the FEL to the current events list during a single clock update phase.

786 HOW DISCRETE-EVENT SIMULATION SOFTWARE WORKS

Another approach is to take a "one entity transfer per clock update phase" approach.
(This means that in case of time ties, two or more consecutive clock update phases and
entity movement phases will take place at the same point in simulated time.)

Languages that work with internal entities often use the future events list to support
the timing requirements of these entities. The FEL is then typically composed both
of external and internal entities in such languages. During a discrete-event simulation,
the software often inserts entities into the future events list. If the list is long, finding
the insertion point can take relatively large amounts of computer time. This motivates
language designers to develop efficient algorithms to find insertion points in lists. As
a result, some modeling software works with future events lists that are not linear, but
instead, involve other types of data structures. Nevertheless, for all practical purposes
we can visualize the future events list as being linear.

24.6.4 Delay Lists

Delay lists are composed of entities in the condition-delayed state. These entities are
waiting for delay-inducing conditions to be resolved so that they can then be transferred
automatically into ready state on the current events list. There can be many delay lists
in a model, one (or more) for each delay-inducing condition. This contrasts with the
existence of only one active-state "list," current events list, and future events list. In the
harbor system of Figure 24.4, for example, there could be a delay list consisting of type
A ships waiting for type A berths; another list of type B ships waiting for type B berths;
and another list composed of type A and type B ships waiting for a tugboat or tug-
boats.

When an entity is inserted into a delay list, its list position is determined using a
ranking criterion chosen by the model builder. There are usually several choices in this
regard. Delay lists can typically be ranked first in, first out; or ranked last in, first out; or
ranked ascending or descending on a user-specified entity attribute or arithmetic expres-
sion. Each alternative ranking has implications, of course, for the order in which waiting
entities will eventually be removed from the delay list and put into ready state on the
current events list.

When a delay-inducing condition is resolved, the most highly ranked entity on the
applicable delay list will be transferred automatically by the software into ready state
on the current events list. For example, when a type A berth in the Figure 24.4 harbor
system becomes idle, the type A ship-entity at the top of the associated delay list will
be removed and put into ready state on the current events list as a prelude to its taking
control of the type A berth.

Not all entities on a delay list are necessarily candidates at all times for transfer
from the condition-delayed state to the ready state. Whether they are is implementation
dependent. A language designer might decide, for example, that the only current con-
tender for transfer from a delay list is the queue leader, that is, the entity at the top
of the delay list. In such cases, other entities on the delay list will not be considered
for transfer from the list until they have become the queue leader. In contrast, a lan-
guage designer might decide that all entities on a delay list are candidates at all times
for transfer from the condition-delayed state to the ready state. The approach taken can
lead to different outcomes in cases in which delay has not yet been resolved for the
queue leader, but has been resolved for one or more other entities behind the queue
leader on the delay list. (See Section 24.8.3 for a specific example.)

24.6 ENTITY MANAGEMENT 787

24.6.5 Related Waiting and Polled Waiting

Two approaches can be used by simulation software to provide for the automatic
removal of entities from delay lists. If delay can easily be related to a single event
that eliminates the delay, a related waiting approach can be used to manage the delay
list. For example, suppose that a machine's capture status changes from "captured" to
"idle." In direct response to this change in machine status, the software can remove the
highest-ranked waiting entity from the applicable delay list and put it in ready state on
the current events list. (This entity will be the next to use the machine.)

In some circumstances, the resolution of delay might require that two or more par-
ticular events occur in a model. The occurrence of one of these events doesn't neces-
sarily mean that the delay has been resolved. The conditions needed to justify transfer
of an entity from a delay list to the ready state therefore cannot simply be related to a
single-event occurrence. In these cases a polled waiting approach can be used to manage
delayed entities. In polled waiting, an entity isn't transferred from a delay list in direct
response to the occurrence of a single event; instead, the software eventually checks
(at a later wall-clock time, but at the same simulated time) to see if a combination of
circumstances has come about that justifies the transfer of one or more delayed entities
from the delayed state to ready state on the current events list.

For an example of polled waiting, consider a harbor in which a ship can't move into
a berth until a berth is idle and a tugboat is idle as well. (Assume that the harbor is
managed in such a way that the ship doesn't first claim an idle berth and then ask for a
tugboat, but instead, waits until both of these resources are simultaneously idle before
claiming either of them.) Note that a boolean condition is implied here: "wait until a
berth is idle and a tugboat is idle." Change of a berth's status to idle doesn't necessarily
eliminate delay. Change of a tugboat's status to idle doesn't necessarily eliminate delay,
either. Resolution of delay can't be related exclusively to either of these single status
changes. Polled waiting can be used, however, to determine whether the delay has been
resolved. The polling can be carried out routinely and automatically by the software
at some point during each entity movement phase (such as when the ongoing entity
movement phase is coming to an end).

24.6.6 User-Managed Lists

User-managed lists are composed of entities in the dormant state. Like delay lists, there
can be many user-managed lists in a model. In contrast to delay lists and the current
and future events lists, however, which are created and managed automatically by the
software, the modeler himself or herself must arrange for the creation of user-managed
lists and supply the logic needed to insert entities into and remove entities from these
lists.

Entities decide whether to put themselves onto a user-managed list. They conduct
user-designed tests to make this decision, conducting the tests while they are in the
active state. In the context of the "least remaining slack" service order discussed in
Section 24.5.5, for example, when a job entity's next operation is to use the machine,
it can conduct a test to determine if the machine is idle. The job entity can capture
the machine if it is idle or can migrate from the active state to the dormant state in a
user-managed list if the machine is in a state of capture.

The modeler typically has choices when specifying an insertion point for a user-
managed list. The choices are implementation dependent. Alternatives might include

788 HOW DISCRETE-EVENT SIMULATION SOFTWARE WORKS

TABLE 24.2 Entity States and the Associated Entity Lists

Generic Name
Entity State of Entity List(s) Comments

Active None There is a maximum of one active entity.
Ready Current events list There is only one such list.
Time-delayed Future events list There is only one such list.
Condition-delayed Delay list There are potentially many such lists.
Dormant User-managed list There are potentially many such lists.

inserting an entity at the bottom of the list, at the top of the list, or into the list ranked
ascending or descending on a user-specified entity attribute.

Entities on a user-managed list cannot cause themselves to be removed from the list,
and the software will not automatically remove entities from the list, either. Removal
of an entity from a user-managed list takes place when some other entity acts to make
this happen. The action is based on a modeler-supplied test this other entity conducts
to determine if it is appropriate to transfer one or more entities from a specified user-
managed list to ready state on the current events list.

The modeler has flexibility in choosing which entity or entities to remove from a user-
managed list. The simplest choices are to remove entities from the top or the bottom of
the list. A more elaborate choice is to scan the list top down, repeatedly evaluating a user-
defined boolean expression, entity by entity, removing the entity or entities for which the
boolean expression is true. The value of the boolean expression would depend on one
or more attributes of the entity being evaluated. The choices a modeler has for imposing
removal conditions on entities in the dormant state are implementation dependent.

24.6.7 Summary of the Lists Used for Entity Management

The various entity states and the generic names given here to the lists used to manage
entities in those states are summarized with brief comments in Table 24.2.

24.7 IMPLEMENTATION IN THREE INSTANCES OF SIMULATION
SOFTWARE

The discrete-event simulation software whose implementation particulars will be
reviewed here are Systems Modeling Corporation's SIMAN V, which is the simula-
tion language within ARENA (Banks et a]., 1995b; Pegden et a]., 1995); ProModel
Corporation's ProModel version 3.0 (Benson 1997; ProModel Corporation, 1996; and
Wolverine Software Corporation's GPSS/H, release 3 (Banks et al., 1995a; Crain, 1997;
Henriksen and Crain, 1998; Schriber, 1991). SIMAN and GPSS/H are general purpose,
whereas ProModel is oriented toward manufacturing applications.

SIMAN, ProModel, and GPSS/H are among about 50 tools for discrete-event simu-
lation reported in a 1997 survey (Swain, 1997). Some of the other tools might be better
suited than any of these three for particular modeling activities. The choice of these
three is based on the belief that they are reasonably representative. Furthermore, there
are some interesting contrasts in the underlying approaches used by these three tools to
manage entities and control entity movement.

24.7 IMPLEMENTATION IN THREE INSTANCES OF SIMULATION SOFTWARE 789

TABLE 24.3 SIMAN Terminology

Generic Term or Phrase SIMAN Term

External entity
Internal entity
Resource
Control element
Operation
Current events list
Future events list
Delay list
User-managed list
Entity movement phase
Clock update phase

Entity
No special term is used
Resource, Conveyor, Transporter
Blockage
Block or Blocks
Current Events Chain
Future Events Heap
Attached Queue, Internal Queue
Detached Queue
No special phrase is used
No special phrase is used

It is not necessary, of course, to use discrete-event simulation software to build
a discrete-event simulation model. Those interested in possibilities for implementing
discrete-event simulation models in a high-level programming language such as C or
C++ are referred to Balci (1988). Those who might be interested specifically in C++
are referred to Joines and Roberts (1997).

24.7.1 SIMAN

In the following sections SIMAN terminology is summarized, particulars of the SIMAN
entity movement phase and clock update phase and their interplay with the SIMAN
equivalents of the current and future events lists are described, and SIMAN's delay
lists and user-managed lists are discussed.

SIMAN Terminology. SIMAN V equivalents for many of the generic terms or phrases
presented earlier are given in Table 24.3. More details are provided in the following
sections.

Entities, Resources, Control Elements, and Operations. External entities are
called Entities in SIMAN. Consistent with the generic discussion of entities, SIMAN
Entities are used to model objects, whether animate or inanimate, that move through a
system and cause changes in the state of the system. Entities can have attributes (e.g.,
a unit of work in process can have an arrival time, a due date, a customer identification
number, etc.). Various classes of external entities are not formally defined in SIMAN.

Internal entities are used by SIMAN to manage such things as the beginning and end-
ing of downtime periods for resources and for stopping a simulation when a modeler-
specified simulated time has been reached. They have no special name in SIMAN.
(Internal entities result from elements specified by the modeler in the SIMAN experi-
ment file.) SIMAN Resources model objects that provide service on behalf of Entities.
Conveyors and Transporters are special-purpose resources used to model the movement
(transportation) of objects along fixed and free paths, respectively, in systems.

In SIMAN, Blocks are used to describe operations carried out by or on Entities.
Blocks are arranged in sequences in the order of operations and are connected by paths.
Entities move along these paths from Block to Block, triggering Block execution when
they move. Each type of Block has a key word and operands whose values particularize

790 HOW DISCRETE-EVENT SIMULATION SOFTWARE WORKS

instances of the Block type. For example, the CREATE Block is used to create Entities;
the distribution followed by the intercreation-time random variable is specified in one
of its operands. The WAIT Block is used to put an Entity into the time-delayed state;
it has an operand to describe the distribution of time delays. The SEIZE Block is used
by an Entity to request one or more units of a Resource; it has operands to identify
the particular Resource and the number of units being requested. And so on. SIMAN
provides more than 40 types of Blocks.

Current Events Chain. The SIMAN Current Events Chain has the characteristics of
the current events list discussed generically. Ready-state Entities are put onto the Current
Events Chain by the clock update phase, by cloning during the entity movement phase,
and by resolution of related and polled waiting during the entity movement phase. At
the end of an entity movement phase, the Current Events Chain is empty.

Entity Movement Phase. The steps followed to cany out SIMAN's entity movement
phase are displayed in the flowchart of Figure 24.1 1, with various components numbered
to support discussion. SIMAN does not have a special name for the entity movement
phase.

At the start of the SIMAN EMP, a test is conducted (box 1, Figure 24.11) to see if the
Current Events Chain contains ready-state Entities, or is empty. Normally, one or more
ready-state Entities will be on the CEC when an entity movement phase begins, but the
CEC could be empty because the presence of internal entities on the future events list
can trigger entity movement phases to support polling, even if there are no ready-state
entities to be processed. (The case of an initially empty CEC and polling is discussed
below with the clock update phase.)

Assume an initially nonempty CEC. After the box 1 test, SIMAN puts the Entity at
the top of the CEC into the active state (box 2) and then moves the Entity through as
many Blocks (operations) as possible (box 3) until the Entity migrates from the active
state into the time-delayed state (is transferred to the FEC), or condition-delayed state
(is transferred to an Attached or Internal Queue), or dormant state (is transferred to a
Detached Queue).

After an Entity has migrated out of the active state, the CEC is tested (box 4, Figure
24.11) to see if it is now empty or if there are still one or more ready-state Entities on
it. If the CEC is not yet empty, and entity movement phase continues by putting the
ready-state Entity at the top of the CEC into the active state (from box 4 back to box
2), and so on. The looping process (consisting of boxes 2, 3, and 4) continues until the
CEC is empty.

The active Entity might execute a Block with the effect of creating one or more
clones (copies of itself). In this case, the clone or clones are put immediately into ready
state at the top of the CEC (ahead of any other CEC Entities) in first-in, first-out clone
order. For example, if the active Entity produces one clone, this clone will be put at the
top of the CEC and will be the next ready-state Entity to enter the active state.

After the CEC has been emptied (by the box 2-34 looping), a test is conducted (box
5) for the presence of SCAN Blocks in the model. SCAN Blocks are used by SIMAN to
implement polled waiting. When a SCAN Block is executed, an associated delay list is
checked (box 6, Figure 24.1 1) to see if the delay-inducing condition has been resolved
for the Entity at the top of the list (the queue leader). If it has, this Entity is put into
ready state on the CEC (box 7). After each SCAN Block has been executed, the entity
movement phase continues by processing any resulting ready-state Entities (boxes 2, 3,

24.7 IMPLEMENTATION IN THREE INSTANCES OF SIMULATION SOFTWARE 791

Begin Q

the top of the CEC

Entity until it migrates

(+J CUP

(7)

Figure 24.11 SIMAN entity movement phase.

- Place each such
Entity on the CEC

792 HOW DISCRETE-EVENT SIMULATION SOFTWARE WORKS

and 4). The entity movement phase continues in this way until the CEC is empty and
no more Entities are put into ready state on the CEC by polling. The SIMAN model has
then been updated completely at the current simulated time. The next step is to execute
the next clock update phase ("no" exit from box 6 in Figure 24.11).

Future Events Heap. In SIMAN, time-delayed entities (both external and internal)
are located in a structure named the Future Events Heap (FEH). This structure behaves
like a list ranked on increasing move time. The entity with the smallest move time is
the next one removed from the FEH when a clock update phase occurs. If there are
move-time ties, the order in which entities are removed from the Future Events Heap
will not necessarily match their order of insertion into the heap.

Clock Update Phase. The clock update phase advances the simulation clock to the
move time of the entity at the top of the Future Events Heap. What happens next depends
on whether the entity is external or internal. The alternatives are outlined in Figure
24.12, which shows a flowchart for SIMAN's clock update phase (CUP) and numbers
the various components to support discussion.

After the simulation clock has been set equal to the move time of the entity at the
top of the Future Events Heap (box 1, Figure 24.12), the entity is removed from the
heap (box 2) and is tested (box 3) to determine if it is internal or external. If internal,
the entity is processed immediately (box 4). If external, the Entity is inserted at the top
(last in, first out) of the Current Events Chain (box 5).

Either way, removal of the entity from the FEH means that some other entity is now
at the top of the FEH. To check for potential time ties, the next step (box 6) is to test
the top FEH entity's move time to see if it matches the current simulated time. If there
is a match, this entity is dealt with appropriately (boxes 2 and 3, and then box 4 or 5).
Then another test is conducted (box 6) to determine whether yet another FEH entity
might be involved in a time tie. After time ties have been taken into account, SIMAN
executes the entity movement phase ("no" path from box 6) to update the state of the
model at the freshly established simulation time.

Study of Figure 24.12 shows that a SIMAN clock update phase does not necessarily put
one or more external entities on the Current Events Chain. Nevertheless, SIMAN follows
each clock update phase with an entity movement phase, whether or not there are exter-
nal entities on the CEC when the entity movement phase begins. This ensures that a timely
check of polled waiting conditions will be made. (Inspection of the Figure 24.1 1 flowchart
for the entity movement phase shows that in this case the entity movement phase imme-
diately takes the path from box 1 to the start of the polled-waiting logic at box 5.)

Attached and Internal Queues. Attached and Internal Queues are the two types
of SIMAN lists composed of Entities in a condition-delayed state. These lists have the
potential to be formed with Blocks known as Hold Blocks. For example, SEIZE, the
Block used by an Entity to capture a Resource, is a Hold Block. If an active Entity tries
to execute a SEIZE Block and discovers that it must wait its turn to use the requested
Resource, it will be transferred from the Current Events Chain into a condition-delayed
state on either an Attached or an Internal Queue, where it will wait for the Hold con-
dition to be resolved.

If a QUEUE Block immediately precedes a Hold Block, an Attached Queue results.
An Attached Queue is a named list of Entities waiting to execute the associated Hold
Block. Entities are put into an Attached Queue first in, first out, or last in, first out,

24.7 IMPLEMENTATION IN THREE INSTANCES OF SIMULATION SOFTWARE 793

Process the Internal
Ent i i immediately

Set the clock to the move time
of the Entity at the top of the FEH

Remove the entity
from the FEH

Entity?

Put the external Enti [at the topof the C E 2 I

Figure 24.12 SIMAN clock update phase.

or are inserted into the Queue ranked on the value of a modeler-supplied arithmetic
expression. If no QUEUE Block precedes a Hold Block, SIMAN provides an Internal
Queue for that Hold. An Internal Queue is an unnamed Queue maintained in first-in,
first-out order.

Sometimes it is convenient to use identical Hold Blocks at multiple points in a model
(e.g., to use a "SEIZE DRILL" Block two or more places in a model). The modeler
can associate a separate Attached Queue with each such Hold Block. The resulting
Attached Queues are unshared, because Entities in two or more Queues are then waiting
in separate delay lists for the same Resource. (Hold-Block priority is used to determine
which Attached Queue will supply the next Entity to get the Resource.) Alternatively,
the modeler can put Entities delayed at two or more identical Hold Blocks into the same
Attached Queue, a shared Attached Queue. The highest-ranked Entity in this Queue will
be the next to get the Resource.

794 HOW DISCRETE-EVENT SIMULATION SOFTWARE WORKS

The related-waiting approach is generally used to manage the transfer of Entities from
Attached and Internal Queues to ready state on the Current Events Chain. An exception is
made for the type of Hold Block known as a SCAN Block. A SCAN Block delays Entities
until a modeler-supplied arithmetic expression (typically involving system-state informa-
tion and/or data values) becomes true. Attached and Internal Queues that form at SCAN
Blocks are polled toward the end of each entity movement phase, as shown in the Figuer
24.1 1 flowchart for the entity movement phase (boxes 5,6 , and 7).

Detached Queues. Detached Queues are Entity lists used by SIMAN to implement
the dormant state. Entities are put into Detached Queues when they execute QUEUE
Blocks with the DETACHED modifier specified. Such Entities are later transferred (as
the result of action taken by other Entities) from the dormant state to the ready state.
(These other Entities use either SEARCH and REMOVE or QPICK and MATCH Blocks
to transfer Entities from Detached queues to the CEC.)

24.7.2 ProModel

In the following sections ProModel terminology is summarized, particulars of the Pro-
Model entity movement phase and clock update phase are described, and the approach
used in ProModel to handle delayed entities is discussed.

ProModel Terminology. ProModel equivalents for many of the generic terms pre-
sented earlier are given in Table 24.4. More details are provided in the following sub-
sections.

Entities. External entities are called Entities in ProModel. Various classes of Entities
must be formally defined when modeling in ProModel. These entity classes are called
Entity Types. The various Entity Types are each given a unique name supplied by the
modeler. ProModel uses internal entities, calling them Internal Events. The role played
by Internal Events is discussed further below.

Resources. Locations are one of the ProModel constructs that correspond to the
generic term resource. As the name suggests, Locations represent fixed places. They

TABLE 24.4 ProModel Terminology

Generic Term or Phrase ProModel Equivalent

External entity
Internal entity
Resource
Control element
Operation
Current events list
Future events list
Delay list
User-managed list
Entity movement Phase
Clock update Phase

Entity
Internal Event
Location, Resource, Node
Variable
Process Step
Action List
Future Events List
Waiting List
There is no generalized equivalent
No special phrase is used
No special phrase is used

24.7 IMPLEMENTATION IN THREE INSTANCES OF SIMULATION SOFTWARE 795

are used to model such things as waiting areas (space), workstations, and immo-
bile machines. Locations are also used to model accumulating and nonaccumulating
conveyors. Resources are another ProModel construct corresponding to the generic
term resource. Resources can be used to model such things as people and equipment.
Resources can be static, modeling for example an immobile worker assigned to operate
a fixed-position machine. Alternatively, Resources can be dynamic (mobile), modeling
for example forklift trucks or workers who move from point to point in a system.

Dynamic Resources move about in networks composed of paths (path networks).
There are several types of path networks. For example, there is a type in which dynamic
Resources must move single file, and there is another type in which dynamic Resources can
pass each other. Nodes are another ProModel resource construct. Nodes are the beginning
and ending points of the paths making up the networks within which dynamic Resources
move. Resources themselves can compete with each other for the use of Nodes, moving
through a network in search of something to pick up, for example, or for a place to be idle.

Because dynamic Resources move, the timing of their movement comes into play;
and because they compete for Nodes, the possibility of delay also comes into play for
them. As a result, dynamic Resources have much in common with Entities. (Whereas
Entities are units of traffic that move through systems and are service consumers,
dynamic Resources are units of traffic that move within systems and are service
providers.) Like Entities, dynamic Resources can be put into a time-delayed state while
they wait for the known future time when they will reach their destination. They can
also migrate from the time-delayed to the ready state, and then the active state. Because
of Node competition, they are candidates for the condition-delayed state, too. ProModel
uses its Future Events List, Action List, and Waiting Lists not only to manage Entities
but also to manage dynamic Resources. (The Future Events and Action Lists are also
used to manage Internal Events.)

Control Elements. In ProModel, a Variable is a general-purpose data element whose
value can be the object of a ProModel WAIT UNTIL. Like all control elements, a Vari-
able (used in conjunction with a WAIT UNTIL) has the potential for causing Entities to
be delayed.

Operations. The transaction-flow part of ProModel is specified by the modeler as an
ordered collection of Process Steps contained in a Process Table. Every Process Step spec-
ifies the name of an Entity Type (or All) and the name of a Location (or All). An Entity
"flows" from one Process Step to the next in a Process Table by jumping to the next Pro-
cess Step that matches its Type and Location (looping back to the top of the Process Table
if necessary). These Process Steps determine what this Entity Type is to do at this Location.

Operation Logic and Routing Logic are the components from which Process Steps are
formed. A Process Step can consist of zero or more of each of these components. Competi-
tion among Entities for nontransportation Resources is spelled out in the Operation Logic.
Competition among Entities for Locations and transportation Resources is spelled out in
the Routing Logic. Routing Logic is applied after Operation Logic has been executed.

Many model-definition constructs in ProModel have optional user-defined Logic
fields (e.g., Downtime Logic and Location Exit Logic). Logic is a collection of state-
ments that are executed automatically and whose execution has the potential of putting
Internal Events on the Future Events List. When processed, these Internal Events might
go back onto the Future Events List or onto a delay list. They might also cause Entities
or dynamic Resources to be put on the current events list.

796 HOW DISCRETE-EVENT SIMULATION SOFTWARE WORKS

Action List. Action List is the ProModel name for the current events list. The Action
List can contain Entities, dynamic Resources, and Internal Events. (The term element
will be used from this point forward to designate any one of Entity, dynamic Resource,
or Internal Event.) The Action List is empty when an entity movement phase begins.
That is, there are no elements in the ready state. An Entity, dynamic Resource, or
Internal Event is already in the active state at this point, however. Entities, dynamic
Resources, and Internal Events can be put on the Action List while the active-state ele-
ment is being moved. Any such list newcomers are put at the top of the list. When
the active element migrates from the active state, the element at the top of the Action
List is the next to enter the active state. This results in last-in, first-out Action-List
management.

Entity Movement Phase. ProModel's entity movement phase is shown in Figure
24.13. One element is in the active state when the entity movement phase begins (as
explained below in the discussion of the clock update phase), and the Action List is
empty. If the active element is an Entity or a dynamic Resource (box 1, Figure 24.13), it
executes operations until it is forced to migrate from the active state (box 2); otherwise,
it is an Internal Event and all the corresponding logic is acted upon (box 3).

Either way, one or more new ready-state elements might be created as a result and,
if so, will be put on the Action List last in, first out. (For example, an Entity might
create one or more copies of itself.) If this is the case ("no" path from box 4, Figure
24.13), the element at the top of the Action List is made active (box 5) and the entity
movement phase continues from there. Otherwise, the Action List is still empty and a
clock update phase comes next ("yes" path from box 4).

Future Events List. ProModel's Future Events List is composed of elements (Enti-
ties; dynamic Resources; Internal Events) in the wait-delayed state. The elements are
arranged in the list top down in order of increasing move times. ProModel always
removes exactly one element from the top of the list per clock update phase. (This
means that in case of time ties there will be two or more consecutive clock update
phases and entity movement phases at the same point in simulated time.)

Clock Update Phase. ProModel's clock update phase is summarized in Figure 24.14.
The phase begins by setting the simulation clock equal to the move time of the element
at the top of the Future Events List (box 1). This element is put immediately into the
active state (box 2). This concludes the clock update phase, and the entity movement
phase begins. In the ProModel approach, then, there are no ready-state entities when
an EMP begins. (The Action List is empty.) Furthermore, if two or more elements at
the top of the Future Events List have identical move times, two or more consecutive
clock update phases and entity movement phases will take place at the same point in
simulated time.

Waiting Lists. Waiting Lists are ProModel delay lists. There are Waiting Lists for
Entities and for dynamic Resources. A Waiting List for Entities is attached to each
Location, to each static Resource, to each dynamic Resource, and to each Variable that
is subject to a WAIT UNTIL. A Waiting List for dynamic Resources is attached to each
Node.

A single Entity (or dynamic Resource) can be represented simultaneously in many
delay lists. As a result, ProModel does not use polled waiting to manage the resolution

24.7 IMPLEMENTATION IN THREE INSTANCES OF SIMULATION SOFTWARE 797

Begin (Z'J

Execute as many Operations
as possible at this time

Process all the
Internal Event's
logic at this time

Is the
Action List

empty?

Remove the element
from the top of the Action List

and activate it

Figure 24.13 ProModel Entity Movement Phase.

of complex delay. Instead, related waiting is used to manage Waiting Lists, with the pro-
vision that ProModel removes the (representation of the) Entity (or dynamic Resource)
from all relevant delay lists as soon as the related-waiting mechanism transfers the Entity
(or dynamic Resource) from any one of them to the Action List.

ProModel has no lists corresponding to the generically described user-managed lists.
However, JOIN, LOAD, and SEND are all Routing Logic options that place Entities on
special Location-specific lists where they await a corresponding JOIN, LOAD, or SEND
Operation Statement to be executed by another Entity at the destination Location. This
explicit Entity-based triggering makes these lists resemble user-managed lists. Because
the lists are specific to Locations, they are considered here to be in the category of delay
lists.

798 HOW DISCRETE-EVENT SIMULATION S O W A R E WORKS

Set the clock to the move time
of the element at the top

Remove the element
from the Future Events List

Figure 24.14 ProModel Clock Update Phase

In the following sections GPSS/H terminology is summarized, particulars of the
GPSS/H entity movement phase and clock update phase are described, and user-man-
aged lists are discussed.

GPSS/H Terminology. GPSS/H equivalents for many of the generic terms presented
earlier are given in Table 24.5.

Entities, Resources, Control Elements, and Operations. External entities are
called Transactions (Xacts for short) in GPSS/H. Various classes of Transactions are not

Table 24.5 GPSS/H Terminology

Generic Term or Phrase GPSS/H Equivalent

External entity
Internal entity
Resource
Control element
Operation
Current events list
Future events list
Delay list
User-managed list
Entity movement phase

Transaction
System Transaction
Facility; Storage
Logic Switch, Arithmetic Expression, Boolean Expression
Block
Current Events Chain
Future Events Chain
Current Events Chain
User Chain
Scan Phase

clock update phase Clock Update Phase

24.7 IMPLEMENTATION IN THREE INSTANCES OF SIMULATION SOFTWARE 799

formally defined. Transactions do have numeric-valued attributes whose role is deter-
mined by the modeler. A specialized numeric-valued Transaction attribute known as
Priority Level is used to determine a Transaction's rank when it is placed on the cur-
rent events list.

GPSS/H makes some use of internal entities. These are called System Transactions.
System Transactions are used to initialize arrival processes, to support making certain
types of statistical observations, and to support the list-processing algorithms employed
to manage the current and future events lists. GPSS/H uses the future events list in
some cases to manage the timing of System Transactions. GPSS/H does not use inter-
nal entities to model resource downtimes or simulation stop-times. Instead, downtimes
and stop-times are modeled with external entities (Transactions) that execute Blocks
(discussed below) to implement downtime and stop-time logic.

Facilities and Storages model resources. Facilities model unit-capacity resources; that
is, a Facility is a resource that can only serve one Transaction at a time. Storages model
resources having any user-specified capacity. Storages are capable of serving multiple
Transactions simultaneously.

Logic Switches are on-or-off variables used for control purposes in GPSS/H. Trans-
actions can be forced to wait until a specified Logic Switch is in an indicated state, or
can alternatively move either sequentially or nonsequentially, depending on whether a
specified Logic Switch is or is not in an indicated state.

Arithmetic and Boolean Expressions can also be used as control elements in
GPSS/H. Transactions can be forced to wait until a specified Arithmetic Expression
satisfies a specified relational condition (or until a Boolean Expression has a specified
truth value), or can alternatively follow a nonsequential path conditioned on the value
of an Arithmetic or Boolean Expression.

In GPSS/H, blocks are used to describe operations carried out by or on Transac-
tions. Blocks are arranged in sequences in the order of operations, and are connected
by paths. Transactions move along these paths from Block to Block, triggering Block
execution when they move. Each type of Block has a key word and operands whose
values particularize instances of the Block type. For example, the GENERATE Block
is used to create Transactions; the distribution followed by the intercreation-time ran-
dom variable is specified in one of its operands. The ADVANCE Block is used to put
a Transaction into the time-delayed state; it has an operand to describe the distribution
of time delays. The SEIZE Block is used by a Transaction to request a Facility; it has
an operand to identify the particular Facility. And so on. GPSS/H provides about 65
types of Blocks.

Current Events Chain. The GPSS/H Current Events Chain holds Transactions that
are in the ready state. It also holds the active-state Transaction. The Current Events
Chain additionally serves as a single global GPSS/H delay list, holding condition-
delayed Transactions in a model. These condition-delayed Transactions are commingled
with the active-state Transaction and ready-state Transactions on the CEC.

Transactions have a specialized numeric-valued attribute known as Priority Level.
A Transaction's Priority Level is assigned when the Transaction is created and can be
changed dynamically any number of times during the Transaction's life cycle. Trans-
actions on the CEC are ranked first in, first out within Priority Level. This results in
a "first come, first served, within Priority Level" service order for condition-delayed
Transactions. (User Chains, discussed below, are used to model other service orders.)

GPSS/H has a Queue construct and a QUEUE Block, but unlike SIMAN's QUEUE

800 HOW DISCRETE-EVENT SIMULATION SOFTWARE WORKS

Block, the GPSS/H QUEUE Block, does not perform a list management function.
GPSS/H queues are used for statistics-gathering purposes only, consistent with the fact
that except for the CEC (and some CEC-supporting internal delay lists discussed below),
there are no additional delay lists in GPSS/H. Because of its delay-list role, the GPSS/H
CEC frequently is not empty when an entity movement phase ends.

Scan Phase. The entity movement phase is known as the Scan Phase in GPSS/H.
The Scan Phase must take into account the presence of commingled ready-state
and condition-delayed Transactions on the Current Events Chain. Transactions cannot
always simply be examined only one time during a Scan Phase, from the top of the
CEC to the bottom. This is because when the active-state Transaction executes a Block
that resolves a delay, the affected condition-delayed Transaction(s) might be somewhere
above the active Transaction on the CEC. The affected Transaction(s) are switched from
the condition-delayed state to the ready state and must then eventually be put into the
active state and moved before the simulation clock is advanced. his forces the Scan
Phase to redirect its CEC focus upward after the active Transaction leaves the active
state. The Scan Phase does this by returning to the Transaction at the top of the CEC.
From there it again starts to examine ~ransactions top-down, guaranteeing that it comes
across any Transactions that might have been switched from the condition-delayed state
to the ready state.

The logic of the GPSS/H entity movement phase (Scan Phase) is shown in the form
of a flowchart in Figure 24.15, where various components have been numbered to sup-
port discussion. As indicated in Figure 24.15, GPSS/H starts (or restarts) a Scan Phase
with a test (box 1) to see if there is a Transaction at the front of the CEC. (The CEC
might be empty if the Scan Phase is taking place at simulated time 0.0, or if the scan is
being restarted.) If the CEC is empty, the Clock Update Phase comes next ("no" path
from box I).

Assume that there is a Transaction at the top of the CEC. If the Transaction is in the
ready state (box 2 test), the Transaction is made active and moved (box 3) until it is
forced to migrate from the active state. A check is then made (box 4) to determine if the
actions just taken might have resolved one or more delay-inducing conditions. If delay
might have been resolved, the scan of the CEC restarts at the top of the CEC ("yes"
path from box 4 back up to box 1); otherwise, the scan continues to the sequential CEC
Transaction, if any ("no" path from box 4 to box 5). If there is no sequential Transaction,
the last Transaction on the CEC has been dealt with and the Clock Update Phase comes
next ("no" path from box 5).

If the Transaction being dealt with at box 2 in Figure 24.15 is not in the ready state,
it is condition-delayed. The "no" path is taken from box 2 to box 5 in such cases.
The effect is to skip over condition-delayed Transactions during the Scan Phase. The
GPSS/H approach of keeping condition-delayed Transactions on the CEC and examin-
ing them one or more times during the Scan Phase to see if they have been put into the
ready state means that all of these Transactions are fundamentally in a polled-waiting
condition.

More About Restarting the Scan. The scan restarts discussed above result in extra
processing demands while GPSS/H reexamines condition-delayed Transactions on the
CEC. To offset this, each Transaction has an on-or-off switch called the Scan Skip
Indicator that signals whether the Transaction is waiting for the resolution of a simple
delay condition. When the scan examines a CEC Transaction, its Scan Skip indicator is

24.7 IMPLEMENTATION IN THREE INSTANCES OF SIMULATION SOFTWARE 801

Begin 0

Figure 24.15 GPSS/H entity movement phase

tested to determine if the Transaction is condition-delayed. If it is, the scan skips over
the Transaction and goes to the sequential CEC Transaction. (See the "no" path from
box 2 to box 5 in Figure 24.15.)

A condition-delayed Transaction's Scan Skip Indicator is switched off at the moment
the delay-inducing condition is resolved, putting the Transaction into the ready state.

802 HOW DISCRETE-EVENT SIMULATION SOFTWARE WORKS

Internal delay lists are used to track which Transactions should have their Scan Skip
Indicators switched off when the associated delay-inducing condition is resolved.
Because these internal delay lists are related to the delay-inducing conditions, the
GPSS/H Scan Phase is really a hybrid of the polled-waiting and related-waiting
approaches.

GPSS/H has an internal Status Change Flag that GPSS/H switches on whenever
a delay-inducing condition has just been resolved. (GPSS/H also puts corresponding
condition-delayed Transactions into the ready state as well by switching off their Scan
Skip Indicator.) When the active Transaction migrates out of the active state, the Status
Change Flag is tested (box 4, Figure 24.15) to determine whether to restart the scan. The
need for scan restarts under qualified conditions complicates the logic of the Scan Phase.
(Full-blown particulars of the logic are provided in Schriber, 1991.) Nevertheless, the
use of Scan Skip Indicators, internal delay lists, and the Status Change Flag to support
these scan restarts results in extremely fast execution of GPSS/H models.

There is one additional aspect of the Scan Phase and scan restarts to be mentioned.
This involves the ability of the active Transaction to call for an immediate restart of
the CEC scan. The active Transaction achieves this by executing the GPSS/H YIELD
Block, with the effect of returning itself temporarily to the ready state (corresponding
to path 4 in the Figuer 24.9 entity-state diagram) and forcing an immediate scan restart.
(This possibility could be shown in the Figure 24.15 flowchart of the entity movement
phase with a conditional path from box 3 back up to box 1.) The restarted scan will
eventually reexamine the YIELDing Transaction on the CEC at the same simulated time,
which will then become the active Transaction again. This ability of a Transaction to
yield control deliberately but only temporarily to one or more other Transactions can
be useful from time to time in discrete-event modeling.

Future Events Chain. The future events list is called the Future Events Chain (FEC)
in GPSS/H. Transactions are arranged on the FEC in order of increasing move time,
with move-time ties resolved first in, first out. The GPSS/H Clock Update Phase
removes multiple Transactions from the Future Events Chain in top-down order if they
are tied for the earliest move time, inserting them one by one (ranked by Priority Level)
into the Current Events Chain.

Clock Update Phase. The logic of the Clock Update Phase is shown in Figure 24.16.
The simulated time is set equal to the move time of the Transaction at the top of the
Future Events Chain (box 1); then this Xact is transferred from the Future to the Current
Events Chain (box 2). A check is then made (box 3) to see whether the move time of
the Transaction now at the top of the Future Events Chain matches the simulated time.
If a match is made (move-time tie), this Transaction will also be transferred from the
top of the FEC to the CEC (see the "yes" path from box 3 back up to box 2). This
looping process is repeated until the Transaction at the top of the Future Events Chain
has a move time exceeding the current simulated time. The clock Update Phase is then
complete, and the Scan Phase comes next ("no" path from box 3).

User Chains. GPSS/H implements the dormant state with User Chains, which are
user-managed lists of Transactions. Transactions can be inserted into a User Chain at
the top, at the bottom, or ranked ascending on a modeler-specified Transaction attribute.
After a Transaction puts itself onto a User Chain, it can only be removed by an active-
state Transaction. The order of Transaction removal from a User Chain can be top-

24.8 WHY IT MATTERS 803

(1)

Set the clock to the
move time of the Xact
at the top of the FEC

insert it in the CEC

Yes

Figure 24.16 GPSS/H clock update phase

down, or bottom-up, or can be based on the truth of a user-supplied Boolean Expression.
Removed Transactions are put into ready state on the Current Events Chain and the
Status Change Flag is switched on (see above). As a result, the scan of the CEC will
be restarted ("yes" path from box 4 back up to box 1 in Figure 24.15) after the active
Xact migrates from the active state. This ensures that the ready-state newcomers to the
Current Events Chain will be put into the active state and move before the next Clock
Update Phase takes place.

24.8 WHY IT MATTERS

24.8.1 Overview

Three scenarios will now be described that reveal some of the practical differences in the
design and implementation of discrete-event simulation software. These differences are
illustrated for SIMAN, ProModel, and GPSS/H, but there are underlying implications
that extend to whatever software is being used for discrete-event simulation modeling.
Furthermore, these scenarios are only a few of many that could be presented.

The section concludes with comments on how knowledge of the logical foundations

804 HOW DISCRETE-EVENT SIMULATION SOFTWARE WORKS

of discrete-event simulation and implementation of logical considerations internal to
modeling software is needed to make effective use of software tools provided for trou-
bleshooting and verifying models.

24.8.2 Trying to Recapture a Resource Immediately

Suppose that a part releases a machine, then the part immediately recompetes for use of
the machine. The objective is to let a more highly qualified waiting part (that might have
come along in the meantime) be the next to use the machine. It is possible, however, that
the releasing part itself might be most highly qualified, in which case it is to recapture
the machine without delay. Waiting parts might be ranked on due date, for example (the
nearer the due date, the higher the rank), and the question is whether the releasing part is
the most highly qualified to use this same machine for the next operation to be performed
on the part. Suppose further that the modeler thinks this situation can be modeled in
straightforward fashion, using fundamental techniques provided in the languages under
discussion. Then the question is whether the modeler achieves the intended effect.

Of interest here is the order in which events take place following the giving up of a
resource. There are at least three alternatives that are based on the timing used by the
software to determine which entity will be next to use the machine that has just been
made idle. These are the alternatives:

1. Coupled with the giving up of the resource is the immediate choosing of the next
resource owner from the associated delay list. In this case the releasing entity is
still the active-state entity when the next owner is chosen; the releasing entity is
not on the delay list and so is not a contender for the resource.

2. The choosing of the next resource owner is deferred until the releasing entity has
migrated out of the active state; this gives the releasing entity the opportunity to
be put on the associated delay list (even though the resource is idle) and therefore
to be a contender for the resource.

3. "Neither of the above"; that is, the releasing entity, without paying heed to the
possible presence of other contenders, continues to be the active entity and recap-
tures the idle resource immediately, even though a more highly qualified entity
might be waiting for the resource.

Each of these three alternatives is in effect in one or another of the three instances
of simulation software being discussed here, reflecting differing implementation choices
made by the software designers. In particular, SIMAN, ProModel, and GPSS/H, respec-
tively, implement the first, second, and third alternatives outlined above, as summarized
in Table 24.6.

None of the three Table 24.6 alternatives is intrinsically either "right" or "wrong."
The point is that the modeler must be aware that alternative design choices exist for the
language designer, and must know which design choice has been made in the software
the modeler is using. Otherwise, if the modeler is unaware that this is potentially an
issue, it is quite possible to model a given situation with an unintended effect and then
through inadequate model verification not even become aware of this fact.

24.8 WHY IT MATTERS 805

TABLE 24.6 Alternative Outcomes When Recompeting for a Resource

When is the Is the Releaser
Successor a Contender Which Language

Alternative Chosen? at That Time? (and How)?

1 At the time the No SIMAN (RELEASE
resource is released followed by SEIZE)

2 After the releaser has Yes ProModel (FREE or USE
become a member followed by GET or
of the delay list USE)

3 When the active Yes GPSS/H (RELEASE
entity tries to followed by SEIZE)
capture it

24.8.3 The First In Line Is Still Delayed

Suppose that two or more condition-delayed entities are waiting in a list because no
units of a particular resource are idle. Assume that the entity at the top of the list needs
two units of the resource, whereas the next entity in the list only needs one unit. (For
example, the waiting entities might be ships, and the resource might be tugboats. The
ship at the top of the list needs two tugboats, but the next ship in the list only needs
one tugboat.) Now suppose that one unit of the resource becomes idle. The needs of the
entity at the top of the list cannot yet be satisfied, but the needs of the next list entity
can. What will happen?

There are at least three possible alternatives: (1) Neither entity claims the idle
resource unit; instead, both entities continue to be condition-delayed; (2) the first entity
claims the one idle resource unit and waits in a condition-delayed state for a second
unit; or (3) the first entity's needs cannot be met but the second entity's can, so the sec-
ond entity claims the idle resource unit and migrates from the condition-delayed state
to the ready state.

If the modeler takes a fundamental modeling approach for entities requesting
resources in the languages being discussed (SEIZE in SIMAN; GET or USE in Pro-
Model; ENTER in GPSS/H), each of the three alternatives described above will be
achieved, one per language. The outcomes are summarized in Table 24.7.

Alternative 1 in Table 24.7 is in effect in SIMAN because only the entity at the head
of the associated delay list (the queue leader) is a contender for the resource; the next

TABLE 24.7 Alternative Outcomes When the First in Line is Still Delayed

Alternative Behavior
Which Language

(and How)?

I Neither entity claims the idle resource unit; SIMAN
both continue to be condition-delayed (SEIZE)

2 The first entity claims the idle resource unit ProModel
and continues in the condition-delayed state, (GET or USE)
waiting for a second unit

3 The second entity claims the idle resource unit GPSS/H
and migrates to the ready state (ENTER)

806 HOW DISCRETE-EVENT SIMULATION SOFTWARE WORKS

entity in the delay list isn't yet in active contention for the resource because it is not
yet the queue leader.

In ProModel, alternative 2 in Table 24.7 is in effect because the entity at the head of
a ProModel delay list is permitted to make a partial capture. The entity captures the one
idle resource unit and remains in a delayed state, waiting to capture another resource
unit.

In GPSS/H, all condition-delayed Transactions waiting for a resource are active con-
tenders for the resource, and partial captures are not permitted. (The approach taken
in GPSS/H when a Transaction requests multiple units of a resource is "all or noth-
ing at all.") Both of the affected condition-delayed Transactions are switched from
the condition-delayed state to ready state on the Current Events Chain when the one
resource unit is made idle. The Transaction requesting two units becomes active first but
is switched back to the condition-delayed state because there aren't two idle resource
units for it. The Transaction requesting one unit then becomes active and captures the
one idle resource unit, resulting in alternative 3 in Table 24.7. The comment made at the
conclusion of Section 24.8.2 applies here, too: the modeler needs to know that software
behavior depends on choices made by the language designer and must understand what
the implications are for model design.

24.8.4 Yielding Control Temporarily

Suppose that the active entity wants to give control to one or more ready-state entities,
but then wants to become the active entity again before the simulated clock has been
advanced. This might be useful, for example, if the active entity has opened a gate
permitting a group of other entities to move past a point in the model in zero simulated
time, and then needs to reclose the gate after the other entities have moved through it.
(Perhaps a group of identically flavored cartons of ice cream is to be transferred from
an accumulation point to a conveyor leading to a one-flavor-per-box packing operation.
After the group has moved past the accumulation point, conditions must be reset so that
the next group can begin to accumulate there.)

There are a number of ways to accomplish this effect, with the particulars dependent
on the language being used. The scenario described here is more complicated than either
of those in Sections 24.8.2 and 24.8.3, so a modeler without much experience might not
be able to model this scenario "instinctively," but might have to give it some thought.
The modeler might evolve a plan like this:

1. A "watchdog-entity" is used to monitor the group of other entities, waiting until
the group has reached the predetermined size (e.g., the number of cartons of ice
cream per packing box). Meanwhile, the other entities are arriving over time at
the accumulation point and are being put into a condition-delayed state because
the gate is closed.

2. When the watchdog detects that the required group size has been reached, it opens
the gate, then "stands aside" while the other entities move through the open gate,
one after the other. This movement consumes very little time in the real system,
so let us assume that the movement is modeled as taking zero simulated time.

3. The watchdog then takes action again at the same simulated time, reclosing the
gate to force subsequent entities arriving there to wait until the next group being
formed has reached the predetermined size, and so on.

24.8 WHY IT MATTERS 807

This leads to the question of whether and how the modeler can achieve the effect of
having the watchdog take action early in an entity movement phase (to open the gate),
then "stand aside" (leave the active state) while the other entities move, and then reenter
the active state during the same entity movement phase to take more action (to reclose
the gate). Referring to the entity-state diagam in Figure 24.9, the watchdog-entity wants
to go from the active state to the ready state (path 4) and then eventually (but at the
same simulated time) return to the active state (path 5).

The effect can be accomplished, either approximately or exactly, in each of the three
modeling languages being discussed, as follows:

1. In SIMAN, the effect can be accomplished approximately by putting the watchdog
entity into a time-delayed state (DELAY Block) for a very short simulated time.
The watchdog will then enter the active state again after the next clock update
phase and can reclose the gate then. (Presumably no additional entities have come
along in the meantime. See the further discussion below.)

2. In ProModel, the effect can be accomplished exactly by putting the watchdog
entity into a time-delayed state for zero units of simulated time ("WAIT 0) .
(This can't be done in either SIMAN or GPSS/H; if the active entity executes
a "DELAY 0'' Block in SIMAN or "ADVANCE 0 in GPSS/H, the entity is
not put onto the future events list but remains active and immediately tries to
execute the sequential Block.) At the conclusion of the ongoing entity movement
phase, ProModel will carry out the next clock update phase, putting the watchdog
into the active state without changing the simulated clock. (In other words, the
watchdog will traverse the 5-6-3 path in the Figure 24.9 entity-state diagram in
zero simulated time.) The watchdog can then move to reclose the gate at precisely
the same simulated time at which it had been opened.

3. In GPSS/H, the effect can be accomplished exactly by having the watchdog exe-
cute a YIELD Block right after it opens the gate. This Block execution causes the
watchdog to migrate immediately from the active state back to the ready state,
with the entity movement phase then refocusing on the entity at the top of the
Current Events Chain. (The logic of YIELD-Block execution is not shown in the
Figure 24.15 flowchart of the GPSS/H Scan Phase. It could be shown there with
a line leading from box 3 to box 1.) Qualifying entities above the watchdog on
the CEC will then become active, one by one (with ice-cream entities, for exam-
ple, now able to move through the open gate). As the entity movement phase
continues, the watchdog will be reencountered by the scan and then will be made
active again. It can then reclose the gate at precisely the same simulated time at
which it had been opened.

Would experienced modelers take the watchdog approach described above to model
this scenario? Not necessarily. Other approaches are possible, making it unnecessary,
for example, to settle for approximate effects or to assume that each entity in the group
moves through the conceptual gate in zero simulated time. The important point is that
description of the approach presented here, and language-specific discussion of its par-
ticulars, would be difficult or impossible without appealing to an understanding of the
foundations of discrete-event simulation. Modelers who do not have this understanding
are at a disadvantage relative to those who do.

808 HOW DISCRETE-EVENT SIMULATION SOFTWARE WORKS

24.8.5 Interactive Troubleshooting and Verification of Models

The modeler is faced with several types of challenges when building discrete-event sim-
ulation models. One challenge is to develop correct approaches for modeling logically
complicated situations. A second challenge is to come to a careful understanding of
model behavior so that execution errors occurring during model development can be
diagnosed and remedied. A third challenge is to verify that a model accurately captures
the logic intended for it. (There are other challenges too in a simulation project, but
these three bear especially on the subject of this chapter.)

A modeler should be able to handle each of these challenges, and to handle them
smoothly and quickly. For this purpose, modeling software can provide an arsenal of
tools to support interactive probing of model behavior. These tools make it possible
to put a magnifying glass on a simulation model while it executes in slow motion.
The modeler can follow the active entity step by step, watch the hand-off of the active
state from one entity to the next, display the current events list at the start of an entity
movement phase and at intermediate points during the phase, and display the future
events lists and the delay and user-managed lists at will. The status of resources can
also be displayed, as well as statistical reports summarizing various aspects of the model.

Here are examples of some of the types of things a modeler might be able to do
when interactively troubleshooting a model:

1. Suppose that during a trial batch-mode run being made during model develop-
ment, an error message is issued at a specified simulated time saying that a par-
ticular entity is trying to make a forbidden move (such as freeing up a resource
that it doesn't have under its control; or such as requesting its own destruction
while it still has resources under its control). The question then arises: How did
this particular entity erroneously reach the point in the model at which it was
attempting such a move? To probe for the answer to this question, the modeler
can rerun the model in interactive mode. (Because pseudorandom numbers are
used, the previous run will be reproduced exactly.) Before the simulation starts,
the modeler can "set a trap" on the simulation clock, then indicate that the sim-
ulation is to continue until reaching the beginning of the entity movement phase
at the simulated time the error is known to occur. When this time comes, the
software will then interrupt the simulation and the modeler will be put in con-
trol. Next, the modeler can "set a trap" on the offending entity, so that when this
entity next becomes active, the simulation will be interrupted again. When the
entity does become active, the modeler can display its whereabouts in the model
and single-step it along its path, right up to the point that the execution error
occurs. By this time the modeler has probably gained enough insights to realize
why the model is misbehaving.

2. Suppose now that in the preceding scenario, the offending entity has already got-
ten off its proper path sometime before the simulated time at which the error
occurs. In the preceding approach, the modeler might have started to monitor the
entity's behavior too late, that is, not until after the entity has already made its
first improper move in the model. How can this circumstance be handled? In this
case, at the start of the simulation the modeler can set a trap on the offending
entity (even though it probably has not yet been created), then let the simulation
continue. When the offending entity has been created and becomes active for the
first time, the simulation will be interrupted and the user will take control. The

24.8 WHY IT MATTERS 809

modeler can then look at the entity's point of entry to the model to see which
path it is on initially. The entity can then be followed step by step whenever it
becomes active during the ongoing simulation. In the process it will probably
occur to the modeler why the model is misbehaving.

Here are some of the types of things that might be done when interactively veribing
segments of a model, or an entire model:

1. A modeler might be wrestling with possibilities for modeling one system com-
plexity or another (perhaps such as the scenario described in Section 24.8.4).
Suppose that the modeler has developed a proposed approach but doesn't know
whether the approach will work correctly. The modeler can then build a small
model designed to investigate the behavior of the approach, then use interactive
tools to determine whether or not the approach is sound.

2. The modeler might want to be assured that in the setting of a full-scale model, one
or another logical complexity has been modeled correctly. In interactive mode,
the modeler could set a trap on one or more model blocks (or statements) that are
entity entry points to the model segment in question. The simulation would then
continue until an entity or entities interact with such a block (or statement). The
modeler could then set a trap on one or more of these entities and monitor their
behavior and experiences while they move through the model segment, watching
carefully to see whether the entities are making the right moves under the model
conditions in effect then.

3. For overall verification of a model, the modeler might set traps on a number
of randomly chosen entities, then monitor the behavior and experiences of these
entities while they work their way through the model. (This is analogous to putting
radioactive tracers into a biological system.) Does each of these entities make the
right moves at the right times under the model conditions in effect when the moves
are being made? The process of trying to explain and understand the moves of
entities under a range of model circumstances forces the modeler to think clearly
about the model and can bring model flaws into focus as a result.

In more general terms, interactive model execution can also be used for self-educa-
tion in the characterisics of a modeling language itself. A language might be relatively
new to a modeler, and it might not be clear what the characteristics are of this or that
aspect of the language. For example, in the scenario of Section 24.8.3, the modeler
might not know what the effect will be in the software of choice, and it might not be
possible to find the answer either with on-line help or in a reference manual. Then the
modeler could quickly build a small test-case model and make an interactive run to
determine how the software behaves.

The types of activities described above yield valuable insights into model and lan-
guage behavior for the modeler who knows the relevant concepts. These insights can
lead to a rapid understanding of why error conditions are coming about, and whether
a model segment or an entire model is behaving in the way intended for it. Without
understanding the concepts and knowing the vocabulary the software uses to issue inter-
active messages and display information, the modeler might not take full advantage of
the interactive tools provided, and might even avoid using the tools entirely.

81 0 HOW DISCRETE-EVENT SIMULATION SOFTWARE WORKS

24.9 CONCLUSIONS

The transaction-flow world view of discrete-event simulation has been described and
illustrated through discussion of a series of examples of queuing systems. The com-
plexities of modeling large-scale systems of this type and orchestrating the movement
of units of traffic in such systems have been indicated. Entity states and the structures
and procedures used to manage entities and bring about their migration from state to
state during a simulation have been described. Details of the implementation of these
generic concepts in three instances of discrete-event simulation software have been pro-
vided. Finally, examples have been given to illustrate how important it is for the modeler
to be knowledgeable about the foundations of discrete-event simulation software and
the implementation particulars for the modeler's software of choice.

ACKNOWLEDGMENTS

Information in this chapter has been derived in part from conversations with software-
vendor personnel, some of whom then reviewed the written material. The support pro-
vided by David T. Sturrock and C. Dennis Pegden of Systems Modeling Corpora-
tion, Charles Harrell and Eric Du of ProModel Corporation, and Robert C. Crain and
James 0. Henriksen of Wolverine Software Corporation is acknowledged with thanks.
This chapter has been expanded from a tutorial on this topic given at several Win-
ter Simulation Conferences (Schriber and Brunner, 1997). The contributions of those
attending the tutorial and asking insightful questions are acknowledged with thanks.
Finally, thanks to handbook editor Jerry Banks for his comments, encouragement, and
leadership, and to two fellow handbook chapter authors who reviewed the chapter and
made useful suggestions for improving it.

REFERENCES

Balci, 0 . (1988). The implementation of four conceptual frameworks for simulation modeling in
high-level languages, in Proceedings of the 1988 Winter Simulation Conference, M. Abrams,
P. Haig, and J. Comfort, eds., Society for Computer Simulation, La Jolla, Calif., pp. 287-295.

Banks, J., J. S. Carson, and J. N. Sy (1995a). Getting Started with GPSSIH, 2nd ed., Wolverine
Software Corporation, Annandale, Va.

Banks, J., B. Bumette, H. Kozloski, and J. Rose (1995b) Introduction to SIMAN V and Cinema
V, Wiley, New York.

Benson, D. (1997) Simulation Modeling and Optimization using Promodel, in Proceedings of the
1997 Winter Simulation Conference, Society for Computer Simulation. La Jolla, Calif. pp:
587-593.

Crain, R. C. (1997). Simulation using GPSS/H, in Proceedings of the 1997 Winter Simulation
Conference, J. M . Clames, D. J. Morrice, D. T. Brunner, and J. J. Swain, eds., Society for
Computer Simulation, La Jolla, Calif., pp. 567-573.

Henriksen, J. O., and R. C. Crain (1998). GPSSIHReference Manual, 4th ed., Wolverine Software
Corporation. Annandale, Va.

Joines, J. A,, and S. D. Roberts. (1997). An Introduction to Object-Oriented Simulation in C++,
In Proceedings of the 1997 Winter Simulation Conference, Society for Computer Simulation.
La Jolla, Calif. pp: 78-85.

REFERENCES 81 1

Pegden, C. D., R. E. Shannon, and R. P. Sadowski (1995). Introduction to Simulation Using
SIMAN, 2nd ed., McGraw-Hill, New York.

ProModel Corporation (1996). ProModel Version 3 User's Guide, ProModel Corporation, Orem,
Utah.

Schriber, T. J. (1991). An Introduction to Simulation Using GPSSIH, Wiley, New York.

Schriber, T. J., and D. T. Brunner (1997). Inside Simulation Software: How It Works and Why
It Matters, in Proceedings of the 1997 Winter Simulation Conference, Society for Computer
Simulation, La Jolla, Calif., pp: 14-22.

Swain, J. J. (1997). Simulation Goes Mainstream. OR/MS Today, October, 1997, 3 5 4 6 .

CHAPTER 25

Software for Simulation

JERRY BANKS
Georgia Institute of Technology

25.1 INTRODUCTION

In this chapter we discuss the principles of simulation software selection. Then we
describe computer simulation software. Finally, we provide a list of software vendors
and how they may be contacted.

25.2 SOFTWARE SELECTION

Making a choice from the vast amount of software that is available for discrete-event
simulation is bewildering for the newcomer to the field. The 1998 simulation Buyer's
Guide in IIE Solutions [I] showed 53 entries. Of these, 42 indicated that they were useful
in manufacturing. Some 39 of the entries provide animation. There were 30 vendors
represented. An extremely careful software selection decision can take as many as 6
months, although that may be the extreme case. This section is based on an article by
Banks and Gibson [2].

Possible features to consider in software selection include the following:

Input

Processing

Output

Environment

Vendor

Cost

Prior to beginning a discussion of these features, a few warnings are given.

Handbook of Simulation, Edited by Jerry Banks.
ISBN 0-47 1- 13403-1 O 1998 John Wiley & Sons, Inc

81 4 SOFTWARE FOR SIMULATION

Warning I : Know which features are appropriate! A particular feature may or may
not have relevance to your situation. For example, a feature may be the ability to
model bridge cranes. Your firm may not have any bridge cranes and never will
have any bridge cranes. Thus this feature is not important to your situation.

Warning 2: Don't make judgments on the basis of "yes" and "no ". Assume that
the software that is being considered has the ability to model conveyors. But can
your conveyors be modeled by the software? A simplification of your conveyors
may be the limits of the software that is being considered. If more detail is needed,
this simplification can lead to problems downstream. For example, both the length
and width of the conveyor may be relevant. However, the software that is being
considered is concerned only with the length of the conveyor. A discussion of the
use of check marks (yes or no indications) in selecting simulation software is given
by Banks [3].

Warning 3: Consider the avoidance of a feature. Assume that one of the features
of the software under consideration is that an interface with C code is possible.
However, simulation software should be judged on its ability to avoid C code.
Thus powerful constructs within the software can prove to be very useful.

25.2.1 Input Considerations

These considerations include the following:

Point-and-Click Capability. Simulation software users expect and desire the famil-
iar environment for their software applications. Most simulation software has
migrated to this environment.

CAD Translation. If there exists a CAD drawing of the static background, there is
no reason to redraw this for purposes of the simulation. A CAD translator will take
a CAD drawing and convert it into the drawing system used by the simulation. A
CAD translation feature can save a great deal of time when laying out large or
complex conveyor models, for example.
Importing a File. This feature provides the capability to import a data file for use
in the simulation. There are numerous situations in which this can be important.
The database can be very large, and generated and updated electronically without
human intervention. Obviously, having to rekey such information would be a waste
of time and would probably introduce errors.

Exporting a File. Perhaps the output file will be used as input to a spreadsheet
for drawing business graphics beyond or different from those generated by the
simulation software.

Syntax. The syntax should be easily understood, consistent, and unambiguous.
There are many counterexamples to this. For instance, in several of the popular
simulation languages, a QUEUE block is not necessary to have a waiting line; the
QUEUE block just initiates data collection. This is just one of many ambiguous
notions that long-term users have come to accept. Chapter 24 discusses the differ-
ence in interpretation among several simulation software packages.

Interactive Run Controller (IRC). Some call this feature by the name debugger.
Even the best of simulation analysts makes mistakes or commits logical errors

25.2 SOFTWARE SELECTION 81 5

when building a model. The IRC assists in finding and correcting those errors in
the following ways (although not every IRC will perform the following, and some
will do even more).

1. The simulation can be monitored as it progresses. This can be accomplished
by advancing the simulation until a desired time has elapsed, then displaying
model information at that time. Another possibility is to advance the simulation
until a particular condition is in effect and then display information.

2. Attention can be focused on a particular area of the simulation or a particular
entity. For instance, every time an entity enters a specified area, the simulation
will pause so that information can be gathered. As another example, every time
that a specified entity becomes active, the simulation will pause.

3. Values of selected model components can be observed. When the simulation
has paused, the current value or status of variables, attributes, queues, resources,
counters, and so on, can be observed.

4. The simulation can be temporarily suspended, or paused, not only to view infor-
mation, but also to reassign values or redirect entities.

Interface to Other Language. This is the ability to drop into another language for
additional detail. Earlier this particular capability was questioned. However, if it
cannot be avoided, its use can be of great importance. Banks and Gibson [4] discuss
this topic in much detail.

Input Data Analysis Capability. This feature provides the ability to determine
whether input data can be described by a statistical or mathematical distribution.
Many software vendors have included the ability of third-party software to provide
this capability.

25.2.2 Processing Considerations

Powerjiul Constructs. For the situation, powerful capabilities may be needed. For
example, modeling bridge cranes with interference requires powerful constructs.

Speed When there are many entities in a system, the software speed should not
degrade to the point of slow motion.

Run-Time Flexibility. An example of this feature is batching, the ability to stack
up a series of runs, and the necessary data collection in an orderly fashion, without
intervention. Another example is scenario generation. In this case, with some prod-
ding, the simulation software will automatically generate alternative possibilities
for simulation. An example of scenario generation allows input data to vary over
a range (e.g., the cycle time of a machine can range from 4 to 8 seconds).

Random Variute Generator There are about 12 statistical distributions that are
commonly used in simulation. Most, but not all simulation software has the ability
to generate random variates using these 12 distributions.

Reset. For steady-state analysis, it is important to have the ability to reset the statis-
tics that have been collected to zero. This reset is accomplished without clearing
the entities that are currently in the system.

Independent Replications. Multiple replications using different sets of random
numbers should be possible. Otherwise, the same results would occur repeatedly.

Attributes and Global Variables. Attributes are local values available to the entity

816 SOFlWARE FOR SIMULATION

possessing that attribute, and global variables are available to all entities. The ques-
tion is how many of each of these is available. Real simulation models can use large
numbers of attributes and global variables.

Programming. This feature is also called custom logic representation. The ability
to mimic custom logic accurately to any desired degree of detail usually requires
some type of internal programming capability or underlying language. It is an abso-
lute necessity for modeling complex problems or systems in order to build high-
fidelity models (ones that, like a good audio system, can reproduce the sound of the
original system). Consider whether the software allows you to represent a problem
to any desired level of detail or complexity or if it forces you to choose canned
representations or simplifications.
Portability. This feature enables the software to be run on various classes of com-
puter without changes in the software.

25.2.3 Output Considerations

These are many output considerations when selecting simulation software. A few of the
many are given in the following paragraphs:

Standardized Reports. Examples of standardized output measures are the average
number in queue, average time in queue, and throughput. The software can produce
these and other values automatically or upon request.

Customized Reports. These are tailored presentations such as those that would be
shown to a manager. The format can be set by the simulation analyst.

Business Graphics. The software can have the ability to generate bar charts, pie
charts, and histograms that are of such high quality that they can be shown to
managers and included in reports.

Database Maintenance. One possibility is to collect stacks of paper output rep-
resenting the replications from each scenario. However, this could become rather
a large stack of paper. At the other extreme is a database that contains all these
outputs in an organized fashion.

Collection of Mathematical Expressions Desired. This feature allows the specifi-
cation of measures of interest to the modeler. For example, suppose that each type
1 output completed is to be multiplied by a royalty of $1.53 and each type 2 output
is to be multiplied by a royalty of $1.86. These royalties are to be reported by shift
and week, as well as their sum.
Custom Performance Measures. Does the software allow the analyst to define and
create new or custom measures of performance for a model? Or is the analyst
constrained to a predefined set of performance measures?
Write to a File. Does the software allow data, events, or system variables to be
written to a file whenever desired? This feature allows the analyst later to import
the file into a spreadsheet or database program for further customized analysis or
manipulation.

25.2.4 Environment Considerations

There are many environment considerations, some more important than others. Exam-
ples include the following:

25.2 SOFTWARE SELECTION 81 7

Ease of Use. This feature is important to some, not important to others. The power
of the software is probably much more important than ease of use. An essay by
Banks [5] discusses this consideration in some detail.
Ease of Learning. This feature is important to the casual user, not so important to
the frequent or continuous user.

Quality of Documentation. Often, documentation is so impossible to understand
that users refuse to read it. It doesn't have to be so. Context-sensitive and useful
on-line help is an advantage.

Animation Capability. Not all animations are created equally. Consider the ease
of development, the quality of the picture, the smoothness of movement, and the
portability for remote viewing.

Run-Only Version. Does the vendor offer an "execute only" version or some other
convenient way of creating a stand-alone demonstration/animation of the model
or of specific scenarios? This capability can be quite important in showing results
without the need to have the licensed software system present at every viewing.
Much more information on this consideration is available in Banks [3].
Stability. How long has the vendor been in business? Is simulation software their
primary business or just a sideline?

History. Does the vendor have a history of providing annual updates to the soft-
ware? Are they committed to continuous improvement of the product?

Track Record. Are the vendor's new releases on time and error-free? Do they main-
tain upgrade paths from older versions (for both models and animation) so that pre-
vious models can be kept current and enhanced? Have they ever released a new
version that wasn't compatible with previous model versions?

Support. Does the vendor offer adequate phone-in technical support and access to
a BBS system to download bug fixes or new releases? What do other users have to
say about the quality and responsiveness of the vendor's technical support staff?
What computer platforms and operation systems are supported?

25.2.5 Cost Considerations

The cost of simulation software is quite variable, say from $500 to $50,000. The popular
software have stabilized around the $15,500 mark. It is probably ill advised to buy
software on the basis of cost. Much more important is productivity.

25.2.6 Bottom Line

Which simulation modeling tool is the right one? Based on the discussion above and
some additional pointers, the following considerations are made:

Accuracy and detail may be extremely important.

Powerful capabilities can make for simulation analyst productivity increases.
Get the greatest speed that you can afford because the greater expense is analyst
waiting.

Beware of fancy ads and demos that do not really inform the potential buyer of
software capabilities.

818 SOFTWARE FOR SIMULATION

Beware of checklists; go beyond the check mark.

Implementation and capability is what is important.

The bottom-line question is: Which simulation modeling tool is the right one? It is
suggested that when purchasing software, the following be done:

Have simulation vendors solve a small version of your problem.

Seek references that can attest to the software's capabilities and limitations.

Seek the opinion of consultants that use several products.

Seek the opinions of companies with similar applications.

Attend user group meetings and annual symposia.

Visit with the vendors at the Winter Simulation Conference or a similar event.

25.3 SOFTWARE DESCRIPTIONS

In the next two subsections we describe general-purpose and manufacturing-oriented
software, respectively. In the fourth subsection we describe simulation software for busi-
ness process reengineering. Next, simulation-based scheduling software is introduced.
Then an animator for simulation is discussed. Finally, some simulation support software
is described. This section is based on an article by Banks [6].

25.3.1 General-Purpose Software

Simulation applications are usually accomplished with the use of specially developed
software. We separate the software into two categories. The first of these is software
for general purposes. This type of software can solve almost any discrete simulation
problem. In this section, seven products-GPSS/H, SLX, SIMSCRIPT 11.5, AweSim,
SIMPLE++, and Extend-are discussed.

GPSS/H. GPSS/H is a product of Wolverine Software Corporation [7] . It is a flexible,
yet powerful tool for simulation. It provides improvements over GPSS V released many
years earlier by IBM. These enhancements overcome the need to use external routines
in FORTRAN to accomplish complex modeling tasks, significantly faster execution,
an interactive debugging environment, a floating-point clock, built-in file 110, use of
named entity parameters, extended simulation control statements, built-in math and trig
functions, and ampervariables that allow complex arithmetic combinations to be used
in the simulation. Version 3.0 adds 23 new random variate distributions, generalized
data assignment statements and simplified syntax, enhancements to manipulate entities
on user-defined chains, and several new system attributes for extracting data from the
simulation. Options available include 32-bit GPSS/H Professional for unlimited model
size, Personal GPSS/H for size-limited models, and Student GPSS/H.

SLX. SLX is another product of Wolverine Software Corporation [8], first shipped in
1997. It is a layered simulation language/simulation development system. The lowest
layer of SLX is loosely based on a subset of the C language, augmented with a small but
powerful collection of low-level building blocks for discrete-event simulation. Included
among these lowest-level building blocks are event-scheduling primitives and a gener-

25.3 SOFTWARE DESCRIPTIONS 81 9

alized "wait until" mechanism for state-based events. Layers built on top of the lowest
layer add statistical and other capabilities essential for performing simulation. Tradi-
tional simulation languages, such as GPSS/H, correspond roughly to layer 3 or 4 of
SLX.

SLX includes powerful extensibility mechanisms for building higher layers from
lower layers. Using these mechanisms it is possible to add new, application-specific
statements to the language. The logic by which user-defined statements are translated
into lower-level SLX code is itself expressed in SLX statements which are executed
during compilation of the higher-level program.

SIMSCRIPT 11.5. SIMSCRIPT 11.5, from CACI Products Company, is a language that
allows models to be constructed that are either process oriented or event oriented [9].
The microcomputer and workstation versions include the SIMGRAPHICS animation
and graphics package. SIMSCRIPT can be used to produce both dynamic and static
presentation-quality graphics such as histograms, pie charts, bar charts, levels of meters
and dials, and time plots of variables. Animation of the simulation output is also con-
structed using SIMGRAPHICS. SIMGRAPHICS can be used also to produce interactive
graphical front ends or forms for entering model input data. An input form may include
such graphical elements as menu bars with pull-down menus, text or data boxes, and
buttons that are clicked on with a mouse to select an alternative. The graphical model
front end allows for a certain set of modifications to the model to be made without
programming, facilitating model use by those that are not programmers.

AweSim. AweSim, from Symix (formerly Pritsker Corporation), is a general-purpose
integrated simulation system for PCs based on the Microsoft Windows Interface [lo]. The
Visual SLAM modeling language is implemented through the AweSim pull-down menus
and dialog boxes. The focus of the AweSim system is the creation and completion of a sim-
ulation project. An AweSim project consists of one or more scenarios, each representing
an alternative system configuration. A project maintainer examines the components of the
current scenario to determine if any of them have been modified, indicates whether tasks
such as model translation should be performed, and allows the user to accomplish these
tasks before the next function is requested. AweSim allows multiple tasks to be performed
in parallel while the simulation is operating in the background

Some of the features of AweSim are as follows:

1. Models (i.e., networks of nodes) are built graphically. Most parameters for these
nodes can be specified as expressions in their appropriate fields. Each entity in
the model can have integer, real, and character string attributes that may be used
in these field, providing flexible model constructs.

2. Visual Subnetworks allow the creation of hierarchical models and reusable model
components. Different from the template approach, Visual Subnetworks provide
separate instances of a module when it is referenced with a unique name. Sub-
networks can be stand-alone models or components of larger systems to sup-
port team-oriented modeling. Unique node, resource, and variable names do not
need to be maintained between subnetworks, providing robust support for reusable
model components.

3. Output analysis includes a "report browser" that allows alternative text outputs
to be compared side by side. Output may be viewed in the form of bar charts,

820 SOFTWARE FOR SIMULATION

histograms, pie charts, and plots. Output from multiple scenarios can be displayed
at the same time in bar chart form.

4. Extended model capabilities with Visual Basic or Visual C++. The AweSim mod-
eling methodology supports the creation of user-written logic in either Visual
Basic or Visual C++. For complex problems or situations, the AweSim mode-
ling language can be extended with user-written inserts.

5. Animations are defined via point and click operations. Animations may be pre-
viewed without running the simulation. Multiple animations can provide different
concurrent views of the system.

6. All model inputs and outputs are stored in an open, accessible database file for
easy integration of the AweSim environment with other tools. Spreadsheet and
database programs can read and write the database file format used by AweSim.

SIMPLE++. SIMPLE++, from AESOP Corporation, is a fully object-oriented simula-
tion system with an integrated graphical user interface [ll]. The user creates models by
making a library of objects. These library objects represent classes (or parents) whose
instances (or children) can be inserted into the models. SIMPLE++ takes advantage of
the features of object orientation, including class structure, inheritance, hierarchy, mod-
ularity, and polymorphism. In addition, SIMPLE++ has an open architecture that allows
it to communicate with other software.

The class structure possible with object orientation allows for highly flexible and
reusable objects to be created [12]. For example, an object representing an assembly
cell can be created in the library. If an automotive manufacturer had several such cells,
one instance of the cell could be placed in the model for each real-life cell. If there
were three types of cells-say, high capacity, midcapacity, and low capacity-a subclass
object could be created in the library for each. Now, instances of each subclass could
be clicked into the model to represent each type of cell.

Using inheritance, any changes made to the class object in the library can be updated
automatically in its subclasses and instances. Also, changes made at the subclass level
will affect the instances of that subclass in the model. For example, if all the cells
contained identical logic for determining downtime, any changes to this logic could
be made at the cell's class level. Then all subclasses and instances would inherit this
change. If there was change that affected only high-capacity cells, this change would be
made at the high-capacity subclass in the library. All high-capacity cells in the model
would then inherit this change.

Hierarchy allows for complex models to be organized into smaller and more manage-
able parts. For example, the entire factory above could be modeled as a manufacturing
area, a storage and distribution area, and an assembly area. The assembly object could
contain the assembly cells described above. In turn, each assembly cell could contain
objects representing robots, people, internal storage areas, downtime logic, and data
about how the parts are to be assembled.

Modularity is what enables each object to be self-contained. For example, when an
instance of a cell is clicked into the model, it may already know how to collect and
plot its output statistics, when to break down, and how to route parts internally. This is
because all of this information was contained in the cell's parent in the library.

Finally, polymorphism is the trait where commands can be given to an object with-
out having to know how the object will act. For example, an object can be given the
command to process the day's work orders. Whether the object represents a clerk at an

25.3 SOFTWARE DESCRIPTIONS 821

insurance company or an injection molding machine, the object will know how what
to do.

SIMPLE++'s open architecture allows it to communicate or be integrated with a vari-
ety of other software packages [13]. For example, SIMPLE++ can communicate with
databases to allow on-line real-time scheduling in the automotive and silicon wafer
manufacturing industries. It has also been linked to expert systems for training and di-
agnosis, spreadsheets, and other off-the-shelf software, work measurement, and virtual
reality packages. In addition, SIMPLE++ has been embedded within software for lay-
out optimization, Business Process Re-engineering (BPR), and ergonomic workstation
design. By doing this, a dynamic analysis is possible in tools otherwise not able to do
this.

Extend. Entend, from Imagine That, Inc., is a visual, interactive simulation tool [14].
Extend contains a built-in development system that allows the user to construct compo-
nents and build custom user interfaces. Models are constructed graphically by dragging
and dropping blocks (high-level model components) from library windows onto the model
worksheet. Data can be entered directly into block dialogs, interactively using controls, or
read from files as the simulation runs. Output is in the form of plots, histograms, tables,
and customizable reports. The block development environment includes a full-featured,
compiled, C-based language that allows simulation modelers to add custom functionality.
Also included are hooks to external languages such as C or Fortran. Additional features
include integrated animation that evolves as the simulation progresses, multiple scenario
analysis, unlimited hierarchical decomposition, model-building wizards, hot links, drag
and drop reports, work areas for centralized model control and reporting, over 300 built-
in functions, 32-bit computing, and compatibility across platforms.

25.3.2 Manufacturing-Oriented Software

The software discussed in this section is limited to seven within the category, including
ProModel, AutoMod, Taylor 11, WITNESS, AIM, Arena, and Extend+Manufacturing.
For the most part, this software is used for the simulation of manufacturing and material
handling systems. References for these software packages include the following: Benson
1151 for ProModel, Rohrer 1161 for AutoMod, Markt and Mayer [I71 for WITNESS, and
King [18] for Taylor 11. For AIM, the reference is Ehrlich and Lilegdon [19]. For Arena,
the reference is Takus and Profozich 1201. The reference for Extend+Manufacturing is
Rivera [14].

ProModel. ProModel, from PROMODEL Corporation, has programming features
within the environment and the capability to add C or Pascal subroutines to a program.
Some of the features of ProModel, Release 4, are as follows:

1. Models are created using a point-and-click approach. Intuitive interfaces, inter-
active dialog, and on-line help are provided. An autobuild feature guides the
user through the model building process. An on-line trainer is available.

2. The software operates in the Windows environment, as a 32-bit application, tak-
ing advantage of memory management techniques, synchronized windowing,
and data exchange. Windows fonts, printer drivers, cooperative multiasking, and
the Dynamic Link Library are available.

822 SOFTWARE FOR SIMULATION

3. Virtually unlimited model size is offered.

4. The simulator offers a two-dimensional graphics editor with scaling, rotating,
and so on. Icons can be defined using either vector-based or pixel graphics. These
icons are saved as bitmaps at run time for fast animation during the simulation.

5. CAD drawings as clip art can be imported as well as process information and
schedules. Customized output reports and spreadsheet files can be produced. If
the data are another Windows application, cutting and pasting can be accom-
plished.

6. The static and dynamic elements of the animation are developed while defining
the model. That is, the simulation model and animation are integrated.

7. Business output graphics are provided automatically and may be printed in color.

8. Only standard hardware is required (IBM or compatible with VGA graphics).
No special graphics cards, monitors, or math coprocessor chip is needed.

9. Preprogrammed constructs are provided. This allows for fast modeling of multi-
unit and multicapacity locations, shared and mobile resources, downtime, shifts,
and so on.

10. Automatic statistics are available.
11. Submodels allow the creation of a library of templates of work steps, activities,

or subprocesses that can be reused. This allows for model construction to be
accomplished by a team with later merger of submodels into one model.

12. A free run-time, multiple-scenario capability is provided. Statistics from multiple
scenarios can be viewed simultaneously.

13. Multiple views can be saved for easy navigation and graphic layout.

14. Cranes can be added with multiple bridges.

15. Models can be encrypted for protection of data.

16. Interactive subroutine can be added to allow changes to model parameters during
model execution.

17. Extensive modeling support for continuous flow processes, tanks, levels, and
transfers.

A model is constructed by defining a route for a part or parts, defining the capacities
of each of the locations along the route, defining additional resources such as opera-
tors or fixtures, defining the mobile/shared resources, scheduling the part arrivals, and
specifying the simulation parameters. The software then prompts the user to define the
layout and the dynamic elements in the simulation.

AutoMod. AutoMod, software from AutoSimulations, Inc., has general model-build-
ing features, including the specification of processes, resources, loads, queues, and vari-
ables. Processes are specified in terms of traffic limits, input and output connections, and
itineraries. Resources are specified in terms of their capacity, processing time, MTBF,
MTTR, and cycles for shifts and preventive maintenance. Loads are defined by their
shape and size, their attributes, generation rates, generation limits, and start times, as
well as their priority. Users can define any number of load attributes.

AutoMod software is very powerful in its description of material handling systems.
AGVs and other path-guided transporters, conveyors, bridge cranes, AS/RSs, and power
and free devices can be defined rapidly. The range of definition is extensive. For exam-

25.3 SOFTWARE DESCRIPTIONS 823

ple, an AGV can be defined in terms of the following: multiple vehicle types, multiple-
capacity vehicles, path options (unidirectional or bidirectional), variable-speed paths,
control points, flexible control and scheduling rules, arbitrary blocking geometries, auto-
matic shortest-distance routing, and vehicle procedures.

Numerous control statements are available in the AutoMod language. For example,
process control statements include If-Then-Else, While-Do, Do-Until, and Wait For.
Load control, resource control, and other statements are also available. C functions may
be defined by the user, although they are not usually required because of the flexibility
of the AutoMod language.

The animation capabilities include true-to-scale three-dimensional graphics, rotation,
and tilting, to mention a few. A CAD-like drawing utility is used to construct the model.
Business graphics can be generated. In 1993, AutoSimulations added the Simulator to
AutoMod. Features of the Simulator include its spreadsheet interface. The spreadsheet
interface allows the user to enter complex logic without programming.

A separate utility option is Autostat. It provides simulation warm-up capability, sce-
nario management, confidence interval generation, and design of experiments capability.
AutoView is a postprocessor that provides three-dimensional walkthrough capability for
presentation-quality animations. Users can configure a walkthrough with smooth pans
and zooms and can even mount a camera on board a moving object such as a load or
vehicle.

Taylor I!. Taylor I1 is a product marketed by F&H Simulations. It runs under Windows.
Working with Taylor I1 starts with building a model. All model building is menu driven.
A model in Taylor I1 consists of four fundamental entities: elements, jobs, routings, and
products. The element types are inout, machine, buffer, conveyor, transport, path, aid,
warehouse, and reservoir. One or more operations can take place at an element. The
three basic operations are processing, transport, and storage. Defining a layout is the
first step when building a model. Layouts consist of element types. By selecting the
elements in sequence, the product path or routing is defined. Routing descriptions may
be provided from external files.

The next step is detailing the model. In this step the parameters are provided. In
addition to a number of default values, Taylor I1 uses a macro language called TLI
(Taylor Language Interface). TLI is a programming language that permits modifications
of model behavior in combination with simulation-specific predefined and user-definable
variables. TLI can also be used interactively during a simulation run to make queries and
updates. Interface to C, Basic, and Pascal is also possible. Local and global attributes
are available.

During simulation, zoom, pan, rotate, and pause are options. Modifications can be
made on the fly. The time representation is fully user definable (hours, days, seconds,
and so on, can be mixed). Output analysis possibilities include predefined graphics,
user-defined graphics, predefined tabular reports, and user-defined reports. Examples
of predefined graphics are queue histograms and utilization pies. User-defined outputs
include bar graphs, stacked bars, and other business graphics. Predefined tables include
job, element, and cost reports.

Animation capabilities include both two and three dimensions. The three-dimensional
animation can be shaded. Standard indicators can be shown for elements. Icon libraries for
both two- and three-dimensional animation are provided. Each of these libraries contains
more than 50 icons. Additional features include 650 pages of on-line, context-sensitive
help with index and page-search capability. Educational support materials are available.

824 SOFTWARE FOR SIMULATION

WITNESS. WITNESS, a Windows application from the Lanner Group, contains many
elements for discrete-part manufacturing. For example, machines can be single, batch,
production, assembly, multistation, or multicycle. Conveyors can be accumulating or
nonaccumulating. Options exist for labor, vehicles, tracks, and shifts. WITNESS also
contains elements for continuous processing, including processors, tanks, and pipes.

Variables and attributes may be specified. Parts can be smart (having their routing
attached) or dumb (elements of the process decide the appropriate routing). Distribu-
tions and functions can be used for specifying operation times and for other purposes.
Machine downtime can be scheduled on the basis of operations, busy time, or available
time. Labor is a resource that can be preempted, use a priority system, and be scheduled
based on current model conditions.

Track and vehicle logic allow requests for certain types of jobs, vehicle acceleration
and deceleration, park when idle, and change destinations dynamically. Many types of
routing logic are possible in addition to the standard push and pull. For example, If-
Then-Else conditions may be specified. Simulation actions, performed at the beginning
and end of simulation events, may employ programming constructs such as For-Next,
While-End, and GoTo-Label. The user can look at an element at any time and determine
the status of a part.

Reporting capabilities include dynamic on-screen information about all modeled ele-
ments. Reports may be exported to spreadsheet software. C-LINKS allows detailed pro-
gramming and subroutines to be attached to WITNESS. Data inputs can be numeric,
variables, distributions, or a user-defined equation. Debugging or brainstorming can be
accomplished by stopping the model, changing desired parameters, and continuing with
the model from the same point in simulation time.

An animation is constructed along with the model definition. This animation and
statistical feedback can be turned on or off during any run. Many changes to the model
may be made at any time. Built-in experimentation capabilities are available from the
menu bar. The results of the experiments are output to a CSV file by default, or other
file types by user choice. The CSV file is in a format that allows the internal statistics
package to create confidence intervals.

The capabilities of Witness, version 7.3, include the following:

1. Unlimited number of variables or attributes. Variables can be arrayed.

2. Up to 1000 distinct random number streams.

3. Bitmap import/export with icon sizes increased to 256 x 256 pixels.

4. Module element for hierarchical modeling. One icon represents the detail existing
in another submodel.

5. Double-click on an object to open a menu for filling fields with rules, distributions,
built-in functions, and so on, for defining elements "on the fly."

6. Utilizes WIN32S to run in 32-bit mode.

7. OLE2 compatibility.

FACTORIAIM. FACTORIAIM, from Pritsker Corporation, is a manufacturing oper-
ations simulation system for discrete and discrete batch manufacturing. AIM integrates
with other FACTOR product family applications for operations planning, scheduling,
order promise, and release applications. AIM models are Windows '95, NT, or OS/2-
based and built graphically with icons that represent machines, operators, conveyors,

25.3 SOFTWARE DESCRIPTIONS 825

and so on, placed directly on the screen. The animations are created in a virtual win-
dow.

The current release of AIM is version 7.0. During a simulation, the simulator can be
stopped to check model status or add components, then continue the simulation. Perfor-
mance data are dynamically displayed and updated while the simulation is running. AIM
is database oriented, with all model inputs and outputs stored in an Access database.
It includes hundreds of built-in reports and graphs. Custom reports and graphs can be
created using features of the Access database program.

Features of AIM include the following:

1. Manufacturing Representation. Manufacturing specific modeling components
can represent a variety of discrete and discrete manufacturing processes. Stan-
dard rules provide choices that are common in many manufacturing environments.
Custom rules may be written to extend the logic of a model.

2. Manufacturing Data. AIM is built around a relational database that stores the
manufacturing operation and simulation output. Part descriptions, process plans,
order release schedules, machine locations and schedules, shift schedules, and so
on, can be transferred from other data sources to the AIM database.

3. Animation Support. AIM models are built graphically and are animated automati-
cally during model construction. Typical AIM models are built from CAD facil-
ity drawings. AIM uses a scaling parameter to determine the material handling
movement distances directly from these layouts.

4. Interactive Model Building and Simulation. Components are located on a scaled
facility background. Intelligent defaults are provided for all components. Com-
pleting forms customizes components. During execution, the modeler can change
the status of a component and observe the simulated impact on the manufacturing
system.

5. Comparison of Alternatives. The AIM project framework organizes all aspects
of a manufacturing simulation project. Alternative models of the manufacturing
process are stored in the AIM database. Comparison reports and graphs show
model performance data to identify differences between alternatives.

6 . Gantt Charts. AIM automatically creates Gantt charts for faster verification and
validation of models. Load charts show the flow of individual loads through the
system, verifying model logic. Resource charts aid in reviewing model perfor-
mance with operations personnel.

7. Detailed Cost Modeling. AIM provides for the modeling of cost allocations and
financial analysis. Direct cost models can be created to allocate costs to each
load as it utilizes resources. AIM has the ability to predict accurately activity-
based costs (ABC). ABC cost drivers and methodology can be tested on a specific
system to allocate indirect costs in a second-pass simulation.

Arena. Arena, a product of Systems Modeling Corporation, is an extendible simula-
tion and animation software package. It provides a complete simulation environment that
supports all steps in a simulation study. Arena combines the modeling power and flexi-
bility of the SIMAN simulation language, while offering the ease of use of the Microsoft
Windows and Microsoft NT environments. Arena is a graphical modeling/animation
system that is based on hierarchical modeling concepts. It allows users to create new

826 SOFTWARE FOR SIMULATION

modeling objects called modules, which are the building blocks of model creation. All
aspects of a particular process-logic, data, animation, and statistics collection+an be
modules to represent the process through which entities flow.

Arena offers Application Solution templates that can be used to tailor the software to
a specific animation. Templates are groups of modules that have been designed to cap-
ture the entities, processes, and terminology of a specific application. Application Solu-
tion Templates in areas such as business process reengineering, call centers, high-speed
manufacturing, semiconductor wafer fabrication, and others currently exist or are under
development. The Arena system includes the Input Analyzer, designed to give users the
ability to read raw input data, and the Output Analyzer, for simulation data viewing and
analysis. Arena also features Microsoft Visual Basic for applications enabling users to
build interfaces between their Arena models and other applications such as Microsoft
Excel.

ExtendiManufacturing. Extend+Manufacturing is a product of Imagine That, Inc.
It has all the features of Extend, mentioned previously, plus the following:

1. Blocks that represent machines, stations, labor buffers, bins, fixtures, and so on
2. Reneging, preemption, and interruptible processes
3. Ability to specify sequences for merging and routing streams of entities
4. Scheduled and unscheduled downtimes
5. Material handling constructs
6. Automatic statistical reporting
7. Built-in costing

25.3.3 Business Process Reengineering

Several vendors have developed software to facilitate the reengineering process. These
include BP$im, ProcessModel, SIMPROCESS, TimeMachine, and Extend+BPR.

BP$im. BP$im, a product of Systems Modeling Corporation and Technology Eco-
nomics International, is an Application Solution Template under Arena. Model build-
ing is focused on the activities that comprise a business process. Models are created
by placing activity modules in the Arena work space and providing information about
each activity. The software can be used for activity-based costing by defining busy and
idle costs for any resource. BP$im also provides constructs for modeling human and
technological resources. Costs, schedules, downtimes, efficiencies, and other resource
attributes can be specified. An interface to Lotus and Excel is provided. The software
is capable of reading pertinent process data from existing IDEFO models. BP$im also
interfaces with Visio to create models based on flowcharts.

ProcessModel. ProcessModel, a product of PROMODEL Corporation, interfaces
with the ABC Graphics Suite [21]. Flowcharts are developed using ABC Flowchar-
ter. Modeling capabilities include the following:

1. Staff scheduling and shift planning
2. Task allocation prioritization and interruption

3. Use of multiple or alternative resources

25.3 SOFTWARE DESCRIPTIONS 827

4. Individual or group processing

5. Matching of orders to correct customers

6. Document splitting and tracking

7. Customers dropping out of line

8. Activity-based costing

9. Resource scheduling for breaks and downtimes

10. Ability to change graphics during simulation

SIMPROCESS. SIMPROCESS, a product of CACI Products Company, integrates
icon-based process flowcharting, hierarchical event-driven simulation, activity-based
costing, and data analysis capabilities into a tool for business process reengineering.
Other features include reusable templates and advanced modeling constructs, such as
If-Then-Else logic. SIMPROCESS is based on CACI's MODSIM, an object-oriented
architecture for simulation. It runs under both Windows and UNIX operating systems.

Time Machine. Time Machine is a product of F&H Simulations. It is a Windows-
based dynamic simulation worksheet used for flowcharting, process modeling, what-if
analysis, concept validation, and the communication of ideas. It is built on Taylor 11,
described previously.

Extend+BPR. Extend+BPR, a product of Imagine That, Inc., is based on the Extend
software discussed previously. It has the following features:

1. Blocks that represent operations, transactions, work-flow stacks, labor resources,
decisions, and so on

2. Ability to have entities renege

3. Specification of rules for the flow of work throughout the operation

4. Additional blocks for cost reporting

5. Automatic statistical reporting

25.3.4 Simulation-Based Scheduling

Several of the many simulation-based scheduling software currently available are
Tempo, AutoSched, and FACTOR. These are discussed briefly in the following para-
graphs.

Tempo. Tempo, from Systems Modeling Corporation, is a visually interactive finite-
capacity scheduling system. Tempo features include automatic sequencing using for-
ward, backward, and bidirectional rules, job selection by priority, due date, or first come,
first served. Tempo offers users the ability to generate algorithmic or simulation-based
schedules and includes the ability to create user-defined rules. A variety of output reports
are available. Comprehensive data import and export capabilities for integration with
other manufacturing technologies (e.g., ERO, MRP, MES) are included.

AutoSched. AutoSched, from AutoSimulations, Inc., is based on AutoMod, a simu-
lation system that was described previously. The following data/information is handled
by AutoSched for capacity analysis and scheduling [2 2] :

828 SOFTWARE FOR SIMULATION

1. Production resources consisting of workstations, storage locations, operators, and
tools

2. Products consisting of parts to be manufactured along with their routings

3. Production requirements consisting of orders and lots
4. Operating rules, including how tasks are selected, and calendars that specify when

workstations are unavailable

Much of the information required by AutoSched may already exist in a database
such as an MRP. If it does exist, AutoSched can import it. AutoSched allows multi-
dimensional task selection rules for each resource. More than one rule (logic filter) is
allowed. Significant scheduling improvements can be achieved through the application
of these sophisticated rules.

AutoSched provides simulation and detailed dispatching of the shop floor according
to the task selection rules provided by the user. Two outputs are provided, graphical
and statistical. Business graphs can be created to track any statistic(s). These graphs are
updated dynamically. AutoSched also contains an interactive Gantt chart from which an
event can be selected for detailing to include the quantity of orders in a workstation's
queue when an order was selected, the quantity of orders in the next workstation's queue,
and so on. Statistical or historical reports are also available. These include the master
schedule file, performance report, workstation report, and many user-defined reports.

FACTOR. FACTOR, from Pritsker Corporation, is an integrated software system
that provides capacity management applications to help manufacturers meet customer
demand [23]. FACTOR includes finite-capacity scheduling, operations planning and
loading, and order promising capabilities. Since its introduction, the software has been
enhanced to include relational database capabilities, client-server installations, interac-
tive schedule adjustment, and automatic scheduling capability.

To use FACTOR, a model is built by combining components consisting of order
characteristics, shop floor status, production calendar, shift schedules, resources, func-
tional resource groupings, preventive maintenance plans, parts definitions with the asso-
ciated routings, material availability, tooling requirements, and operator capability. Any
of these model components may be defined directly or taken from preexisting manu-
facturing system files. A simulation of selected alternatives is conducted for various
scheduling strategies, with results stored in a database for analysis and eventual shop
distribution.

In practice, FACTOR is used to schedule operations at regular intervals (e.g., shifts)
or upon demand (when a significant event occurs). In either case, up-to-date status infor-
mation is transferred into the FACTOR database and the FACTOR scheduling engine
generates a recommended schedule based on the objective (e.g., maximize throughput,
minimize order lateness). The user reviews a summary of the performance anticipated
from the schedule and may then accept it, revise the objective and generate another
schedule, or interactively make manual adjustments to the schedule.

25.3.5 Animators

Most simulation animators are integrated with the software. However, this is not always
the case, and the introduction of general-purpose animation packages allows the use of
custom made environments.

25.3 SOFTWARE DESCRIPTIONS 829

Proof Animation. Proof Animation is a product of Wolverine Software Corporation
[24]. Any software that can write ASCII data to a file can drive Proof Animation. Thus
BASIC, C, FORTRAN, GPSSIH, Arena, and SIMSCRIPT 11.5, among others, can serve
as drivers. Animation is accomplished by using a static background, the layout file, and
a trace file that contains dynamic events. Some of the features of the software are as
follows:

Graphics are vector based, similar to CAD programs.

AutoCad-compatible layouts can be imported and exported.

Zoom in, zoom out, and multiwindow animations are supported. Maximum res-
olution is assured at any scale.

Drawing takes place on a coordinate grid using mouse-qriven primitives.

Moving objects are defined internally by their geometry.

Statistics, graphs, and plots can be displayed dynamically.

Animation occurs in a postprocessing mode.

Motion is smooth on VGA PCs.

There is a steady ratio of animated (simulation) time to viewing (wall clock)
time. This ratio may be varied while the animation is running.

Top view can be changed to isometric and back to top view instantly.

An option allows the construction of a demo disk.

25.3.6 Simulation Support Software

Two products, among many that are available, are discussed in this section. The first is
ExpertFit from Averill M. Law and Associates, for input data modeling [25]. The second
is Stat: :Fit from Geer Mountain Software Corporation also for input data analysis [26].

ExpertFit. ExpertFit is a software package for selecting what probability distribution
to use in a simulation model. It will automatically and accurately determine what dis-
tribution best represents a data set. It will also determine whether the distribution is
appropriate in an absolute sense, or whether an empirical distribution should be used.
In either case, the distribution will be put into the proper format for direct input to 34
different simulation software products. ExpertFit provides access to 39 probability dis-
tributions by providing special constructs that can be used with simulation software.
There more than 30 two- and three-dimensional graphical plots available. The software
helps in the choice of a distribution in the absence of data and determines if data sets
are similar.

Stat: :Fit. Stat: :Fit statistially fits data to one of 21 distributions. The Auto: :Fit func-
tion automatically fits continuous distributions, provides relative comparisons between
distribution types, and an absolute measure of each distribution's acceptability. The
Export function translates the fitted distribution into specific forms for simulation soft-
ware. Features include descriptive statistics, parameter estimates, goodness of fit tests,
graphical analysis, random variate generation, and printed reports.

830 SOFTWARE FOR SIMULATION

25.4 OPTIMIZATION

A rigorous treatment of optimization in simulation is discussed in Chapter 9. However,
practical applications are not claimed. In this section, optimization capabilities based on
heuristic approaches that are used in three software products are described. Additionally,
implementation of one of the techniques in simulation software discussed in Chapter
8, selection of the best, is discussed. Heretofore, simulation analysts have relied on
intuition or experience to direct their search for a good solution. That is, they varied
the factors, watching the response as they do so, and have headed in the direction leading
toward the optimal objective. This is a complicated matter when the number of factors
is even modest. Furthermore, the solution using this procedure may be a local optima
rather than a global optimum.

Another possibility is complete enumeration. For example, a job shop may have
two parallel machining processes. Let us say that there may be anywhere from 1 to
10 machines in each process. Then there are 100 cases that must be examined. If each
of these cases can be examined in 10 seconds, the simulation will be complete in less
than 20 minutes. But if there are five parallel machining processes, each with 1 to 10
machines, then 100,000 simulations must be conducted using complete enumeration. At
10 seconds per simulation, the time required approaches 12 days. Such a time require-
ment is probably excessive even for this modest problem.

Recent developments in optimization have led to intelligent search procedures that
have the capability to find optimal or near-optimal solutions by exploring a small frac-
tion of the possible alternatives. These procedures are used by SimRunner an add-on to
ProModel, OptQuest in Micro Saint, and OPTIMIZER in WITNESS. These software
operate differently as explained in this section. Autostat, an extension to AutoMod, has
a ranking and selection feature that selects the best from a small number of alternatives.
This capability is also discussed in this section.

SimRunner. SimRunner, Release 2.0, an add-on to ProModel, is discussed generally
by Benson [15]. The analyst indicates the input factors to change and how to mea-
sure performance. SimRunner will then run an optimization analysis or a simulation
optimization. An optimization analysis is a factorial experiment that indicates whether
changing a specific input factor affects the objective function and by how much. A sim-
ulation optimization tries various combinations of input factors to arrive at the combi-
nation that provides the best value of the objective function. SimRunner features a third
module, statistical advantage, that assists the analyst in preparing models that produce
statistically significant results (e.g., helping to determine the warm-up period, run length,
and number of runs).

Bowden [27] indicates that the optimization procedure used in SimRunner evolves a
population of solutions to the problem such that each solution's survival is dependent on
its performance in the simulated environment. The population of solutions evolves for
a number of generations, at which time the search is terminated and the best surviving
solution is forwarded. Bowden also shows how the algorithm avoids being trapped by
local optima using two examples; the first deterministic and the second probabilistic.
Akbay [28] gives three examples of the application of SimRunner. IBM's microelec-
tronics plant in Vermont had many factors to test in their models. Simulation exper-
imentation was becoming very time consuming. SimRunner was applied and IBM's
capacity-planning capabilities were improved.

Sverdup Fcilities, Incorporated and GPR Planners Collaborative were contracted to

25.4 OPTIMIZATION 831

determine if a building addition would improve transporter operations in a hospital set-
ting. SimRunner was used to determine the optimum number of transporters required
by each department with large reductions in analysis time. In another medical setting,
simulation was used to test various staffing plans for a new clinic. Then the various
proposed configurations were optimized using SimRunner.

OptQuest. OptQuest in Micro Saint is discussed generally by Barnes and Laughery
1291. The optimization procedure in OptQuest is discussed by Glover et al. [30]. The
technology used is called scatter search. It operates on a set of reference points that
constitute good solutions obtained from previous solutions. Linear combinations of these
reference points guide the search. These linear combinations are formed on the basis of
tabu search. Essentially, tabu search prevents the reinvestigation of solutions that have
already been evaluated.

In using OptQuest, the optimization problem is described in terms of the factors
selected and an objective function. The problem can include constraints. For example,
the total number of A and B machines must be less than or equal to 12. Once the
problem is specified, OptQuest repeatedly calls Micro Saint to perform simulation runs
during the search for an optimal solution.

OPTIMIZER. OPTIMIZER in WITNESS is discussed by Markt and Mayer [17]. It
operates by first specifying an objective function defined as a WITNESS function. An
example objective function might be:

value of throughput - cost of machines - cost of staff,

During the optimization process, different aspects of the model are varied, and the result-
ing value for the objective function will be compared to previous values to determine
if improvements have occurred. Any number of constraints can be imposed to reduce
the possible number of combinations to be investigated. An example constraint might
be:

Several optimization methods are provided ranging from simply running all possible
combinations to more complex algorithms. An example of a more complex algorithm in
the OPTIMIZER is simulated annealing (SA). Users are allowed to adjust the parameters
if using SA.

AutoStat. AutoStat, discussed by Carson [31], offers a "select the best" ranking and
selection procedure, discussed in Chapter 8. The procedure assumes that output for each
is normally distributed and IID (independent and identically distributed). The procedure
selects the single best system, or a subset containing the best system. The user specifies
the probability of correct selection and the indifference amount. An example problem
statement might be the following: I want the best two of six alternative systems with the
probability of being correct greater than or equal to 0.95 if the difference between the
average time in system for the two selected systems and the next highest of the remain-
ing four systems happens to be at least 2.5 minutes. Pilot runs, say 10, are conducted.
Then AutoStat tells the analyst how much computer time will be required to achieve
the objective. If the time is excessive, the analyst may need to be somewhat flexible

832 SOFTWARE FOR SIMULATION

in the problem statement (reducing the probability of a correct selection, increasing
the indifference amount, or both). Additionally, there may be more than one response
of interest. This also increases the number of replications and may require additional
flexibility from the analyst (e.g., reduce the number of responses).

25.5 VENDORS OF SOFTWARE

The products mentioned in Section 25.3 are listed below with vendor contact informa-
tion indicated.

ARENA, BP$im, Tempo
Systems Modeling Corporation
504 Beaver Street
Sewickley, PA 15143

AutoMod, AutoSched, AutoStat
AutoSimulations, Inc.
655 Medical Drive
Bountiful, UT 84010

AweSim, AIM, FACTOR
S ymix
8910 Purdue Road, Suite 600
Indianapolis, IN 46268

ExpertFit
Averill M. Law & Associates
P.O. Box 40996
Tucson, AZ 85717

Extend, Extend+Manufacturing, Extend+BPR
Imagine That, Inc.
6830 Via del Oro, Suite 230

GPSS/H, SLX, PROOF Animation
Wolverine Software Corporation
Little River Turnpike, Suite 900
Annandale, VA 22003-2603

Micro Saint
Micro Analysis and Design, Inc.
4900 Pearl East Circle, Suite 201 E
Boulder, CO 80301

ProModel, ProcessModel
PROMODEL Corporation
1875 State Street, Suite 3400
Orem, UT 84058

REFERENCES 833

Simple++
Aesop Corporation
223 South Wacker Drive
Sears Tower, Suite 9604
Chicago, I L 60606

Taylor 11, Time Machine
F&H Simulations, Inc.
P.O. Box 658
Orem, U T 84059-0658

SIMSCRIPT 11.5, SIMANIMATION, Witness
SIMPROCESS Lanner Group, Inc.

CACI Products Company 1 1000 Richmond Ave., Ste. 680
3333 North Torrey Pines Court Houston, T X 77042

La Jolla, Ca 92037

Stat: :Fit
Geer Mountain Software Corporation
104 Geer Mountain Road
South Kent, C T 06785

ACKNOWLEDGMENTS

The material in Section 25.2 is adapted from Banks and Gibson (1997) with the permis-
sion of the Institute of Industrial Engineers, 25 Technology Park, Norcross, G A 30092,
770-449-0491. Copyright 63 1997.

REFERENCES

1. Anon. (1998). Simulation software buyer's guide, I1E Solutions, May, pp. 48-54.

2. Banks, J., and R. G. Gibson (1997). Selection of simulation software, I1E Solufions, May,
pp. 30-32.

3. Banks, J. (1996). Interpreting simulation software checklists, OR/MS Today, June, pp. 74-
78.

4. Banks, J., and R. G. Gibson (1997). Caution: some programming required, IIE Solutions,
February, p. 26 ff.

5. Banks, J. (1995). Semantics of simulation software, OR/MS Today, December, pp. 3 8 4 0 .

6. Banks, J. (1996). Software for simulation, in Proceedings of the 1996 Winter Simulation Con-
ference, J. Charnes, D. Monice, D. Brunner, and J. Swain, eds., Association for Computing
Machinery, New York, pp. 31-38.

7. Crain, R. C. (1996). Simulation Using GPSS/H, in Proceedings of the 1997 Winter Simulation
Conference, S. Andrad&tir, K. J. Healy, D. H. Withers, and B. L. Nelson, eds., Association
for Computing Machinery, New York, pp. 567-573.

8. Henriksen, J. 0 . (1997). An introduction to S L X ~ ~ , in Proceedings of the 1997 Winter Sim-
ulation Conference, S. Andradbttir, K. J. Healy, D. H. Withers, and B. L. Nelson, eds., Asso-
ciation for Computing Machinery, New York, pp. 559-566.

9. Russell, E. C. (1993). SIMSCRIPT 11.5 and SIMGRAPHICS tutorial, in Proceedings of the
I953 Winter Simulation Conference, G. W. Evans, M. Mollaghasemi, E. C. Russell, and
W. E. Biles, eds., Association for Computing Machinery, New York, pp. 223-227.

10. Pritsker, A. A. B., and J. J. O'Reilly (1997). AweSim: the integrated simulation system,

834 SOFTWARE FOR SIMULATION

in Proceedings of the 1997 Winter Simulation Conference, S. Andradbttir, K. J. Healy,
D. H. Withers, and B. L. Nelson, eds., Association for Computing Machinery, New York,
pp. 545-551.

11. Geuder, D. (1995). Object-oriented modeling with Simple++, in Proceedings of the 1995
Winter Simulation Conference, C. Alexopoulos, K . Kang, W. R. Lilegdon, and D. Goldsman,
eds., Association for Computing Machinery, New York, pp. 534-540.

12. Levasseur, G. A. (1996). The case for object-oriented simulation modeling, OR/MS Today,
August, pp. 65-67.

13. Kalasky, D. R., and G. A. Levasseur (1997). Using SIMPLE++ for improved modeling effi-
ciencies and extending model life cycles, in Proceedings of the 1997 Winter Simulation Con-
ference, S. Andradbttir, K . J. Healy, D. H. Withers and B. L. Nelson, eds., Association for
Computing Machinery, New York, pp. 61 1-618.

14. Rivera, J. (1997). Modeling with ~ x t e n d ~ ~ , in Proceedings of the 1997 Winter Simulation
Conference, S. Andradbttir, K . J. Healy, D. H. Withers, and B. L. Nelson, eds., Association
for Computing Machinery, New York, pp. 674-679.

15. Benson, D. (1997). Simulation modeling and optimization using ProModel, in Proceedings
of the 1997 Winter Simulation Conference, S. Andradbttir, K . J. Healy, D. H. Withers, and
B. L. Nelson, eds., Association for Computing Machinery, New York, pp. 587-593.

16, Rohrer, M. (1997). AutoMod tutorial, in Proceedings of the 1997 Winter Simulation Con-
ference, S. Andradbttir, K . J. Healy, D. H. Withers, and B. L. Nelson, eds., Association for
Computing Machinery, New York, pp. 657-662.

17. Markt, P. L., and M. H. Mayer (1997). WITNESS simulation software: a flexible suite of
simulation tools, in Proceedings of the 1997 Winter Simulation Conference, S. Andradbttir,
K. J. Healy, D. H. Withers, and B. L. Nelson, Association for Computing Machinery,
New York, pp. 71 1-717.

18. King, C. B. (1996). Taylor I1 manufacturing simulation software, in Proceedings of the 1996
Winter Simulation Conference, J . M. Charnes, D. J. Morrice, D. T. Brunner, and J. J. Swain,
eds., Association for Computing Machinery, New York, pp. 569-573.

19. Erlich, J. N. and W. R. Lilegdon (1997). Making better manufacturing decisions with AIM,
in Proceedings of the 1997 Winter Simulation Conference, S. Andradbttir, K . J. Healy,
D. H. Withers, and B. L. Nelson, eds., Association for Computing Machinery, New York,
pp. 552-558.

20. Takus, D. A,, and D. M. Profozich (1997). Arena software tutorial, in Proceedings of the
1997 Winter Simulation Conference, S. Andradbttir, K . J. Healy, D. H. Withers, and B. L.
Nelson, eds., Association for Computing Machinery, New York, pp. 541-544.

21. Gladwin, B. D., and C. Harrell (1997). Introduction to ProcessModel and ProcessModel
9000, in Proceedings of the 1997 Winter Simulation Conference, S. Andradbttir, K . J. Healy,
D. H. Withers, and B. L. Nelson, eds., Association for Computing Machinery, New York,
pp. 594-600.

22. Lindler, B. (1997). AutoSched tutorial, in Proceedings of the 1997 Winter Simulation Confer-
ence, S . Andradbttir, K. J. Healy, D. H. Withers, and B. L. Nelson, Association for Computing
Machinery, New York, pp. 663-667.

23. Lilegdon, W. R. (1993). Manufacturing decision making with FACTOR, in Proceedings of
the 1993 Winter Simulation Conference, G. W. Evans, M. Mollaghasemi, E. C. Russell, and
W. E. Biles, eds., Association for Computing Machinery, New York, pp. 159-164.

24. Henriksen, J. 0 . (1997). The power and performance of PROOF animation, in Proceedings
of the 1997 Winter Simulation Conference, S. Andradbttir, K. J. Healy, D. H. Withers, and
B. L. Nelson, eds., Association for Computing Machinery, New York, pp. 574-580.

25. Law, A. M., and M. G. McComas (1997). ExpertFit: total support for simulation input mod-
eling, in Proceedings of the 1997 Winter Simulation Conference, S. Andradbttir, K . J. Healy,

REFERENCES 835

D. H. Withers, and B. L. Nelson, Association for Computing Machinery, New York, pp.
668-673.

26. Blaisdell, W. E., and J. Haddock (1993). Simulation analysis using SIMSTAT 2.0, in Proceed-
ings of the 1993 Winter Simulation Conference, G . W. Evans, M. Mollaghasemi, E. C. Russell,
and W. E. Biles, eds., Association for Computing Machinery, New York, pp. 213-217.

27. Bateman, R., R. Bowden, T. Gogg, C. Harrell, and J. Mott (1997). Improvement Using Sim-
ulation, 5th edition, PROMODEL Corporation, Orem, Utah.

28. Akbay, K. S. (1996). Using simulation optimization to find the best solution, IIE Solutions,
May, pp. 24-29.

29. Bames, C. D., and H. R. Laughery, Jr. (1997). Advanced uses for Micro Saint Simula-
tion Software, in Proceedings of the 1997 Winter Simulation Conference, S. Andraddtir,
K . J. Healy, D. H. Withes, and B. L. Nelson, eds., Association for Computing Machinery,
New York, pp. 680-686.

30. Glover, F., J. P. Kelly, and M. Laguna (1996). New advances and applications of combin-
ing simulation and optimization, in Proceedings of the 1996 Winter Simulation Conference,
J. M. Chames, D. J. Morrice, D. T. Brunner, and J. J. Swain, eds., Association for Computing
Machinery, New York, pp. 144-152.

31. Carson, J. S., I1 (1997). ~ u t o ~ t a t ~ ~ : output statistical analysis for AutoMod users, in Pro-
ceedings of the 1997 Winter Simulation Conference, S . Andradbttir, K . J. Healy, D. H. With-
ers, and B. L. Nelson, eds., Association for Computing Machinery, New York, pp. 649-656.

Abstract object, object-oriented simulation,
403-404

Acceptance-rejection method, random variate
generation, 145-147

Acceptance testing, dynamic VV&T
techniques, 363

Active entity state, discrete-event simulation,
779

Activities:
modeling concepts, 8
multiple, object-oriented simulation, reuse

and extensibility within, 416-41 8
trucking operations, 586-587

Activity scanning, defined, 9
Ad hoc simulation, example, 4-6 .
Air transportation, simulation applications, 15
Alias method, random variate generation, 162
Alpha testing, dynamic VV&T techniques,

363
Anderson-Darling (A-D) test, input data

analysis, 85-87
Animators, software, 828-829
Antithetic pseudorandom numbers, variance

reduction techniques, 2 15-2 16
Artificial intelligence-based approaches,

scheduling simulations, 692-698
Assembly plant applications, automobile

industry, 549-557
Assertion checking, dynamic VV&T

techniques, 363-365
Assumptions testing (input data analysis),

61-69
independence assessment methods, 61-64
stability of distribution assessment methods,

64-69
Attributes, modeling concepts, 7
Audits, informal VV&T techniques, 356
Authorization testing, dynamic VV&T

techniques, 366
Automobile industry, 547-570

assembly plant applications, 549-557
case studies, 551-557
generally, 549-55 1

future trends, 568-569
life-cycle considerations, 565
major component plant applications,

557-559
nonmanufacturing applications, 56 1-562
overview, 547-549
robotics, 565-568

case study, 567-568
generally, 565-566
off-line programming, 566567

role players, 562-564
small component plant applications,

559-561
standards, 564

Autoregressive process, random variate
generation, 17 1

Autovalidation procedures, on-line simulation,
509-5 1 0

Average group quantile method, output data
analysis, 264-265

Banking system:
continuous simulation model, 43-46
discrete-event model, 42-43
network model, 4 1-42

Batching, comparison methods, 278-279
Batch means method (steady-state analysis),

246-26 1
batching rules, 250-253, 256-259
correlation test, 253-254
implementation, 254-256
overlapping batch means, 259-261

BBS generator, random number generation,
124-125

BEM procedure, comparison methods,
multinomial selection approach,
289-290

Bernoulli BER, random variate generation,
I63

Best linear unbiased estimator (BLUE),
regression metamodels, 183, 184

Beta BETA, random variate generation, 156
Beta testing, dynamic VV&T techniques, 365

838 INDEX

BG procedure, comparison methods,
multinomial selection approach,
290-292

Binomial BIN, random variate generation,
I64

Bisection, inverse transform method, random
variate generation, 149

Bonferroni intervals, output data analysis,
multivariate estimation, 265-266

Bonferroni + MCB procedures, comparison
methods, multiple comparisons
approach, 288-289

Bottom-up testing, dynamic VV&T
techniques, 365

Boundary value testing, dynamic VV&T
techniques, 370-371

Branch testing, dynamic VV&T techniques,
3 74

Brownian motion and bridge, output data
analysis, 232

BT procedure, comparison methods,
comparisons with standard, 293-294

Business process reengineering, software,
826-827

Carousels, material handling systems, 538
Cauchy CAUCHY, random variate generation,

159-160
Cause-effect graphing, static VV&T

techniques, 359
Central composite designs, design of

experiments (DOE), quadratic
effects, 199

Chi-squared with k degrees of freedom,
random variate generation, 154-1 55

Class properties, object-oriented simulation,
401-402

Combined discrete-continuous models,
simulation modeling, 46-47

Common random numbers (CRNs),
comparison methods, 277-278, 280,
287-289

Communications systems, simulation
applications, 15

Communicative model, VV&T credibility
assessment, 385

Comparison methods, 273-306
batching, 278-279
case study (airline-reservation system),

301-304
overview, 273-274
problems and solutions, 280-301

comparisons with default, 295-298

comparisons with standard, 292-294
functional relationships estimation,

298-301
screening problems, 280-283
selecting the best, 283-292

randomness control, 276-278
simulation output processes, 275-276
two system comparisons, 279-280

Comparison testing, dynamic VV&T
techniques, 365-366

Compliance testing, dynamic VV&T
techniques, 366

Composition method, random variate
generation, 147-148

Computer and communication systems
simulation, 659476

communications systems, 666-672
buffers, channels, and switches, 669-67 1
examples, 673-675
networks and network protocols,

668-669
size issues, 671
tradeoffs, 67 1-672
transmission times and propagation delay,

67 1
workload, 666-668

computer systems, 663-666
applications, 15
asynchronous operation, 665
components, 664-665
examples, 672473
results, 666
trade-offs, 665-666
workload, 664

duality of models, 662
goals, 660
object-oriented systems, 662-663
overview, 659
performance measures, 66 1-662
quasi-parallelism in, 663
resources and entities, 660
workload, 660-661

Conceptual model assumptions, validation of,
23-24

Condition-delayed entity state, discrete-event
simulation, 782-783

Condition testing, dynamic VV&T
techniques, 374

Confidence intervals:
experimental and output analysis, 26-27
for individual responses, 2 12-2 14
simultaneous, dynamic VV&T techniques,

372-374

INDEX 839

Conflict resolution, management, 746
Conservative mechanisms, parallel and

distributed simulation, 437-446.
See also Parallel and distributed
simulation

Consistency checks, simulation study, 24
Consistent estimation batch means method,

steady-state analysis, 249-250
Continuous decision parameters, simulation

optimization, 308-323. See also
Simulation optimization

Continuous simulation model:
banking system, simulation modeling,

43-46
combined discrete-continuous models,

46-47
Control analysis, static VV&T techniques,

359-360
Control variates, variance reduction

techniques, 2 16
Conveyors:

material handling systems, 536-537
performance criteria, 540

Correlation test, batch means method, steady-
state analysis, 253-254

Credibility assessment stages, VV&T,
379-387. See also Verification,
validation, and testing

Cryptographic generator, random number
generation, 124- 125

Data. See Input data; Output data
Data flow testing, dynamic VV&T

techniques, 374
Deadlock:

avoidance of, PADS, 437-439
detection and recovery, PADS, 439

Dead reckoning technique, distributed
interactive simulation, 457

Debugging:
dynamic VV&T techniques, 366
symbolic, dynamic VV&T techniques,

377
Defaults, comparisons with, comparison

methods, 295-298
Delays, modeling concepts, 8
Deletion, experimental and output analysis,

28-29
Design of experiments (DOE), 173-223

case study, 201-202
central composite designs, quadratic effects,

199
classical assumptions, 199-200

confidence intervals for individual
responses, 2 12-2 14

full factorial designs, 198-199
jackknifing control variates, 2 18
optimal, 200-20 1
optimization of simulated systems (RSM),

202-209
case studies, 205-209
response surface methodology, 204-205

overview, 173-1 77, 194-195
regression metamodels, 180-1 94

case study (coal transport), 19 1-1 94
estimated GLS and WLS, 185-186
example (multiple server system),

190-191
GLS, OLS, and WLS, 181-184
graphical methods, 180-1 8 1
lack of fit, 188-190
response variance estimation, 184-1 85
variance reduction techniques, 186-1 88

resolution 3 designs, 195-1 97
resolution 4 designs, 197-198
resolution 5 designs, 198
screening, 177-1 80

generally, 177-178
sequential bifurcation, 178-1 80

validation and verification, 209-21 1
variance reduction techniques, 2 15-2 18

Desk checking, informal VV&T techniques,
356

Digital method, random number generation,
119-122

Dirichlet, random variate generation, 169
Discrete decision parameters, simulation

optimization, 323-328. See also
Simulation optimization

Discrete-event simulation, 765-8 11
banking system, simulation modeling,

42-43
combined discrete-continuous models,

46-47
computer and communication systems

simulation, 659-676. See ulso
Computer and communication
systems simulation

control elements, 773-774
described, 37-41
entities, 772-773
entity management, 784-788
entity states, 779-784

active state, 779
condition-delayed state, 782-783
dormant state, 783-784

840 INDEX

Discrete-event simulation (Continued)
ready state, 780-781
time-delayed state, 781-782

model execution, 774-779
anatomy of replication, 776-779
projects, experiments, and replications,

774-775
modeling concepts, 6-7, 8-9
nature of, 768-769
operations, 774
overview, 765-766
rationale, 803-809
resources, 773
software implementation examples,

788-803
transaction-flow world view, 766768
units of traffic, events, and identical event

times, 769-771
Dispatching rule-based approaches,

scheduling simulations, 682-687
Dispute resolution, management, 746
Distributed interactive simulation, 454-459.

See also Parallel and distributed
simulation

communications in, 457-458
compared to PADS, 455-456
dead reckoning technique, 457
generally, 454-455
synchronization and time management,

458-459
Documentation, success guidelines, 737-738
Documentation checking, informal VV&T

techniques, 356
Dormant entity state, discrete-event

simulation, 783-784
Downtime:

manufacturing systems, 525-526
material handling systems, 538-539

Dynamic VV&T techniques, 362-378

Emergency department:
process survey for, healthcare simulation,

624
simulation project, healthcare simulation,

626-627
Empirical distribution EFD, random variate

generation, 160
Endogenous events, modeling concepts, 6
Entities:

computer and communication systems
simulation, 660

discrete-event simulation, 772-773,
779-784

modeling concepts, 7
trucking operations, 585-586
warehousing and distribution systems,

578-579
Equivalence partitioning testing, dynamic

VV&T techniques, 37 1
Event, discrete-event simulation, 769-771
Event-scheduling method, defined, 9
Execution testing, dynamic VV&T

techniques, 366-367
Exogenous events, modeling concepts, 6
Experimental design. See Design of

experiments (DOE)
Exponential EXP, random variate generation,

150-15 1
External randomness, random number

generation, 95-96
Extreme-condition tests, simulation study, 23
Extreme input testing, dynamic VV&T

techniques, 371
Extreme value, random variate generation,

152

Face validation:
informal VV&T techniques, 356
simulation study, 23

Fault/failure analysis, static VV&T
techniques, 360

Fault/failure insertion testing, dynamic
VV&T techniques, 367

F-distribution, random variate generation, 158
Field testing, dynamic VV&T techniques, 367
Finite differences, simulation optimization,

gradient estimation, 3 10-3 17
Finite-horizon simulations, 233-238

defined, 233
mean estimation by independent

replications, 234-235
quantile estimation, 237-238
sequential estimation, 235-237

First-order autoregressive process, output data
analysis, 23 1

Flexible manufacturing system (FMS). See
On-line simulation

Formal VV&T techniques, 378-379
Foundation frame, object-oriented simulation,

403-404
Full factorial designs, design of experiments

(DOE), 198-199
Functional relationships estimation,

comparison methods, 298-301
Functional testing, dynamic VV&T

techniques, 367-368

INDEX 841

Gamma GAM, random variate generation,
152-153

Gaussian processes, random variate
generation, 170-17 1

Generalized least squares (GLS):
estimated, regression metamodels, 185-1 86
regression metamodels, 181-1 84

Geometric GEOM, random variate generation,
I64

Goodness-of-fit tests, input data analysis,
82-83

Gradient estimation, simulation optimization,
continuous decision parameters,
309-3 17

Graphical comparisons, dynamic VV&T
techniques, 368

Guidelines for success. See Success
guidelines

Healthcare simulation, 605-627
applications, 14
case study, 617-623
emergency department process survey, 624
emergency department simulation, 626-627
implementation barriers, 615-616
operating room project, 625
overview, 605
research requirements, 606-607
steps in, 607-61 5

assumptions document, 615
initial steps, 608-609
model construction, 609-615

system type comparisons, 605-606
unique problems, 61661 7

Hierarchical object-oriented programmable
logic simulator (HOOPLS), on-line
simulation, 48 1-490

Historical input data, validation of, 24-25
Hypergeometric HYP, random variate

generation, 165

Identical event times, discrete-event
simulation, 769-77 1

Importance sampling, variance reduction
techniques, 216-2 18

Independence assessment methods,
assumptions testing, input data
analysis, 6 1-64

Indifference-zone selection approach,
comparison methods, selecting the
best, 284-285

Informal VV&T techniques, 355-358
Inheritance, object-oriented simulation, 402

Initialization bias, removal of, steady-state
analysis, 238-240

Input data analysis, 55-91
assumptions testing, 61-69

independence assessment methods, 61-64
stability of distribution assessment

methods, 64-69
data collection, 59-61
generally, 55-57
missing data, 89-90
non-IID case, 89
roots of, 57-59
simulation study, 19-2 1
trucking operations, 583
univariate IID case, 69-89

alternative distribution forms, 69-74
distribution form selection, 74-76
empirical distribution application, 87-89
standard distributions and flexible

families, 77-87
Input-output transformations, validation of,

24
Inspections, informal VV&T techniques,

356-357
Interface analysis, static VV&T techniques,

360
Interface testing, dynamic VV&T techniques,

368-369
Invalid input testing, dynamic VV&T

techniques, 37 1
Inverse Gaussian IG, random variate

generation, 156-1 57
Inverse transform method (random variate

generation), 14 1-1 45
continuous case, 142-144
continuous distributions, 149-150
discrete case, 144-145

Inversive congruential generator, random
number generation, 123-124

Jackknifing control variates, design of
experiments (DOE), 21 8

Job shops, scheduling simulations, 698-706.
See also Scheduling simulations

k-Erlang ERL, random variate generation,
153-154

Kolmogorov-Smimov (K-S) test, input data
analysis, 85-87

Lack of fit, regression metamodels, 188-190
Lacunary indices, random number generation,

113-114

842 INDEX

Lattice structure, of LCGs and MRGs,
random number generation, 106-1 13

Life cycle:
automobile industry, 565
verification, validation, and testing,

336-345
Limit theorems, output data analysis, 226-228
Linear congruential generator, random

number generation, 94-95
Linear feedback shift register (LFSR), random

number generation, 119-1 21
Linehaul trucking operation. See Trucking

operations
List processing, modeling concepts, 8
Local causality constraint, synchronization,

PADS, 435-436
Logistics and transportation systems, 571-604

challenges, 572-573
overview, 57 1
problems, 573-575
ramp operations (air cargo hub), 597-601.

See also Ramp operations (air cargo
hub)

resources, 572
software, 602
truck dock operations, 591-597. See also

Truck dock operations
trucking operations, 580-59 1

activities, 586-587
benefits, 590-591
data requirements, 587-590
entities, 585-586
generally, 580-582
model development, 582-585
resources, 586

warehousing and distribution systems,
575-580

data requirements, 579-580
entities and resources, 578-579
logistics application, 576-578
outputs and responses, 580
purpose, 575-576

Lognormal LN, random variate generation,
155

Look-ahead improvement, parallel and
distributed simulation, 441

Look-up tables, random variate generation,
161-162

Loop testing, dynamic VV&T techniques,
374, 376

Management, 745-764
contraindications for simulation, 748-754

manager as consumer, 754-756
manager roles, 756-762

extension of, 756-757
quality assurance, 757-762

motivation, 745-748
overview, 745
training, 762-764

Manufacturing systems, 519-535. See also
Material handling systems

analysis issues, 529
case studies, 533-535
components of, 523-525
downtime, 525-526
examples, 529-533, 543
guidelines for detail level, 523
healthcare simulation compared, 605-606,

630-63 1
overview, 5 19-522
performance measures, 528-529
rework and reentrancy, 527
simulation applications, 13
software, 821-826
stochastic events, 527-528

Markov process, random variate generation,
170

Material handling systems. See also
Manufacturing systems

carousels, 538
case studies, 540-541
control systems, 539
conveyors, 536-537
examples, 541-543
material flow modeling, 538
overview, 5 19-522, 535-536
performance criteria, 539-540
random events modeling, 538-539
robots, 538
vehicle systems, 537
vertical lifts, 538

Matrix LCGs and MRGs, random number
generation, 1 16-1 17

Maximum transform, output data analysis,
steady-state analysis, 264

Mean estimation:
by independent replications, finite-horizon

simulations, 234-235
steady-state analysis, 243-244
using independent replications, output data

analysis, multivariate estimation,
266-267

using stationary data, output data
analysis, multivariate estimation,
267-268

INDEX 843

Military systems simulation, 645-658
acquisition testing and evaluation, 655
applications, 14
classification of models, 648
example, 649-65 1
nonwargaming applications, 655-656
organizations, 646-648
overview, 645446
training tool, 65 1-655
verification, validation, and accreditation,

656
Missing data, input data analysis, 89-90
Modeling concepts, 6-9

activities and delays, 8
discrete-event simulation model, 8-9
entities and attributes, 7
list processing, 8
resources, 7-8
system state variables, 7

Moving average, random variate generation,
170-171

Moving-average process, output data analysis,
230-23 1

Multinomial selection approach, comparison
methods, selecting the best, 289-292

Multiple-comparison procedures (MCPs),
comparison methods, 273

Multiple comparisons approach:
comparison methods

comparisons with default, 295-298
selecting the best, 285-289

screening problems, 280-28 1
Multiple-recursive generator, random number

generation, 102-1 04
Multiplicative linear congruential generator

(MLCG), 95, 96
Multivariate normal MVN, random variate

generation, 167-1 68

Natural resources, simulation applications,
14

Negative binomial NEGBIN, random variate
generation, 164-1 65

Network model, banking system, simulation
modeling, 4 1-42

Newton-Raphson iteration, inverse transform
method, random variate generation,
149-150

NM + MCB procedure, comparison methods,
multiple comparisons approach,
287-288

Nonstationary Poisson process, random
variate generation, 170

Nonterminating systems, terminating systems
versus, experimental and output
analysis, 27-29

Normal N, random variate generation, 154

Object-flow testing, dynamic VV&T
techniques, 369

Object-oriented simulation, 397-427
appeal of, 399-400
class hierarchy and frames, 403-409

foundation frame, 403-404
frameworks, 407-409
simulation frame, 404-406
simulation modeling frame, 406-407

concepts, 398-399
creation of, 409-4 16

case study, 4 1 1
concepts and objectives, 409-4 1 1
embellishments, 416
objects and specification, 41 3-415
running of, 415-416
YANSL model, 4 1 1-4 13

objects and classes, 401-403
class properties, 401-402
inheritance, 402
object construction and initialization, 402
polymorphism, 403
run-time binding, 402

overview, 397-398
reuse and extensibility within, 416-424

grouping transactions, 424
multiple activities, 416-418
new transactions, 4 18-424

software, 400-401
On-line simulation, 465-5 16

new simulation model approaches, 467-490
advances in, 473-48 1
capabilities of, 48 1-490
conventional approaches assessed,

467-473
overview, 465-467
planning and control, 490-5 13

autovalidation procedures requirements,
509-5 10

implementation, 5 12-5 13
off-line planning overviewed, 490-494
on-line planning overviewed, 494-498
output analysis techniques requirements,

501-507
proactive versus reactive planning,

498-500
real-time compromise analysis techniques

requirements, 507-509

844 INDEX

On-line simulation (Continued)
scheduling alternatives selection,

510-512
tools and requirements, 50C501

Operating room, healthcare simulation, 625
Optimistic mechanisms, parallel and

distributed simulation, 446-45 1.
See also Parallel and distributed
simulation

Optimization. See Design of experiments
(DOE); Simulation optimization

Optimization-based approaches, scheduling
simulations, 687-692

Order arrivals, job shop scheduling, 699-700
Ordinary least squares (OLS), regression

metamodels, 18 1-1 84
Output data analysis, 225-272

finite-horizon simulations, 233-238
mean estimation by independent

replications, 234-235
quantile estimation, 237-238
sequential estimation, 235-237

limit theorems, 226-228
multivariate estimation, 265-268

Bonferroni intervals, 265-266
mean

using independent replications,
266-267

using stationary data, 267-268
on-line simulation, 501-507
overview, 225
simulation types, 232-233
steady-state analysis, 238-265

batch means method, 246-261
initialization bias, removal of, 238-240
mean estimation, 243-244
quantile estimation, 245-246
quantile estimation from stationary data,

263-265
regenerative method, 242-243
replication-deletion approach, 240-242
spectral estimation method, 263
standardized time series method,

261-263
stochastic processes, 228-232

Output processes, comparison methods,
275-276

Overlapping batch means, steady-state
analysis, 259-261

Parallel and distributed simulation, 429-464.
See also Distributed interactive
simulation

concepts and example, 432-434
conservative mechanisms, 437-446

critique of, 444-446
deadlock avoidance, 437-439
deadlock detection and recovery, 439
look-ahead improvement, 441
performance of, 441-444
synchronous operation, 439-440
time windows, 440-441

distributed interactive simulation, 454-459
communications in, 457-458
comparisons, 455-456
dead reckoning, 457
generally, 454-455
synchronization and time management,

458-459
hardware platforms, 430-432
optimistic mechanisms, 446-45 1

critique of, 449-45 1
lazy cancellation, 447-448
lazy reevaluation, 448
performance of, 448-449

overview, 429-430
synchronization, 434-436
time parallel simulation, 451-454

Partition testing, dynamic VV&T techniques,
369-370

Path testing, dynamic VV&T techniques,
376

Pearson Type VIPT, random variate
generation, 158

Pearson Type VPT, random variate
generation, 157

Performance measures:
computer and communication systems

simulation, 661462
manufacturing systems, 528-529
truck dock operations, 593

Performance testing, dynamic VV&T
techniques, 366

Planning and control, on-line simulation,
490-5 13. See also On-line
simulation

Point processes, random variate generation,
169-170

Poisson POIS, random variate generation,
165-166

Poisson process, random variate generation,
169-170

Polymorphism, object-oriented simulation,
403

P procedure, comparison methods,
comparisons with default, 297-298

INDEX 845

Predictive validation, dynamic VV&T
techniques, 370

Preloading, experimental and output analysis,
28

Proactive planning, reactive planning versus,
on-line simulation, 498-500

Problem solving, simulation modeling, 33-36
Process-interaction method, defined, 9
Product testing, dynamic VV&T techniques,

370
Programmed model, VV&T credibility

assessment, 385
Pseudorandom numbers:

random number generation, 93-94
variance reduction techniques, 215

Public services, simulation applications, 14
Public systems, simulation applications,

13-14

Quadratic congruential generator, random
number generation, 124

Quadratic effects, central composite designs,
design of experiments (DOE), 199

Quantile estimation:
finite-horizon simulations, 237-238
from stationary data, steady-state analysis,

output data analysis, 263-265
steady-state analysis, 245-246

Quasi-parallelism, computer and
communication systems simulation,
663

Quasi-random sequences, random number
generation, 101

Ramp operations (air cargo hub), 597401
factors and responses, 599
generally, 597-598
model development, 599-600
report generator, 600-60 1
static and dynamic data, 598-599
what-if scenarios, 601

Random events, material handling systems,
538-539

Randomness control, comparison methods,
276-278

Random number, simulation frame, object-
oriented simulation, 405

Random number generation, 93-1 37
design of generators, 96
external randomness, 95-96
generally, 93
linear congruential generator, 94-95

linear methods, 102-122
digital method, 1 19-122
implementation for prime m, 104-105
jumping ahead, 105-106
lacunary indices, 1 13-1 14
lattice structure of LCGs and MRGs,

106-113
linear recurrences with carry, 1 17- 1 19
matrix LCGs and MRGs, 116-1 17
multiple-recursive generator, 102- 104

nonlinear methods, 122-125
BBS generator, 124-1 25
inversive congruential generator, 123-1 24
quadratic congruential generator, 124

packages, 130-13 1
pseudorandom numbers, 93-94
simulation study, 18- 19
statistical testing, 125-130

available test batteries, 127
examples, 127-1 29
generally, 125-1 26

undesired properties, 97-102
discrepancy, 100-101
efficiency, 101
historical accounts, 102
long period, 101
quasi-random sequences, 10 1
random sequence definition, 98-99
repeatability, splitting facilities, and ease

of implementation, 102
unpredictability, 97-98

Random search (simulation optimization):
discrete decision parameters, 324-328
recent developments, 328

Random variate generation, 139-1 72
acceptance-rejection method, 145-147
composition method, 147-148
continuous distributions, 149-160

inverse transform method, 149-150
specific distributions, 150-160

definitions, 139-141
discrete distributions, 161-166

alias method, 162
empirical distribution, 162-163
look-up tables, 161-1 62
specific distributions, 163-166

inverse transform method, 141-145
continuous case, 142-144
discrete case, 144- 145

multivariate distributions, 166-1 69
generally, 166-1 67
special distributions, 167-1 69

simulation study, 18- 19

846 INDEX

Random variate generation (Continued)
stochastic processes, 169-1 7 1
translation and transforms, 148

Random variates, simulation frame, object-
oriented simulation, 405

Ranking and selection (R&S) procedures,
comparison methods, 273

Reactive planning, proactive planning versus,
on-line simulation, 498-500

Ready entity state, discrete-event simulation,
780-78 1

Real-time compromise analysis techniques,
on-line simulation, 507-509

Real-time input testing, dynamic VV&T
techniques, 371

Reengineering, software, 826-827
Regenerative method, steady-state analysis,

242-243
Regression metamodels, 180-194

design of experiments (DOE)
case study (coal transport), 191-194
estimated GLS and WLS, 185-186
example (multiple server system),

190-191
GLS, OLS, and WLS, 181-184
lack of fit, 188-190
response variance estimation, 184-1 85
variance reduction techniques, 186-188

graphical methods, 180-1 8 1
Regression sampling, variance reduction

techniques, 21 6
Regression testing, dynamic VV&T

techniques, 370
Replication-deletion approach, steady-state

analysis, 240-242
Resources:

computer and communication systems
simulation. 660

discrete-event simulation, 773
logistics and transportation systems,

572
modeling concepts, 7-8
trucking operations, 586
warehousing and distribution systems,

578-579
Response surface methodology, optimization

of simulated systems (RSM),
204-205

Response variance estimation, regression
metamodels, 184-1 85

Reviews, informal VV&T techniques, 357
Rework and reentrancy, manufacturing

systems, 527

Rincott + MCB procedure, comparison
methods, multiple comparisons
approach, 285-287

Robotics:
automobile industry, 565-568
material handling systems, 538

Run-time binding, object-oriented simulation,
402

Sample path optimization, simulation
optimization, continuous decision
parameters, 320-323

Scheduling alternatives, on-line simulation,
510-512

Scheduling simulations, 677-7 17
applications, 706-7 12

case study, 709-7 12
data collection, 706-707
experimentation and results, 707-708
shop loading, 708-709

approaches, 680-698
artificial intelligence-based approaches,

692-698
dispatching rule-based approaches,

682-687
generally, 680-682
optimization-based approaches, 687-692

definitions and background, 679-680
implementation issues, 712-7 15
job shops, 698-706

due dates, 702
generally, 698-699
machines numbers, 701
order arrivals, 699-700
priority rules, 702-706
processing and setup times, 700-701
routing, 701
utilization, 701-702

overview, 677-679
software, 827-828

Screening:
design of experiments (DOE), 177-1 80

generally, 177-178
sequential bifurcation, 178- 180

problems in, comparison methods, 280-283
Security testing, dynamic VV&T techniques,

366
Self-driven input testing, dynamic VV&T

techniques, 37 1
Semantic analysis, static VV&T techniques,

361
Sensitivity analysis. See also Design of

experiments (DOE)

INDEX 847

dynamic VV&T techniques, 370
simulation study, 23

Sequential bifurcation, screening, design of
experiments (DOE), 178- 180

Sequential estimation, finite-horizon
simulations, 235-237

Service systems simulation, 629-644
applications, 14-1 5

case studies, 633-644
healthcare simulation compared, 606
manufacturing systems compared, 605-606.

630-63 1
overview, 629-630
process of, 631-633

Simulation:
advantages of, 10-1 2
applications of, 1 3-1 5
defined, 3-6
disadvantages of, 12-13
experimental and output analysis, 25-29
input data, 19-21
modeling concepts, 6-9
random number and random variate

generation, 18- 19
steps in study, 15-18
validation, 23-25
verification, 22-23
world views, 9-10

Simulation frame, object-oriented simulation,
404-406

Simulation modeling, 3 1-5 1
defined, 31-32
management of, 745-764. See also

Management
principles, 32-33, 34, 46, 49
problem solving, 33-36
purpose and applications, 47-49
research on, 49
success guidelines, 721-743. See also

Success guidelines
world views, 37-47

combined discrete-continuous models,
46-47

continuous simulation (banking system),
43-46

discrete-event model (banking system),
42-43

discrete simulation modeling, 37-41
network model (banking system), 41-42

Simulation modeling frame, object-oriented
simulation, 406-407

Simulation optimization, 307-333
continuous decision parameters, 308-323

gradient estimation, 309-3 17
sample path optimization, 320-323
stochastic approximation, 317-320

discrete decision parameters, 323-328
overview, 307-308

Simulation output processes, comparison
methods, 275-276

Simulation quality assurance (SQA) group,

335
Software, 8 13-835

descriptions, 8 18-829
animators, 828-829
business process reengineering, 826-827
general-purpose software, 8 18-82 1
manufacturing-oriented software,

82 1-826
scheduling software, 827-828
simulation support software, 829

implementation examples, discrete-event
simulation, 788-803

optimization, 830-832
selection of, 8 13-8 18

bottom line, 8 17-8 18
cost considerations, 8 17
environment considerations, 8 16-8 17
input considerations, 8 14-8 15
output considerations, 8 16
processing considerations, 8 15-8 16

vendors of, 832-833
Special input testing, dynamic VV&T

techniques, 370-372
Spectral estimation method, steady-state

analysis, output data analysis,
263

Square root rule, batching rules, 251-253
Stability of distribution assessment methods,

assumptions testing, input data
analysis, 64-69

Standardized time series method, steady-
state analysis, output data analysis,
26 1-263

Standards:
automobile industry, 564
comparisons with, comparison methods,

292-294
Standards testing, dynamic VV&T techniques,

366
Statement testing, dynamic VV&T

techniques, 376
Static VV&T techniques, 358-362
Stationarity:

strict, output data analysis, 228-229
weak, output data analysis, 229-231

848 INDEX

Statistical techniques, dynamic VV&T
techniques, 372-374

Steady-state analysis, 238-265
batch means method, 246-261

batching rules, 250-253, 256-259
consistent estimation batch means

method, 249-250
correlation test, 253-254
implementation, 254-256
overlapping batch means, 259-261

defined, 233
initialization bias, removal of, 238-240
mean estimation, 243-244
output data analysis

quantile estimation from stationary data,
263-265

spectral estimation method, 263
standardized time series method,

261-263
quantile estimation, 245-246
regenerative method, 242-243
replication-deletion approach, 240-

242
Stochastic approximation, simulation

optimization, continuous decision
parameters, 3 17-320

Stochastic processes:
input data analysis, 57
manufacturing systems, 527-528
output data analysis, 228-232
random variate generation, 169-17 1

Stress testing, dynamic VV&T techniques,
37 1

Strict stationarity, output data analysis,
228-229

Structural analysis, static VV&T techniques,
36 1

Structural testing, dynamic VV&T techniques,
374-376

Submodel/module testing, dynamic VV&T
techniques, 376-377

Subset selection approach, screening
problems, 281-283

Success guidelines, 72 1-743
analysis, 735-737
data collection, 730-732
documentation, 737-738
implementation, 738-742
manager roles, 757-762
model building, 732-734
model conceptualization, 727-730
overview, 72 1-722
problem formulation, 723-727

project steps, 722
verification and validation, 734-735

Swamping, experimental and output analysis,
28

Symbolic debugging, dynamic VV&T
techniques, 377

Symbolic evaluation, static VV&T
techniques, 361-362

Synchronization:
distributed interactive simulation, 458-459
parallel and distributed simulation,

434-436
Synchronous operation, parallel and

distributed simulation, 439-440
Syntax analysis, static VV&T techniques,

362
System state variables, modeling concepts, 7

Tausworthe generator, random number
generation, 1 19-1 2 1

t-distribution, random variate generation,
155

Terminating systems, nonterminating systems
versus, experimental and output
analysis, 27-29

Testing. See Verification, validation, and
testing

Three-phase method, defined, 10
Time-delayed entity state, discrete-event

simulation, 781-782
Time parallel simulation, 45 1-454
Time-series models, random variate

generation, 170-1 7 1
Time windows, parallel and distributed

simulation, 440-441
Top-down testing, dynamic VV&T

techniques, 377
Traceability assessment, static VV&T

techniques, 362
Trace-driven input testing, dynamic VV&T

techniques, 37 1-372
Translation and transforms, random variate

generation, 148
Transportation, simulation applications,

14, 15. See also Logistics and
transportation systems

Triangular TRI, random variate generation,
158-159

Truck dock operations, 591-597
analysis, 595-597
controllable factors and performance

measures, 593
critical processes, 594-595

INDEX 849

generally, 59 1-592
input data, 592-593
what-if scenarios, 595

Trucking operations, 580-597
activities, 586-587
benefits, 590-59 1
data requirements, 587-590
entities, 585-586
generally, 580-582
model development, 582-585
resources, 586

Turing test:
informal VV&T techniques, 357-358
simulation study, 24

Uniform U, random variate generation, 150
Units of traffic, discrete-event simulation,

769-77 1
Univariate IID case. See also Input data

analysis
comparison methods, 276
input data analysis, 69-89

Validation. See ulso Design of experiments
(DOE); Verification, validation, and
testing

design of experiments (DOE), 209-2 1 1
healthcare simulation, 6 13-6 15
simulation study, 23-25

Variance reduction techniques:
design of experiments (DOE), 2 15-2 1 8
regression metamodels, design of

experiments (DOE), 186-1 88
Vehicle systems:

material handling systems, 537
performance criteria, 539

Verification, validation, and testing, 335-
393

credibility assessment stages, 379-387
communicative model, 385
data, 385-386
experimental model, 386
experiment design, 385
feasibility assessment, 384
formulated problem VV&T, 380
model qualification, 384-385
presentation, 386-387
programmed model, 385
system and objectives definition, 384
tables, 38 1-383

design of experiments (DOE), 209-2 I I
healthcare simulation, 612-61 3
life cycle and case study, 336-345

experimentation, 344
experiment design, 343-344
model formulation, 340-341
model representation, 34 1-343
problem formulation, 337-338
programming, 343
redefinition, 344
results presentation, 344-345
solution techniques investigation, 338
system investigation, 338-340

military systems simulation, 656
overview, 335-336
principles, 345-354
simulation study, 22-23
success guidelines, 734-735
techniques, 354-379

dynamic, 362-378
formal, 378-379
generally, 354-355
informal, 355-358
static, 358-362

Vertical lifts, material handling systems, 538
Visualization/animation, dynamic VV&T

techniques, 377-378
von Mises VM, random variate generation,

I60

Walkthroughs, informal VV&T techniques,
358

Warehousing and distribution systems,
575-580

data requirements, 579-580
entities and resources, 578-579
logistics application, 576-578
outputs and responses, 580
purpose, 575-576

Weak stationarity, output data analysis,
229-23 1

Weibull WEIB, random variate generation,
151

Weighed least squares (WLS), estimated,
regression metamodels, 185-1 86

Weighted least squares (WLS), regression
metamodels, 183

Winter Simulation Conference. 762-763

YANSL, object-oriented simulation, 409-4 16

